中国农业科学 ›› 2021, Vol. 54 ›› Issue (7): 1499-1511.doi: 10.3864/j.issn.0578-1752.2021.07.014
收稿日期:
2020-07-06
接受日期:
2020-09-03
出版日期:
2021-04-01
发布日期:
2021-04-22
通讯作者:
章秀福
作者简介:
褚光,E-mail: 基金资助:
CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu()
Received:
2020-07-06
Accepted:
2020-09-03
Online:
2021-04-01
Published:
2021-04-22
Contact:
XiuFu ZHANG
摘要: 【目的】探明干湿交替灌溉对籼粳杂交稻产量与水分利用效率的影响及其生理基础。【方法】试验于2017—2018年在中国水稻研究所富阳基地皇天畈试验农场进行。以2个新选育的超高产籼粳杂交稻品种甬优1540和春优927以及2个当地高产粳型杂交稻品种常优5号和嘉优5号为材料,开展大田试验。自移栽后7 d至成熟期设置2种灌溉模式,分别为常规灌溉(CI)和干湿交替灌溉(AWD)。研究AWD对籼粳杂交稻品种产量形成以及水分利用效率的影响及其生理基础。【结果】与CI模式相比,AWD模式显著降低了2个当地高产粳型杂交稻品种的产量,降幅为12.3%—12.8%,但2个籼粳杂交稻品种的产量在2种灌溉模式间没有显著差异;AWD模式显著提高了4个供试水稻品种的水分利用效率,其中当地高产粳型杂交稻品种的增幅为5.9%—8.3%,籼粳杂交稻品种的增幅为13.7%—16.8%。与当地高产粳型杂交稻相比,籼粳杂交稻品种在AWD模式下获得相对较高的产量以及水分利用效率主要得益于其强大的分蘖发生能力、较高的群体颖花量和结实率、齐穗至成熟期较高的光合势与作物生长速率、齐穗后2次土壤落干期与复水期较高的根系氧化力、剑叶净光合速率以及籽粒中较高的蔗糖-淀粉代谢途径关键酶的活性。【结论】与当地高产粳型杂交稻品种相比,籼粳杂交稻品种在AWD模式下可获得更高的产量与水分利用效率;较好的根系性能(齐穗后2次土壤落干期与复水期较高的根系氧化力)和地上部植株较强的生理活性(齐穗至成熟期较高的光合势、作物生长速率、齐穗后2次土壤落干期与复水期较高的剑叶净光合速率以及籽粒中蔗糖-淀粉代谢途径关键酶活性)是其在AWD模式下获得高产与水分高效利用的重要生理基础。
褚光,徐冉,陈松,徐春梅,王丹英,章秀福. 干湿交替灌溉对籼粳杂交稻产量与水分利用效率的影响及其生理基础[J]. 中国农业科学, 2021, 54(7): 1499-1511.
CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases[J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
表1
水稻生长期降雨量、日照时长以及平均气温的变化"
年份/气象条件 Year/ Meteorological condition | 六月 June | 七月 July | 八月 August | 九月 September | 十月 October |
---|---|---|---|---|---|
2017 | |||||
降雨量 Precipitation (mm) | 112 | 218 | 164 | 72 | 62 |
日照时长 Sunshine (h) | 98 | 220 | 208 | 185 | 157 |
平均气温 Temperature (℃) | 26.5 | 28.6 | 28.5 | 26.8 | 22.5 |
2018 | |||||
降雨量 Precipitation (mm) | 71 | 182 | 151 | 84 | 77 |
日照时长 Sunshine (h) | 118 | 241 | 185 | 178 | 164 |
平均气温 Temperature (℃) | 26.8 | 28.9 | 28.1 | 26.5 | 22.8 |
表2
不同灌溉模式下水稻产量、水分利用效率以及部分生理性状的方差分析"
方差分析 Analysis of variance | 产量 Grian yield | 水分利用效率 Water use efficiency | 茎蘖成穗率 Percentage of productive tillers | 作物生长速率 Crop growth rate | 光合势 Leaf area duration | 根系氧化力 Root oxidation activity | 剑叶净光合速率 Flag leaf photosynthetic rate | 蔗糖合酶 SuSase | 腺苷二磷酸 葡萄糖焦磷 酸化酶 AGPase |
---|---|---|---|---|---|---|---|---|---|
年份 Year | NS | NS | NS | NS | NS | NS | NS | NS | NS |
年份×品种 Year ×Cultivar | NS | NS | NS | NS | NS | NS | NS | NS | NS |
年份×处理 Year ×Treatment | NS | NS | NS | NS | NS | NS | NS | NS | NS |
表3
不同灌溉模式对水稻产量构成因素的影响"
品种 Cultivar | 处理 Treatment | 稻谷产量 Grain yield (t·hm-2) | 穗数 Number of panicles (×104 hm-2) | 每穗粒数 Spikelets per panicle | 总颖花量 Total spikelets (×103 m-2) | 结实率 Filled grains (%) | 千粒重 1000-grain weight (g) |
---|---|---|---|---|---|---|---|
甬优1540 YY-1540 | CI | 11.5a | 202c | 326a | 65.7a | 79.2c | 23.0c |
AWD | 11.4a | 198c | 304b | 59.9b | 84.5b | 23.3c | |
春优927 CY-927 | CI | 11.6a | 189d | 311b | 58.8b | 84.2b | 24.7b |
AWD | 11.5a | 186d | 287c | 53.2c | 89.6a | 25.0b | |
常优5号 CY-5 | CI | 10.1b | 251a | 186e | 46.7d | 84.4b | 26.8a |
AWD | 8.86c | 240b | 169f | 40.4e | 85.3b | 26.8a | |
嘉优5号 JY-5 | CI | 9.82b | 248a | 198d | 48.9d | 80.7c | 25.8b |
AWD | 8.56c | 235b | 181e | 42.3e | 81.9c | 25.9b | |
方差分析 ANOVA | |||||||
品种 Cultivar (C) | ** | ** | ** | ** | ** | ** | |
处理 Treatment (T) | ** | ** | ** | ** | ** | NS | |
品种×处理 C×T | ** | * | * | * | ** | * |
表4
不同灌溉模式对水稻茎蘖数与茎蘖成穗率的影响"
品种 Cultivar | 处理 Treatment | 茎蘖数 Number of tillers and mail stems (m-2) | 茎蘖成穗率 Percentage of productive tillers (%) | ||
---|---|---|---|---|---|
拔节期 Jointing | 齐穗期 Heading | 成熟期 Maturity | |||
甬优1540 YY-1540 | CI | 281c | 208c | 202c | 71.7b |
AWD | 258d | 207c | 198c | 76.2a | |
春优927 CY-927 | CI | 260d | 198d | 189d | 72.7b |
AWD | 239e | 197d | 186d | 77.5a | |
常优5号 CY-5 | CI | 360a | 259a | 251a | 70.4b |
AWD | 315b | 245b | 240b | 76.1a | |
嘉优5号 JY-5 | CI | 357a | 255a | 248a | 69.4b |
AWD | 309b | 241b | 235b | 75.9a | |
方差分析 ANOVA | |||||
品种 Cultivar (C) | ** | ** | ** | NS | |
处理 Treatment (T) | ** | ** | ** | ** | |
品种×处理 C×T | ** | * | * | NS |
表5
不同灌溉模式对水稻叶面积指数(LAI)与光合势(LAD)的影响"
品种 Cultivar | 处理 Treatment | 叶面积指数 LAI (m2·m-2) | 光合势 LAD (m2·m-2·d) | ||||
---|---|---|---|---|---|---|---|
拔节期 Jointing | 齐穗期 Heading | 成熟期 Maturity | 拔节前 Before Jointing | 拔节-齐穗 Jointing-Heading | 齐穗-成熟 Heading-Maturity | ||
甬优1540 YY-1540 | CI | 4.67a | 7.87a | 1.85a | 103a | 251a | 243a |
AWD | 3.71b | 7.58a | 1.80a | 84.2b | 226b | 235a | |
春优927 CY-927 | CI | 4.88a | 7.92a | 1.91a | 108a | 256a | 246a |
AWD | 3.87b | 7.63a | 1.88a | 87.4b | 220bc | 238a | |
常优5号 CY-5 | CI | 3.52b | 7.01b | 1.14b | 80.4b | 211c | 204b |
AWD | 2.30c | 5.56c | 0.77c | 56.0c | 157d | 158c | |
嘉优5号 JY-5 | CI | 3.68b | 6.97b | 1.12b | 83.6b | 213c | 202b |
AWD | 2.12c | 5.48c | 0.71c | 52.4c | 152d | 155c | |
方差分析 ANOVA | |||||||
品种 Cultivar (C) | ** | ** | ** | ** | ** | ** | |
处理 Treatment (T) | ** | ** | ** | ** | * | ** | |
品种×处理 C×T | * | ** | * | ** | * | * |
表6
不同灌溉模式对灌浆期水稻根系氧化力与剑叶净光合速率的影响"
品种 Cultivar | 处理 Treatment | 根系氧化力 Root oxidation activity (μg α-NA·g-1 DW·h-1 ) | 剑叶净光合速率 Flag leaf photosynthetic rate (µmol·m-2·s-1 ) | ||||||
---|---|---|---|---|---|---|---|---|---|
D1 | W1 | D2 | W2 | D1 | W1 | D2 | W2 | ||
甬优1540 YY-1540 | CI | 560a | 559b | 418a | 414b | 24.6a | 24.3b | 21.8a | 21.3b |
AWD | 553a | 637a | 409a | 498a | 24.3a | 26.7a | 21.5a | 24.3a | |
春优927 CY-927 | CI | 569a | 563b | 420a | 418b | 24.9a | 24.5b | 22.1a | 21.6b |
AWD | 557a | 629a | 415a | 478a | 24.2a | 26.5a | 21.9a | 24.8a | |
常优5号 CY-5 | CI | 502b | 490c | 343b | 334c | 24.5a | 24.3b | 18.4b | 18.1c |
AWD | 407c | 478c | 254c | 292d | 20.7b | 23.9b | 13.8c | 15.5d | |
嘉优5号 JY-5 | CI | 496b | 486c | 358b | 360c | 24.6a | 24.1b | 18.1b | 18.4c |
AWD | 415c | 481c | 269c | 287d | 21.0b | 24.0b | 13.9c | 15.2d | |
方差分析 ANOVA | |||||||||
品种 Cultivar (C) | ** | ** | ** | ** | ** | ** | ** | ** | |
处理 Treatment (T) | ** | ** | ** | ** | ** | ** | ** | ** | |
品种×处理 C×T | * | ** | ** | * | ** | * | * | * |
表7
不同灌溉模式对灌浆期籽粒中蔗糖合酶(SuSase)和腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)活性的影响"
品种 Cultivar | 处理 Treatment | 蔗糖合酶 SuSase (µmol·g-1 DW·min-1) | 腺苷二磷酸葡萄糖焦磷酸化酶 AGPase (µmol·g-1 DW·min-1 ) | ||||||
---|---|---|---|---|---|---|---|---|---|
D1 | W1 | D2 | W2 | D1 | W1 | D2 | W2 | ||
甬优1540 YY-1540 | CI | 42.3a | 41.2b | 27.3a | 27.0b | 29.1a | 29.4b | 17.6a | 17.3b |
AWD | 42.7a | 50.0a | 27.7a | 33.7a | 28.3a | 36.0a | 17.3a | 23.1a | |
春优927 CY-927 | CI | 40.8a | 40.2b | 29.3a | 28.8b | 28.4a | 29.0b | 17.2a | 16.9b |
AWD | 41.8a | 48.2a | 28.7a | 36.8a | 27.6a | 36.6a | 17.1a | 22.4a | |
常优5号 CY-5 | CI | 31.7b | 31.0c | 21.1b | 21.5c | 23.6b | 23.7c | 11.4b | 11.9c |
AWD | 24.4c | 31.5c | 12.0c | 15.8d | 18.5c | 23.6c | 6.34c | 8.13d | |
嘉优5号 JY-5 | CI | 31.6b | 31.3c | 23.0b | 22.6c | 24.6b | 24.2c | 12.0b | 11.7c |
AWD | 22.6c | 29.6c | 11.9c | 17.3d | 18.1c | 23.2c | 6.03c | 7.97d | |
方差分析 ANOVA | |||||||||
品种 Cultivar (C) | ** | ** | ** | ** | ** | ** | ** | ** | |
处理 Treatment (T) | ** | ** | * | ** | ** | ** | ** | ** | |
品种×处理 C×T | ** | * | * | * | * | ** | ** | * |
[1] | 邹应斌, 黄敏. 转型期作物生产发展的机遇与挑战. 作物学报, 2018,44(6):791-795. |
ZOU Y B, HUANG M. Opportunities and challenges for crop production in China during the transition period. Acta Agronomica Sinica, 2018,44(6):791-795. (in Chinese) | |
[2] | ZHANG G Q . Prospects of utilization of inter-subspecific heterosis between indica and japonica rice. Journal of Integrative Agriculture. 2020,19(1):1-10. |
[3] | 林建荣, 宋昕蔚, 吴明国, 程式华. 籼粳超级杂交稻育种技术创新与品种培育. 中国农业科学, 2016,49(2):207-218. |
LIN J R, SONG X W, WU M G, CHENG S H. Breeding technology innovation of indica-japonica super hybrid rice and varietal breeding. Scientia Agricultura Sinica, 2016,49(2):207-218. (in Chinese) | |
[4] | BELDER P, BOUMAN R. CABANGON G, LU G, QUILANG Y H, LI J, SPIERTZ J H, TUONG T P . Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management, 2004,65(3):193-210. |
[5] | BOUMAN B . A conceptual framework for the improvement of crop water productivity at different spatial scales. Agricultural Systems, 2007,93(1/3):43-60. |
[6] | WEI H H, MENG T Y, LI C, XU K, HUO Z Y, WEI H Y, GUO B W, ZHANG H C, DAI Q G . Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Research, 2017,204:101-109. |
[7] | WEI H Y, ZHANG H C, BLUMWALD E, LI H L, CHENG J Q, DAI Q G, HUO Z Y, XU M, GUO B W . Different characteristics of high yield formation between inbred japonica super rice and inter-sub- specific hybrid super rice. Field Crops Research, 2016,198:179-187. |
[8] | MENG T Y, WEI H H, LI X Y, DAI Q G, HUO Z Y . A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Research, 2018,228:135-146. |
[9] | 周磊, 刘秋员, 田晋钰, 朱梦华, 程爽, 车阳, 王志杰, 邢志鹏, 胡雅杰, 刘国栋, 魏海燕, 张洪程. 甬优系列籼粳杂交稻产量及氮素吸收利用的差异. 作物学报, 2020,46(5):772-786. |
ZHOU L, LIU Q Y, TIAN J Y, ZHU M H, CHENG S, CHE Y, WANG Z J, XING Z P, HU Y J, LIU G D, WEI H Y, ZHANG H C. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series. Acta Agronomica Sinica, 2020,46(5):772-786. (in Chinese) | |
[10] | LIANG K M, ZHONG X H, HUANG R R, LAMPAYAN R M, PAN J F, TIAN K, LIU Y . Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China. Agricultural Water Management, 2016,163:319-331. |
[11] | ZHANG Y N, LIU M J, SAIZ G, DANNENMANN M, GUO L, TAO Y Y, SHI J C, ZUO Q, BUTTERBACH K, LI G Y, LIN S . Enhancement of root systems improves productivity and sustainability in water saving ground cover rice production system. Field Crops Research, 2017,213:186-193. |
[12] | 张自常, 李鸿伟, 陈婷婷, 王学明, 王志琴, 杨建昌. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响. 中国农业科学, 2011,44(24):4988-4998. |
ZHANG Z C, LI H W, CHEN T T, WANG X M, WANG Z Q, YANG J C. Effect of furrow irrigation and alternate wetting and drying irrigation on grain yield and quality of rice. Scientia Agricultura Sinica, 2011,44(24):4988-4998. (in Chinese) | |
[13] | YANG J C, ZHOU Q, ZHANG J H . Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission. The Crop Journal, 2017,5(2):151-158. |
[14] | 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016,42(7):1026-1036. |
CHU G, ZHAN M F, ZHU K Y, WANG Z Q, YANG J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agronomica Sinica, 2016,42(7):1026-1036. (in Chinese) | |
[15] | ZHANG H, XUE Y G, WANG Z Q, YANG J C, ZHANG J H . An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Science, 2009,49(6):2246-2260. |
[16] | 陆大克, 段骅, 王维维, 刘明爽, 魏艳秋, 徐国伟. 不同干湿交替灌溉与氮肥形态耦合下水稻根系生长及功能差异. 植物营养与肥料学报, 2019,25(8):1362-1372. |
LU D K, DUAN H, WANG W W, LIU M S, WEI Y Q, XU G W. Comparison of rice root development and function among different degrees of dry-wet alternative irrigation coupled with nitrogen forms. Journal of Plant Nutrition and Fertilizers, 2019,25(8):1362-1372. (in Chinese) | |
[17] | 陈鸿飞, 庞晓敏, 张仁, 张志兴, 徐倩华, 方长旬, 李经勇, 林文雄. 不同水肥运筹对再生季稻根际土壤酶活性及微生物功能多样性的影响. 作物学报, 2017,43(10):1507-1517. |
CHEN H F, PANG X M, ZHANG R, ZHANG Z X, XU Q H, FANG C X, LI J Y, LIN W X. Effects of different irrigation and fertilizer application regimes on soil enzyme activities and microbial functional diversity in rhizosphere of ratooning rice. Acta Agronomica Sinica, 2017,43(10):1507-1517. (in Chinese) | |
[18] | CARRIJO D R, LUNDY M E, LINQUIST B A . Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research, 2017,203:173-180. |
[19] | SAH R N, MIKKELSEN D S . Availability and utilization of fertilizer nitrogen by rice under alternate flooding; I. Kinetics of available nitrogen under rice culture. Plant Soil, 1983,75(2):221-226. |
[20] | ERIKSEN A B, KJELDBY M, NILSEN S . The effect of intermittent flooding on the growth and yield of wetland rice and nitrogen-loss mechanism with surface applied and deep placed urea. Plant Soil, 1985,84(3):387-401. |
[21] | CHU G, CHEN S, XU C M, WANG D Y, ZHANG X F . Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Research, 2019,243:107625. |
[22] | CHU G, CHEN T T, CHEN S, XU C M, WANG D Y, ZHANG X F . Agronomic performance of drought-resistance rice cultivars grown under alternate wetting and drying irrigation management in southeast China. The Crop Journal, 2018,6(5):482-494. |
[23] | CHU G, CHEN T T, WANG Z Q, YANG J C, ZHANG J H . Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Research, 2014,162:108-119. |
[24] | YANG J C, ZHANG J H, WANG Z Q, ZHU Q S, LIU L J . Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Research, 2003,81(1):69-81. |
[25] | YANG J C, ZHANG J H, WANG Z Q, XU G W, ZHU Q S . Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiology, 2004,135(3):1621-1629. |
[26] | 杨建昌, 张建华. 促进稻麦同化物转运和籽粒灌浆的途径与机制. 科学通报, 2018,63(28/29):2932-2943. |
YANG J C, ZHANG J H. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat. Chinese Science Bulletin, 2018,63(28/29):2932-2943. (in Chinese) | |
[27] | ZHOU Q, JU C X, WANG Z Q, ZHANG H, LIU L J, YANG J C, ZHANG J H . Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. Journal of Integrative Agriculture, 2017,16(5):1028-1043. |
[28] | HUANG M, YANG C L, JI Q M, JIANG L G, TAN J L, LI Y Q . Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China. Field Crops Research, 2013,149:187-192. |
[29] | AO H J, PENG S B, ZOU Y B, TANG Q Y, VISPERAS R M . Reduction of unproductive tillers did not increase the grain yield of irrigated rice. Field Crops Research, 2010,116:108-115. |
[30] | 李杰, 张洪程, 龚金龙, 常勇, 吴桂成, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕. 稻麦两熟地区不同栽培方式超级稻分蘖特性及其与群体生产力的关系. 作物学报, 2011,37(2):309-320. |
LI J, ZHANG H C, GONG J L, CHANG Y, WU G C, GUO Z H, DAI Q G, HUO Z Y, XU K, WEI H Y. Tillering characteristics and its relationships with population productivity of super rice under different cultivation methods in rice-wheat cropping areas. Acta Agronomica Sinica, 2011,37(2):309-320. (in Chinese) | |
[31] | CHU G, WANG Z Q, ZHANG H, YANG J C, ZHANG J H . Agronomic and physiological performance of rice under integrative crop management. Agronomy Journal, 2016,108(1):117-128. |
[32] | CHU G, WANG Z Q, ZHANG H, LIU L J, YANG J C, ZHANG J H . Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation. Food and Energy Security, 2015,4(3):238-254. |
[33] | 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014,47(7):1273-1289. |
ZHANG H C, GONG J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China. Scientia Agricultura Sinica, 2014,47(7):1273-1289. (in Chinese) | |
[34] | 朱德峰, 章秀福, 张玉屏. 水稻高产栽培技术的发展与展望. 中国农业科学, 2007,40(增刊 1):127-132. |
ZHU D F, ZHANG X F, ZHANG Y P. Development and prospect of high-yielding cultivation technology in rice. Scientia Agricultura Sinica, 2007,40(Suppl.1):127-132. (in Chinese) | |
[35] | BOYER J, WESTGATE M . Grain yields with limited water. Journal of Experimental Botany, 2004,55(407):2385-2394. |
[36] | SAINI H, WESTGATE M . Reproductive development in grain crops during drought. Advances in Agronomy, 2000,68:59-96. |
[37] | YANG J C, ZHANG J H, LIU K, WANG Z Q, LIU L J . Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis. Journal of Plant Growth Regulation, 2007,26(4):318-328. |
[38] | ZHANG W Y, SHENG J Y, XU Y J, XIONG F, WU Y F, WANG W L, WANG Z Q, YANG J C, ZHANG J H . Role of brassinosteroids in rice spikelet differentiation and degeneration under soil-drying during panicle development. BMC Plant Biology, 2019,19(1):409. |
[39] | ZHANG W Y, SHENG J Y, FU L D, XU Y J, XIONG F, WU Y F, WANG W L, WANG Z Q, ZHANG J H, YANG J C . Brassinosteroids mediate the effect of soil-drying during meiosis on spikelet degeneration in rice. Environmental and Experimental Botany, 2020,169:103887. |
[40] | KATO T, TAKEDA K . Associations among characters related to yield sink capacity in space-planted rice. Crop Science, 1996,36(5):1135-1139. |
[41] | ZHANG H, CHEN T T, WANG Z Q, YANG J C, ZHANG J H . Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. Journal of Experimental Botany, 2010,61(13):3719-3733. |
[42] | ZHANG H, LI H W, YUAN L M, WANG Z Q, YANG J C, ZHANG J H . Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. Journal of Experimental Botany, 2012,63(1):215-227. |
[43] | WANG G Q, LI H X, FENG L, CHEN M X, MENG S, YE N H, ZHANG J H . Transcriptomic analysis of grain filling in rice inferior grains under moderate soil drying. Journal of Experimental Botany, 2019,70(5):1597-1611. |
[44] | LIANG J S, ZHANG J H, CAO X Z . Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza Sativa) hybrids. Physiologia Plantarum, 2001,112(4):470-477. |
[45] | AHMADI A, BAKER D A . The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation, 2001,35(1):81-91. |
[46] | 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011,44(1):36-46. |
YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Scientia Agricultura Sinica, 2011,44(1):36-46. (in Chinese) | |
[47] | RAMASAMY S, BERGE H, PURUSHOTHAMAN S . Yield formation in rice in response to drainage and nitrogen application. Field Crops Research, 1997,51(1/2):65-82. |
[48] | 姜元华, 许俊伟, 赵可, 韦还和, 孙建军, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 甬优系列籼粳杂交稻根系形态与生理特征. 作物学报, 2015,41(1):89-99. |
JIANG Y H, XU J W, ZHAO K, WEI H H, SUN J J, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y, GUO B W. Root system morphological and physiological characteristics of indica-japonica hybrid rice of Yongyou series. Acta Agronomica Sinica, 2015,41(1):89-99. (in Chinese) |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[4] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[5] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[6] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[7] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[8] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[9] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[10] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[11] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[12] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[13] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[14] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[15] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 545
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 336
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|