[1] |
中华人民共和国国家标准. 稻纹枯病测报技术规范: GB/T 15791- 2011. 北京: 中国标准出版社, (2011-09-29) [2021-11-03].
|
|
National Standards of the People’s Republic of China. Rules of monitoring and forecasting for the rice sheath blight (Rhizoctonia solani Kukn):GB/T 15791-2011. Beijing: China Standards Press, (2011-09-29) [2021-11-03]. (in Chinese)
|
[2] |
王献锋, 张善文, 王震, 张强. 基于叶片图像和环境信息的黄瓜病害识别方法. 农业工程学报, 2014, 30(14): 148-153.
|
|
WANG X F, ZHANG S W, WANG Z, ZHANG Q. Recognition of cucumber diseases based on leaf image and environmental information. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(14): 148-153. (in Chinese)
|
[3] |
胡耀华, 平学文, 徐明珠, 单卫星, 何勇. 高光谱技术诊断马铃薯叶片晚疫病的研究. 光谱学与光谱分析, 2016, 36(2): 515-519.
|
|
HU Y H, PING X W, XU M Z, SHAN W X, HE Y. Detection of late blight disease on potato leaves using hyperspectral imaging technique. Spectroscopy and Spectral Analysis, 2016, 36(2): 515-519. (in Chinese)
|
[4] |
葛婧. 基于计算机图像处理技术的作物病害等级检测[D]. 合肥: 安徽农业大学, 2007.
|
|
GE J. Detection of crops plant disease rank based on computer image processing technology[D]. Hefei: Anhui Agricultural University, 2007. (in Chinese)
|
[5] |
马德贵, 邵陆寿, 葛婧, 丁克坚, 钱良存. 水稻稻瘟病及水稻纹枯病病害程度图像检测. 中国农学通报, 2008, 24(9): 485-489.
|
|
MA D G, SHAO L S, GE J, DING K J, QIAN L C. Detection of the harm degree of rice blast and rice sheath blight. Chinese Agricultural Science Bulletin, 2008, 24(9): 485-489. (in Chinese)
|
[6] |
袁媛, 陈雷, 吴娜, 李淼. 水稻纹枯病图像识别处理方法研究. 农机化研究, 2016, 38(6): 84-87, 92.
|
|
YUAN Y, CHEN L, WU N, LI M. Recognition of rice sheath blight based on image procession. Journal of Agricultural Mechanization Research, 2016, 38(6): 84-87, 92. (in Chinese)
|
[7] |
KRISHNA R V V, KUMAR S S.Computer vision based identification of nitrogen and potassium deficiency in FCV tobacco//Proceedings of the International Conference on Computational Science and Engineering, 2016: 105-111.
|
[8] |
RAMCHARAN A, BARANOWSKI K, MCCLOSKEY P, AHMED B, LEGG J, HUGHES D P. Deep learning for image-based cassava disease detection. Frontiers in Plant Science, 2017, 8: 1852.
doi: 10.3389/fpls.2017.01852
|
[9] |
苏婷婷, 牟少敏, 董萌萍, 时爱菊. 深度迁移学习在花生叶部病害图像识别中的应用. 山东农业大学学报(自然科学版), 2019, 50(5): 865-869.
|
|
SU T T, MU S M, DONG M P, SHI A J. Application of deep transfer learning in image recognition of peanut leaf diseases. Journal of Shandong Agricultural University (Natural Science Edition), 2019, 50(5): 865-869. (in Chinese)
|
[10] |
FUENTES A, YOON S, KIM S C, PARK D S. A robust deep- learning-based detector for real-time tomato plant diseases and pests recognition. Sensors, 2017, 17(9): 2022.
doi: 10.3390/s17092022
|
[11] |
RAMESH S, VYDEKI D. Recognition and classification of paddy leaf diseases using optimized deep neural network with Jaya algorithm. Information Processing in Agriculture, 2020, 7(2): 249-260.
doi: 10.1016/j.inpa.2019.09.002
|
[12] |
曹英丽, 江凯伦, 于正鑫, 肖文, 刘亚帝. 基于深度卷积神经网络的水稻纹枯病检测识别. 沈阳农业大学学报, 2020, 51(5): 568-575.
|
|
CAO Y L, JIANG K L, YU Z X, XIAO W, LIU Y D. Detection and recognition of rice sheath blight based on deep convolutional neural network. Journal of Shenyang Agricultural University, 2020, 51(5): 568-575. (in Chinese)
|
[13] |
俞佩仕, 郭龙军, 姚青, 杨保军, 唐健, 许渭根, 陈渝阳, 朱旭华, 陈宏明, 张晨光, 段德康, 贝文勇, 彭晴晖. 基于移动终端的稻田飞虱调查方法. 昆虫学报, 2019, 62(5): 615-623.
|
|
YU P S, GUO L J, YAO Q, YANG B J, TANG J, XU W G, CHEN Y Y, ZHU X H, CHEN H M, ZHANG C G, DUAN D K, BEI W Y, PENG Q H. A survey method based on mobile terminal for rice planthoppers in paddy fields. Acta Entomologica Sinica, 2019, 62(5): 615-623. (in Chinese)
|
[14] |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, WINN J, ZISSERMAN A. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 2010, 88(2): 303-338.
doi: 10.1007/s11263-009-0275-4
|
[15] |
CAI Z, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
|
[16] |
REN S, HE K, GIRSHICK R, SUN J. Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 2015, 28: 91-99.
|
[17] |
SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 761-769.
|
[18] |
REZATOFIGHI H, TSOI N, GWAK J Y, SADEGHIAN A, REID I, SAVARESE S. Generalized intersection over union: A metric and a loss for bounding box regression//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
|
[19] |
ALTMAN E I, FINANCE M A. Predicting financial distress of companies:Revisiting the Z-Score and ZETA models//Handbook of Research Methods & Applications in Empirical Finance. Edward Elgar Publishing, 2013.
|
[20] |
刘明. 支持向量机中Sigmoid核函数的研究[D]. 西安: 西安电子科技大学, 2009.
|
|
LIU M. The study on sigmoid kernel function in support vector machine[D]. Xi’an: Xidian University, 2009. (in Chinese)
|
[21] |
LIN T Y, GOYAL P, GIRSHICK R, HE K, DOLLAR P. Focal loss for dense object detection//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
[22] |
LIU X, CHI M, ZHANG Y F, QIN Y Q. Classifying high resolution remote sensing images by fine-tuned VGG deep networks//IGARSS IEEE International Geoscience and Remote Sensing Symposium, 2018: 7137-7140.
|
[23] |
HE K, ZHANG X, REN S. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[24] |
BUCKLAN M, GEY F. The relationship between recall and precision. Journal of the American Society for Information Science, 1994, 45(1): 12-19.
doi: 10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L
|
[25] |
赵松山. 对拟合优度R2的影响因素分析与评价. 东北财经大学学报, 2003(3): 56-58.
|
|
ZHAO S S.Analysis and evaluation of influencing factors of goodness of fit R2. Journal of Dongbei University of Finance and Economics, 2003(3): 56-58. (in Chinese)
|
[26] |
许文宁, 王鹏新, 韩萍, 严泰来, 张树誉. Kappa系数在干旱预测模型精度评价中的应用--以关中平原的干旱预测为例. 自然灾害学报, 2011, 20(6): 81-86.
|
|
XU W N, WANG P X, HAN P, YAN T L, ZHANG S Y. Application of Kappa coefficient in accuracy assessments of drought forecasting model: A case study of Guanzhong Plain. Journal of Natural Disasters, 2011, 20(6): 81-86. (in Chinese)
|