中国农业科学 ›› 2022, Vol. 55 ›› Issue (8): 1479-1491.doi: 10.3864/j.issn.0578-1752.2022.08.001
桑世飞1,2(),曹梦雨1(),王亚男1,王君怡1,孙晓涵1,张文玲3(),姬生栋1,2()
收稿日期:
2021-11-01
接受日期:
2021-12-30
出版日期:
2022-04-16
发布日期:
2022-05-11
联系方式:
桑世飞,E-mail: sangshifei@qq.com。|曹梦雨,E-mail: cmy9211@163.com。
基金资助:
SANG ShiFei1,2(),CAO MengYu1(),WANG YaNan1,WANG JunYi1,SUN XiaoHan1,ZHANG WenLing3(),JI ShengDong1,2()
Received:
2021-11-01
Accepted:
2021-12-30
Published:
2022-04-16
Online:
2022-05-11
摘要:
提高氮肥利用率,降低农业生产中的氮肥投入,对实现中国提出的“化肥零增长”目标至关重要。氮素可通过植物根部以硝态氮或者铵态氮的形式从土壤中被吸收,并在植物体内转运合成氨基酸、核苷酸等生命必需物质,是农作物生长和产量形成的必要性元素。然而,氮肥过量则会破坏土壤理化性质,导致土壤盐碱化、生态环境污染;减少氮肥用量难以发挥当前水稻、小麦等大田农作物品种的高产潜力,极大地制约了农作物的产量,同时也会过度消耗土壤中的氮素,威胁中国的粮食安全。为提高氮肥利用效率,确保粮食安全,挖掘氮高效基因(如NRT1.1B、OsGRF4等),通过分子设计育种对当前现有品种进行遗传改良,有助于培育高效利用氮素的水稻新品系,挖掘当前水稻品种的生产潜力,提升中国农业可持续绿色发展水平。本文基于目前水稻研究中挖掘的氮高效基因,根据其功能和特点将其分为四类:NRT/PTR类、AMT类(铵转运蛋白家族)、NLP家族类及其他种类;并对具有潜在育种价值的氮高效基因的利用及当前存在的问题进行分析与展望。
桑世飞, 曹梦雨, 王亚男, 王君怡, 孙晓涵, 张文玲, 姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491.
SANG ShiFei, CAO MengYu, WANG YaNan, WANG JunYi, SUN XiaoHan, ZHANG WenLing, JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice[J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
表1
NPF家族的基因种类及特征"
基因名称 Gene name | 基因登录号 Gene accession No. | 功能 Features | 验证方法 Authentication method | 参考文献 References |
---|---|---|---|---|
OsNPF2.2/OsPTR2 | LOC_Os12g44100 | 低亲和力硝酸盐转运蛋白,参与从根到茎的硝酸盐转运和维管发育 Low-affinity nitrate transporter, involved in nitrate transport from root to stem and vascular development | T-DNA插入突变体 T-DNA insertion mutant | [ |
OsNPF2.4 | LOC_Os03g48180 | pH依赖性低亲和力硝酸盐转运蛋白,参与获取和长距离硝酸盐运输 pH-dependent low-affinity nitrate transporter, involved in acquisition and long-distance nitrate transport | T-DNA插入突变体,过表达 T-DNA insertion mutant, overexpression | [ |
OsNPF4.5 | LOC_Os01g54515 | 低亲和硝酸盐转运蛋白,增强表达显著提高氮素吸收效率并促进水稻生长 Low-affinity nitrate transporter, enhanced expression, significantly improves nitrogen absorption efficiency and promotes rice growth | 敲除突变体 Knockout mutant | [ |
OsNPF6.1 | LOC_Os01g01360 | 编码硝酸盐转运蛋白,可能直接参与硝酸盐的吸收和再分配 Encodes a nitrate transporter, which may be directly involved in the absorption and redistribution of nitrate | T-DNA插入突变体,过表达 T-DNA insertion mutant, overexpression | [ |
OsNRT1 | LOC_Os03g13274 | 低亲和力硝酸盐转运蛋白,增加氮积累 Low-affinity nitrate transporter, increasing nitrogen accumulation | 突变体 Mutant | [ |
OsNPF6.3/OsNRT1.1A | LOC_Os08g05910 | 定位于液泡膜的硝酸盐转运蛋白,参与调节氮素利用 Nitrate transporter located in the vacuole membrane, involved in regulating nitrogen utilization | 过表达 Overexpression | [ |
OsNPF6.5/OsNRT1.1B | LOC_Os10g40600 | 通过改变根际微环境影响水稻籼粳亚种间的氮肥利用效率 Influence of NUE between indica and japonica rice subspecies by changing the rhizosphere microenvironment | 过表达 Overexpression | [ |
OsNPF7.2 | LOC_Os02g47090 | 低浓度硝酸盐转运蛋白,参与根细胞中硝酸盐的分配 Low-concentration nitrate transporter, involved in the distribution of nitrate in root cells | 敲除突变体 Knockout mutant | [ |
OsNPF7.3/OsPTR6 | LOC_Os04g50950 | 高表达可提高水稻的氮素利用效率 High expression can improve the NUE of rice | 过表达 Overexpression | [ |
OsNPF7.7/OsPTR10 | LOC_Os10g42870 | 调节枝条的分支和氮素的利用效率 Regulates the branching of branches and NUE | 过表达 Overexpression | [ |
OsNPF8.1/OsPTR7 | LOC_Os01g04950 | 参与了稻谷中砷酸二甲酯的积累 Participated in the accumulation of dimethyl arsenate in rice | MiRNA | [ |
OsNRT8.2/OsPTR1 | LOC_Os07g01070 | 干旱胁迫诱导 Drought and Salt Stress induced | 表达分析 Expression patterns | [ |
OsNPF8.20/OsPTR9 | LOC_Os06g49250 | 正调节铵吸收、侧根形成和籽粒产量 Positive regulation of ammonium absorption, lateral root formation and grain yield | T-DNA插入突变体,RNAi T-DNA insertion mutant, RNAi | [ |
表2
NRT2基因的种类及特征"
基因名称 Gene name | 基因登录号 Gene accession No. | 功能 Features | 验证方法 Authentication method | 参考文献 References |
---|---|---|---|---|
OsNRT2.4 | LOC_Os01g36720 | 双重亲和力硝酸盐转运蛋白 Dual affinity nitrate transporter | 敲除突变体 Knockout mutant | [ |
OsNRT2.1 | LOC_Os02g02170 | 高亲和力硝酸盐转运蛋白 High affinity nitrate transporter | 过表达 Overexpression | [ |
OsNRT2.2 | LOC_Os02g02190 | 与OsNAR2.1相互作用以进行高亲和力的硝酸盐转运 Interacts with OsNAR2.1 for high-affinity nitrate transport | 过表达 Overexpression | [ |
OsNRT2.3a | LOC_Os01g50820 | 参与根到茎的远距离硝态氮运输 Participate in long-distance nitrate nitrogen transport from root to stem | 过表达 Overexpression | [ |
OsNRT2.3b | LOC_Os01g50820 | 正向调节pH缓冲和氮素利用效率 Positive adjustment of pH buffer and nitrogen utilization efficiency | 过表达 Overexpression | [ |
表3
AMT基因的种类及特征"
基因名称 Gene name | 基因登录号 Gene accession No. | 功能 Features | 验证方法 Authentication method | 引用文献 References |
---|---|---|---|---|
OsAMT1.1 | LOC_Os04g43070 | 铵吸收和铵钾稳态 Ammonium absorption and ammonium potassium homeostasis | 过表达 Overexpression | [ |
OsAMT1.2 | LOC_Os02g40730 | 功能性铵转运体 Functional ammonium transporter | 突变体 Mutant | [ |
OsAMT1.3 | LOC_Os02g40710 | 高亲和力铵转运蛋白,参与根系形态和碳氮代谢 High affinity ammonium transporter, involved in root morphology and carbon and nitrogen metabolism | 过表达 Overexpression | [ |
OsAMT2.1 | LOC_Os05g39240 | 功能性铵转运蛋白,组成型表达 Functional ammonium transporter, constitutively expressed | 突变体 Mutant | [ |
OsAMT2.2 | LOC_Os01g61510 | 铵转运蛋白 Ammonium transporter | 突变体 Mutant | [ |
OsAMT2.3 | LOC_Os01g61550 | 铵转运蛋白 Ammonium transporter | 突变体 Mutant | [ |
OsAMT3.1 | LOC_Os01g65000 | 介导菌根铵转移 Mediated Mycorrhizal Ammonium Transfer | 突变体 Mutant | [ |
OsAMT3.2 | LOC_Os03g62200 | 铵转运蛋白 Ammonium transporter | 突变体 Mutant | [ |
OsAMT3.3 | LOC_Os02g34580 | 铵转运蛋白 Ammonium transporter | 突变体 Mutant | [ |
OsAMT4 | LOC_Os03g53780 | 铵转运蛋白 Ammonium transporter | 突变体 Mutant | [ |
OsAMT5.1 | LOC_Os12g01420 | 铵转运蛋白 Ammonium transporter | 突变体 Mutant | [ |
OsAMT5.2 | LOC_Os11g01410 | 铵转运蛋白 Ammonium transporter | 突变体 Mutant | [ |
表4
NLP基因的种类及特征"
基因名称 Gene name | 基因登录号 Gene accession No. | 功能 Features | 验证方法 Authentication method | 备注 Remark | 引用文献 References |
---|---|---|---|---|---|
OsNLP1 | LOC_Os03g03900 | 初级硝酸盐反应中具有潜在作用 Potential role in primary nitrate reactions | 过表达 Overexpression | 无 None | [ |
OsNLP2 | LOC_Os04g41850 | 无 None | 无 None | 无 None | [ |
OsNLP3 | LOC_Os01g13540 | 硝酸盐信号传导的核心转录因子 Core transcription factor for nitrate signaling | 转基因系 Transgenic lines | 无 None | [ |
OsNLP4 | LOC_Os09g37710 | 通过结合启动子上的顺式元件调控N的吸收同化 Regulate N uptake and assimilation by binding the cis-elements on the promoter | 过表达 Overexpression | 与野生型相比,过表达系产量提高30%,氮素利用率提高47% Compared with the wild type, the yield of the overexpression line is increased by 30%, and the nitrogen utilization rate is increased by 47% | [ |
OsNLP5 | LOC_Os11g16290 | 无 None | 无 None | 无 None | [ |
OsNLP6 | LOC_Os02g04340 | 无 None | 无 None | 无 None | [ |
表5
其他类型基因的种类及特征"
基因名称 Gene name | 基因登录号 Gene accession No. | 功能 Features | 验证方法 Authentication method | 引用文献 References |
---|---|---|---|---|
OsMADS25 | LOC_Os04g23910 | 正调控硝酸盐转运蛋白基因表达 Positive regulation of nitrate transporter gene expression | 过表达 Overexpression | [ |
OsNAR2.1 | LOC_Os02g38230 | 能与OsNRT2.1/2.2和OsNRT2.3a互作 Interacts with OsNRT2.1/2.2 and OsNRT2.3a | RNAi | [ |
OsGRF4 | LOC_Os02g47280 | 正调控植物碳-氮代谢,促进氮素吸收、同化和转运 Positively regulate plant carbon-nitrogen metabolism, promote nitrogen absorption, assimilation and transport | 突变体 Mutant | [ |
TOND1 | LOC_Os12g43440 | 过表达TOND1能增加水稻对低氮的耐性 Overexpression of TOND1 can increase the tolerance of rice to low nitrogen | 突变体 Mutant | [ |
OsGOGAT1 | LOC_Os01g48960 | 与OsAMT1.2同时激活,提高氮素利用效率 Activate simultaneously with OsAMT1.2 to improve NUE | 突变体 Mutant | [ |
Ghd7 | LOC_Os07g15770 | 抑制ARE1的表达,调节氮素利用效率 Inhibit the expression of ARE1 and regulate NUE | 突变体 Mutant | [ |
OsTCP19 | LOC_Os06g12230 | OsTCP19-H有提高氮肥利用率的潜力 OsTCP19-H has the potential to improve nitrogen fertilizer utilization | 突变体 Mutant | [ |
qNGR9/DEP1 | LOC_Os09g26999 | 株高对氮的响应 Response of plant height to nitrogen | 定位克隆与遗传互补 Positional cloning and genetic complementation | [ |
[1] | 刘爽. 浅析世界及我国水稻生产状况. 新农业, 2020(20): 14-16. |
LIU S. Analysis on the status of rice production in the world and my country. New Agriculture, 2020(20): 14-16. (in Chinese) | |
[2] | 刘慧, 周向阳. 基于需求视角的我国杂粮主食化发展分析. 中国食物与营养, 2016, 22(8): 17-20. |
LIU H, ZHOU X Y. Analysis on the development of staple food in China from the perspective of demand. Food and Nutrition in China, 2016, 22(8): 17-20. (in Chinese) | |
[3] | 吴晶. 氮肥施用量及种类对高产稻田土壤理化性质和细菌群落的影响[D]. 扬州: 扬州大学, 2019. |
WU J. Effects of nitrogen fertilizer application amount and types on soil physical and chemical properties and bacterial community in high-yielding paddy field[D]. Yangzhou: Yangzhou University, 2019. (in Chinese) | |
[4] | 白志刚. 氮肥运筹对水稻氮代谢及稻田氮肥利用率的影响[D]. 北京: 中国农业科学院, 2019. |
BAI Z G. Effects of nitrogen management on rice nitrogen metabolism and rice field nitrogen utilization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) | |
[5] | LASSALETTA L, BILLEN G, GRIZZETTI B, ANGLADE J, GARNIER J. 50 years trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters, 2014, 9: 105011. |
[6] |
HAN M, OKAMOTO M, BEATTY P H, ROTHSTEIN S J, GOOD A G. The genetics of nitrogen use efficiency in crop plants. Annual Review of Genetics, 2015, 49: 269-289.
doi: 10.1146/annurev-genet-112414-055037 |
[7] | 曾希柏, 陈同斌, 林忠辉, 胡清秀. 中国粮食生产潜力和化肥增产效率的区域分异. 地理学报, 2002, 57(5): 539-546. |
ZENG X B, CHEN T B, LIN Z H, HU Q X. Regional differentiation of China's grain production potential and fertilizer production efficiency. Journal of Geographical Sciences, 2002, 57(5): 539-546. (in Chinese) | |
[8] | 刘学英, 李姗, 吴昆, 刘倩, 高秀华, 傅向东. 提高农作物氮肥利用效率的关键基因发掘与应用. 科学通报, 2019, 64(25): 2633-2640. |
LIU X Y, LI S, WU K, LIU Q, GAO X H, FU X D. Discovery and application of key genes to improve crop nitrogen utilization efficiency. Science Bulletin, 2019, 64(25): 2633-2640. (in Chinese) | |
[9] |
PENG S, BURESH R J, HUANG J L, ZHONG X H, Zou Y B, YANG J C, WANG G H, LIU Y Y, HU R F, TANG Q Y, CUI K H, ZHANG F S, DOBERMANN A. Improving nitrogen fertilization in rice by site specific N management: A review. Agronomy for Sustainable Development, 2010, 30(3): 649-656.
doi: 10.1051/agro/2010002 |
[10] | NARITS L. Effect of nitrogen rate and application time to yield and quality of winter oilseed rape (Brassica napus L. var. oleifera subvar. biennis). Agronomy Research, 2010, 8(3): 671-686. |
[11] |
MCALLISTER C H, BEATTY P H, GOOD A G. Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnology Journal, 2012, 10(9): 1011-1025.
doi: 10.1111/j.1467-7652.2012.00700.x |
[12] |
HU B, WANG W, QU S J, TANG J Y, LI H, CHE R H, ZHANG Z H, CHAI X Y, WANG H R, WANG Y Q, LIANG C Z, LIU L C, PIAO Z Z, DENG Q Y, DENG K, XU C, LINAG Y, ZHANG L H, LI L G, CHU C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015, 47(7): 834-838.
doi: 10.1038/ng.3337 |
[13] |
XU G, FAN X, MILLER A J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012, 63(1): 153-182.
doi: 10.1146/annurev-arplant-042811-105532 |
[14] |
LÉRAN S, VARALA K, BOYER J C, CHIURAZZI M, CRAWFORD N, FRANCOISE D V, DAVID L, DICKSTEIN R, FERNANDEZ E, FORDE B, GASSMANN W, GEIGER D, GOJON A, GONG J M, HALKIER B A, HARRIS J M, HEDRICH R, LIMAMI A M, RENRSCH D, SEO M, TSAY Y F, ZHANG M Y, CORUZZI G, LACOMBE B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 2014, 19(1): 5-9.
doi: 10.1016/j.tplants.2013.08.008 |
[15] | 聂海鹏. 水稻NPF家族选择性剪接基因功能初步探究[D]. 武汉: 华中农业大学, 2018. |
NIE H P. Preliminary study on the function of alternative splicing genes in rice NPF family[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese) | |
[16] |
LI Y G, OUYANG J, WANG Y Y, HU R, XIA K F, DUAN J, WANG Y Q, TSAY Y F, ZHANG M Y. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Scientific Reports, 2015, 5(1): 9635.
doi: 10.1038/srep09635 |
[17] |
XIA X D, FAN X R, WEI J, FENG H M, QU H Y, XIE D, MILLER A J, HU G H. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. Journal of Experimental Botany, 2014, 66(1): 317.
doi: 10.1093/jxb/eru425 |
[18] | WANG S S, CHEN A Q, XIE K, YANG X F, LUO Z Z, CHEN J D, ZENG D C, REN Y H, YANG C F, WANG L X, FENG H M, DAMAR L L, LUIS H E, XU G H.Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proceedings of the National Academy of Sciences of the USA, 2020, 117(28): 16649-16659. |
[19] | RUI H, QIU D, YI C, MILLER A J, FAN X, PAN X, ZHANG M. Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate supply. Frontiers in Plant Science, 2016, 7(48): 1529. |
[20] | FAN X R, XIE D, CHEN J G, LU H Y, XU Y L, CUI M, XU G H. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. Plant Science an International Journal of Experimental Plant Biology, 2014, 227(10): 1-11. |
[21] |
WANG J, LU K, NIE H P, ZENG Q, WU B W, QIAN J J, FANG Z M. Rice nitrate transporter OsNPF7.2 positively regulates tiller number and grain yield. Rice, 2018, 11(1): 12.
doi: 10.1186/s12284-018-0205-6 |
[22] |
HUANG W T, BAI G X, WANG J, WEI Z, ZENG Q S, LU K, SUN S Y, FANG Z M. Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. Frontiers in Plant Science, 2018, 9: 300.
doi: 10.3389/fpls.2018.00300 |
[23] |
TANG W J, YE J, YAO X M, ZHAO P Z, XUAN W, TIAN Y L, ZHANG Y Y, XU S, AN H Z, CHEN G M, YU J, WU W, GE Y W, LIU X L, LI J, ZHANG H Z, ZHAN Y Q, YANG B, JIANG X Z, PENG C, ZHOIU C, TERZAGHI W, WAN J M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications, 2019, 10(1): 5279.
doi: 10.1038/s41467-019-13187-1 |
[24] |
TANG Z, CHEN Y, CHEN F, JI Y C, ZHAO F J. OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain. Plant and Cell Physiology, 2017, 58(5): 904-913.
doi: 10.1093/pcp/pcx029 |
[25] |
KOMAROVA N Y, THOR K, GUBLER A, MEIER S, DIETRICH D, WEICHERT A, GROTEMEYER M S, TEGEDER M, RENTSCH D. AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiology, 2008, 148(2): 856-869.
doi: 10.1104/pp.108.123844 |
[26] |
OUYANG J, CAI Z Y, XIA K F, WANG Y Q, DUAN J, ZHANG M Y. Identification and analysis of eight peptide transporter homologs in rice. Plant Science, 2010, 179(4): 374-382.
doi: 10.1016/j.plantsci.2010.06.013 |
[27] | FANG Z M, XIA K F, YANG X, GROTEMEYER M S, MEIER S, RENTSH D, XU X L, ZHANG M Y. Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnology, 2013, 11(4): 446-458. |
[28] |
LIN C M, KOH S, STACEY G, YU S M, LIN T Y, TSAY Y F. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiology, 2000, 122(2): 379-388.
doi: 10.1104/pp.122.2.379 |
[29] |
WANG W, HU B, YUAN D Y, LIU Y Q, CHE R H, HU Y C, OU S J, LIU Y X, ZHANG Z H, WANG H R, LI H, JIANG Z M, ZHANG Z L, GAO X K, QIU Y H, MENG X B, LIU Y X, BAI Y, LIANG Y, WANG Y Q, ZHANG L H, LI L G, SODMERGEN, JING H C. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. The Plant Cell, 2018, 30(3): 638-651.
doi: 10.1105/tpc.17.00809 |
[30] |
ZHANG J Y, LIU Y X, ZHANG N, HU B, JIN T, XU H R, QIN Y, YAN P X, ZHANG X N, GUO X X, HUI J, CAO S Y, WANG X, WANG C, WANGF H, QU B Y, FAN G Y, YUAN L X, RYBEN G O, CHU C C, BAI Y. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37(6): 676-684.
doi: 10.1038/s41587-019-0104-4 |
[31] | FAN X R, TANG Z, TAN Y W, ZHANG Y, LUO B B, YANG M, LIAN X M, SHEN Q R, MILLER A J, XU G H.Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proceedings of the National Academy of Sciences 2016, 113(26): 7118-7123. |
[32] |
FANG Z M, BAI G X, HUANG W T, WANG Z X, WANG X L, ZHANG M Y. The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield. Frontiers in Plant Science, 2017, 8:1338.
doi: 10.3389/fpls.2017.01338 |
[33] |
HUANG W T, BAI G X, WANG J, ZHU W, ZENG Q S, LU K, SUN S Y, FANG Z M. Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. Frontiers in Plant Science, 2018, 9: 300.
doi: 10.3389/fpls.2018.00300 |
[34] |
TANG J Y, CHU C C. MicroRNAs in crop improvement: Fine-tuners for complex traits. Nature Plants, 2017, 3(7): 17077.
doi: 10.1038/nplants.2017.77 |
[35] |
GOJON A, KROUK G, PERRINE-WALKER F, LAUGIER E. Nitrate transceptor(s) in plants. Journal of Experimental Botany, 2011, 62(7): 2299-2308.
doi: 10.1093/jxb/erq419 |
[36] | 赵敏华, 刘吉, 徐晨曦, 蔡晓锋, 王全华, 王小丽. NRT在植物根系发育及非生物胁迫中的功能研究进展. 上海师范大学学报(自然科学版), 2020, 49(6): 709-718. |
ZAHO M H, LIU J, XU C X, CAI X F, WANG Q H, WANG X L. Research progress on the function of NRT in plant root development and abiotic stress. Journal of Shanghai Normal University (Natural Science Edition), 2020, 49(6): 709-718. (in Chinese) | |
[37] |
TANG Z, FAN X R, LI Q, FENG H M, MILLER A J, SHEN Q R, XU G H. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiology, 2012, 160(4): 2052-2063.
doi: 10.1104/pp.112.204461 |
[38] |
WEI J, ZHENG Y, FENG H M, QU H Y, FAN X R, NAOKI Y J, MA J F, XU G H. OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. Journal of Experimental Botany, 2018, 69(5): 1095-1107.
doi: 10.1093/jxb/erx486 |
[39] |
KATAYAMA H, MORI M, KAWAMURA Y, TANAKA T, MORI M, HASEGAWAET H.Production and characterization of transgenic rice plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breeding Science, 2009, 59(3): 237-243.
doi: 10.1270/jsbbs.59.237 |
[40] | YAN M, FAN X R, FENG H M, MILLER A J, SHEN Q R, XU G H. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell & Environment, 2011, 34(8): 1360-1372. |
[41] | 陈景光, 张勇, 谭雅文, 徐国华, 范晓荣. 过量表达OsNRT2.1对水稻日本晴生长和氮素利用效率的影响. 分子植物育种, 2016, 14(1): 1-9. |
CHEN J G, ZHANG Y, TAN Y W, XU G H, FAN X R. The effects of OsNRT2.1 over-expression on plant growth and nitrogen use efficiency in rice Nipponbare (Oryza sativa L. ssp. japonica). Molecular Plant Breeding, 2016, 14(1): 1-9. (in Chinese) | |
[42] |
ARAKI R, HASEGAWA H. Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction. Breeding Science, 2006, 56(3): 295-302.
doi: 10.1270/jsbbs.56.295 |
[43] |
LUO B B, CHEN J G, ZHU L L, LIU S H, LI B, LU H, YE G Y, XU G H, FAN X R. Overexpression of a high-affinity nitrate transporter OsNRT2.1 increases yield and manganese accumulation in rice under alternating wet and dry condition. Frontiers in Plant Science, 2018, 9: 1192.
doi: 10.3389/fpls.2018.01192 |
[44] |
FENG H M, YAN M, FAN X R, LI B Z, SHEN Q R, MILLER A J, XU G H. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany, 2011, 62(7): 2319-2332.
doi: 10.1093/jxb/erq403 |
[45] |
TABUCHI M, ABIKO T, YAMAYA T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany, 2007, 58(9): 2319-2327.
doi: 10.1093/jxb/erm016 |
[46] |
LOQUE D, WIREN N V. Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany, 2004, 55(401): 1293-1305.
doi: 10.1093/jxb/erh147 |
[47] |
YANG S Y, HAO D L, CONG Y, JIN M, SU Y H. The rice OsAMT1;1 is a proton-independent feedback regulated ammonium transporter. Plant Cell Reports, 2015, 34(2): 321-330.
doi: 10.1007/s00299-014-1709-1 |
[48] | LI C, TANG Z, WEI J, QU H Y, XIE Y J, XU G H. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. Journal of Genetics & Genomics, 2016(11): 639-649. |
[49] | SONODA Y, IKEDA A, SAIKI S, WIRÉN N V, YAMAYA T, YAMAGUCHI J J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1- 1;3) in rice. Plant & Cell Physiology, 2003, 44(7): 726-734. |
[50] |
FERREIRA L M, SOUZA V M D, TAVARES O C H, ZONTA E, SANTA-CATARINA C, SOUZA S R D, FERNANDES M S, SANTOS L A. OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnology Reports, 2015, 9: 221-229.
doi: 10.1007/s11816-015-0359-2 |
[51] |
BAO A, LIANG Z J, ZHAO Z Q, CAI H M. Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon-nitrogen metabolic status. International Journal of Molecular Sciences, 2015, 16(12): 9037-9063.
doi: 10.3390/ijms16059037 |
[52] | KUMAR A, SILIM S N, OKAMOTO M, SIDDIQI M Y, GLASS A D M. Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oryza sativa subspecies indica. Plant Cell & Environment, 2003, 26(6): 907-914. |
[53] |
KONISHI N Y, MA J F. Three polarly localized ammonium transporter 1 members are cooperatively responsible for ammonium uptake in rice under low ammonium condition. New Phytologist, 2021, 232(4): 1778-1792.
doi: 10.1111/nph.17679 |
[54] |
SUENAGA A, MORIYA K, SONODA Y, IKEDA A, WIREN N V, HAYAKAWA T, YAMAGUCHI J J, YAMAYA T. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiology, 2003, 44(2): 206-211.
doi: 10.1093/pcp/pcg017 |
[55] | 李畅. 水稻铵转运蛋白基因OsAMT1.1和OsAMT2.1生物学功能分析[D]. 南京: 南京农业大学, 2016. |
LI C. Biological function analysis of rice ammonium transporter genes OsAMT1.1 and OsAMT2.1[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese) | |
[56] |
KOEGEL S, MIEULET D, BADAY S, CHATAGNIER O, LEHMANN M F, WIEKEN A, BOLLER T, WIPF D, BERNÈCHE S, GUIDERDONI E, COURTY P E. Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses. Mycorrhiza, 2017, 27(7): 695-708.
doi: 10.1007/s00572-017-0786-8 |
[57] |
KOSALA R, ASHRAF E K, SATINDER G, BI Y M, ROTHSTEIN S J. AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions. Journal of Experimental Botany, 2014, 65(4): 965-979.
doi: 10.1093/jxb/ert458 |
[58] | XUAN Y H, DUAN F Y, JE B I, KIM C M, LI T Y, LIU J M, PARK S J, CHO J H, KIM T H, WIREN N V, HAN C D. Related to ABI3/VP1-Like 1 (RAVL1) regulates brassinosteroid-mediated activation of AMT1;2 in rice (Oryza sativa). Journal of Experimental Botany, 2017, 68(3): 727-737. |
[59] |
LI B Z, MERRICK M, LI S M, LI H Y, ZHU S W, SHI W M, SU Y H. Molecular basis and regulation of ammonium transporter in rice. Rice Science, 2009, 16(4):314-322.
doi: 10.1016/S1672-6308(08)60096-7 |
[60] |
JAGADHESAN B, SATHEE L, MEENA H S, JHA S K, CHINNUSAMY V, KUMAR A, KUMAR S. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice. Scientific Reports, 2020, 10(1): 9368.
doi: 10.1038/s41598-020-66338-6 |
[61] |
HU B, JIANG Z M, WANG W, QIU Y H, ZHANG Z H, LIU Y Q, LI A F, GAO X K, LIU L C, QIAN Y W, HUANG X H, YU F F, KANG S, WAGN Y Q, XIE J P, CAO S Y, ZHANG L H, WANG Y C, XIE Q, KOPRIVA S, CHU C C. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nature Plants, 2019, 5(4): 401-413.
doi: 10.1038/s41477-019-0384-1 |
[62] | ALFATIH A A A. 水稻类根瘤起始蛋白OsNLP1和拟南芥AtNLP7在作物氮利用效率方面的功能解析[D]. 合肥: 中国科学技术大学, 2020. |
ALFATIH A A A.Functional analysis of rice nodule-like initiation protein OsNLP1 and Arabidopsis AtNLP 7 in crop nitrogen use efficiency[D]. Hefei: University of Science and Technology of China, 2020. (in Chinese) | |
[63] |
WU J, ZHANG Z S, XIA J Q, ALFATIIH A, SONG Y, HUANG Y J, WAN G Y, LIANG Q S, TANG H, LIU Y, WANG A W, ZHU Q S, QIN P, WANG Y P, LI S G, MAO C Z, ZHANG G Q, CHU C C, YU L H, XIANG C B. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnology Journal, 2020, 19(3): 448-461.
doi: 10.1111/pbi.13475 |
[64] |
PÉREZ-TIENDA J, CORRÊA A, AZCÓN-AGUILAR C, FERROL N. Transcriptional regulation of host NH4+ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiology Biochemistry, 2014, 75: 1-8.
doi: 10.1016/j.plaphy.2013.11.029 |
[65] |
ZHANG Y J, TAN L B, ZHU Z F, YUAN L X, XIE D X, SUN C Q. TOND1 confers tolerance to nitrogen deficiency in rice. The Plant Journal, 2015, 81(3): 367.
doi: 10.1111/tpj.12736 |
[66] |
ZHU Y Z, LI T, XU J, WANG J J, WANG L, ZOU W W, ZENG D L, ZHU L, CHEN G, HU J, GAO Z Y, DONG G J, REN D Y, SHEN L, ZHANG Q, GUO L B, HU S P, QIAN Q, ZHANG G H. Leaf width gene LW5/D1 affects plant architecture and yield in rice by regulating nitrogen utilization efficiency. Plant Physiology and Biochemistry, 2020, 157: 359-369.
doi: 10.1016/j.plaphy.2020.10.035 |
[67] |
LI S, TIAN Y H, WU K, YE Y F, YU J P, ZHANG J Q, LIU Q, HU M Y, LI H, TONG Y P, HARBERD N P, FU X D. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018, 560(7720): 595-600.
doi: 10.1038/s41586-018-0415-5 |
[68] |
LIU X Q, HUANG D M, TAO J Y, MILLER A J, FAN X R, XU G H. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport. New Phytologist, 2014, 204(1): 74-80.
doi: 10.1111/nph.12986 |
[69] |
WANG Q, SU Q M, NIAN J Q, ZHANG J, GUO M, DONG G J, HU J, WANG R S, WEI C S, LI G W, WAGN W, GUO H S, LIN S Y, QIAN W F, XIE X Z, QIAN Q, CHEN F, ZUO J R. The Ghd7transcription factor represses the ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant, 2021, 14(6): 1012-1023.
doi: 10.1016/j.molp.2021.04.012 |
[70] |
LEE S, MARMAGNE A, PARK J H, FABIEN C, YIM Y, KIM S J, KIM T H, LIM P O, DAUBRESSE C M, NAM H G. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. The Plant Journal, 2020, 103(1): 7-20.
doi: 10.1111/tpj.14794 |
[71] |
LIU Y Q, WANG H R, JIANG Z M, WANG W, XU R N, WANG Q H, ZHANG Z H, LI A F, LIANG Y, OU S J, LIU X J, CAO S Y, TONG H N, WANG Y H, ZHOU F, LIAO H, HU B, CHU C. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590(7847): 600-605.
doi: 10.1038/s41586-020-03091-w |
[72] | SUN H Y, QIAN Q, WU K, LUO J J, WANG S S, ZHANG C W, MA Y F, LIU Q, HUANG X Z, YUAN Q B, HAN R H, ZHAO M, DONG G J, GUO L B, ZHU X D, GOU Z H, WANG W, WU Y J, LIN H X, FU X D. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 2014, 6(46): 652-656. |
[73] | 李军, 李白. 水稻氮高效利用基因NRT1.1B InDel分子标记的开发与应用. 分子植物育种, 2016, 14(12): 3405-3413. |
LI J, LI B. Development and application of rice nitrogen efficient utilization gene NRT1.1B InDel molecular marker. Molecular Plant Breeding, 2016, 14(12): 3405-3413. (in Chinese) | |
[74] | 陈传华, 刘广林, 李虎, 罗群昌, 陈远孟, 朱其南. 优质常规水稻新品种桂育11号的选育. 种子, 2019, 38(2): 121-123. |
CHEN C H, LIU G L, LI H, LUO Q C, CHEN Y M, ZHU Q N. Breeding of a new high-quality conventional rice variety Guiyu 11. Seed, 2019, 38(2): 121-123. (in Chinese) | |
[75] | 吴碧球, 罗翠萍, 黄所生, 程学江, 李成, 陈传华, 李虎, 吴子帅, 凌炎, 黄芊, 黄凤宽, 龙丽萍. 不同施药量对氮高效利用水稻品种桂11号病虫防治效果和产量的影响. 西南农业学报, 2021, 34(1): 1-8. |
WU B Q, LUO C P, HUANG S S, CHENG X J, LI C, CHEN C H, LI H, WU Z S, LIN Y, HUANG Q. Effects of different application rates on pest control and yield of rice variety Gui 11 with high nitrogen utilization efficiency. Southwest China Journal of Agricultural Sciences, 2021, 34(1):1-8. (in Chinese) | |
[76] | 阮新民, 施伏芝, 罗志祥, 佘德红. 水稻苗期氮高效品种评价与筛选的初步研究. 中国稻米, 2010, 16(2): 22-25. |
RUAN X M, SHI F Z, LUO Z X, SHE D H. Preliminary study on evaluation and screening of rice seedling nitrogen-efficient varieties. Chinese Rice, 2010, 16(2): 22-25. (in Chinese) |
[1] | 王飞, 李清华, 何春梅, 游燕玲, 黄毅斌. 长期施肥对黄泥田土壤团聚体中氮素积累和有机氮组成的影响[J]. 中国农业科学, 2023, 56(9): 1718-1728. |
[2] | 韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应[J]. 中国农业科学, 2023, 56(8): 1503-1514. |
[3] | 王宁, 冯克云, 南宏宇, 丛安琪, 张铜会. 水分亏缺下有机无机肥配施比例对棉花水氮利用效率的影响[J]. 中国农业科学, 2023, 56(8): 1531-1546. |
[4] | 温一博, 陈淑婷, 徐正进, 孙健, 徐铨. DEP1、Gn1a和qSW5组合应用调控水稻穗部性状[J]. 中国农业科学, 2023, 56(7): 1218-1227. |
[5] | 李儒香, 周恺, 王大川, 李巧龙, 向奥妮, 李璐, 李苗苗, 向思茜, 凌英华, 何光华, 赵芳明. 水稻CSSL-Z481代换片段携带的穗部性状QTL分析及次级代换系培育[J]. 中国农业科学, 2023, 56(7): 1228-1247. |
[6] | 赵梓钧, 吴如会, 王硕, 张君, 游静, 段倩楠, 唐俊, 张新芳, 韦秘, 刘金艳, 李云峰, 何光华, 张婷. 水稻PDL2的突变导致小穗外稃退化[J]. 中国农业科学, 2023, 56(7): 1248-1259. |
[7] | 朱洪慧, 李映姿, 高远卓, 林泓, 王成洋, 晏紫仪, 彭瀚平, 李田野, 熊茂, 李云峰. 水稻短宽粒基因SWG1的图位克隆[J]. 中国农业科学, 2023, 56(7): 1260-1274. |
[8] | 张绩, 周上铃, 何发, 刘莉莎, 张玉娟, 何晋宇, 杜晓秋. 水稻α-淀粉酶基因的表达模式与颖花开放的关系[J]. 中国农业科学, 2023, 56(7): 1275-1282. |
[9] | 王鹏飞, 于爱忠, 王玉珑, 苏向向, 李悦, 吕汉强, 柴健, 杨宏伟. 绿肥还田结合减量施氮对玉米干物质积累分配及产量的影响[J]. 中国农业科学, 2023, 56(7): 1283-1294. |
[10] | 谷闻东, 刘春娟, 李邦, 刘畅, 周宇飞. 外源色氨酸对低氮胁迫下高粱苗期叶片碳氮平衡和衰老特性的影响[J]. 中国农业科学, 2023, 56(7): 1295-1310. |
[11] | 李浩, 陈金, 王洪亮, 柳开楼, 韩天富, 都江雪, 申哲, 刘立生, 黄晶, 张会民. 红壤性水稻土有机无机复合体中碳氮特征对长期施肥的响应[J]. 中国农业科学, 2023, 56(7): 1333-1343. |
[12] | 李懿璞, 童丽秀, 蔺雅楠, 苏治军, 包海柱, 王富贵, 刘剑, 屈佳伟, 胡树平, 孙继颖, 王志刚, 于晓芳, 徐明良, 高聚林. 玉米ZmCCT10耐低氮功能研究[J]. 中国农业科学, 2023, 56(6): 1035-1044. |
[13] | 贺江, 丁颖, 娄向弟, 姬东玲, 张向向, 王永慧, 张伟杨, 王志琴, 王伟露, 杨建昌. 水稻分蘖期干物质积累对大气CO2浓度升高和氮素营养的综合响应差异及其生理机制[J]. 中国农业科学, 2023, 56(6): 1045-1060. |
[14] | 李小勇, 黄威, 刘红菊, 李银水, 顾炽明, 代晶, 胡文诗, 杨璐, 廖星, 秦璐. 不同轮作模式下氮肥施用对油菜产量形成及养分利用的影响[J]. 中国农业科学, 2023, 56(6): 1074-1085. |
[15] | 郭燕, 井宇航, 王来刚, 黄竞毅, 贺佳, 冯伟, 郑国清. 基于无人机影像特征的冬小麦植株氮含量预测及模型迁移能力分析[J]. 中国农业科学, 2023, 56(5): 850-865. |
|