中国农业科学 ›› 2023, Vol. 56 ›› Issue (2): 236-248.doi: 10.3864/j.issn.0578-1752.2023.02.003
收稿日期:
2022-04-06
接受日期:
2022-06-30
出版日期:
2023-01-16
发布日期:
2023-02-07
通讯作者:
徐春梅,E-mail:作者简介:
肖德顺,E-mail:基金资助:
XIAO DeShun(),XU ChunMei(),WANG DanYing,ZHANG XiuFu,CHEN Song,CHU Guang,LIU YuanHui
Received:
2022-04-06
Accepted:
2022-06-30
Online:
2023-01-16
Published:
2023-02-07
摘要:
【目的】研究根际氧环境对水稻幼苗磷吸收的影响及其生理机制,以期为促进水稻磷素吸收利用的新栽培措施提供理论依据。【方法】以珍汕97B和密阳46为材料,用国际水稻所营养液配方进行水培试验。秧苗移栽一周后用在线溶氧仪(氮气、氧气调节)设定中氧:2.5—3.5 mg·L-1,高氧:>6.0 mg·L-1(饱和溶解氧处理,在水稻生长过程中用充气泵连续向水体中充入空气)和常规水培(CK,不进行氧调节)3个氧处理,研究水稻幼苗生长(生物量、根系形态结构)、根系生理(根系活力、磷吸收动力学、磷酸酶活性、根系分泌的有机酸、柠檬酸等)以及磷吸收积累等指标。【结果】(1)中氧处理促进水稻幼苗分蘖的发生和生长,增加其生物量、根冠比以及磷的吸收和积累;高氧处理降低株高,减少地上生物量,对地下部分生物量无明显影响。(2)中氧处理后总根长、根系表面积、总根系体积较对照显著增加,平均根粗显著降低;高氧处理与之相反。中氧和高氧处理均能促进有机酸的分泌(有机酸总量、草酸、酒石酸以及柠檬酸含量均增加)、提高叶片和根系中酸性磷酸酶活性;但与高氧处理相比,中氧处理后根系活力显著增强,磷吸收动力学参数得以优化,Imax增大、Km和Cmin降低。(3)磷积累量、地上部磷含量与根系形态(总根长、根系表面积、平均根粗和总根系体积)、根系活力、吸收动力学参数Imax、草酸以及酒石酸含量显著正相关,与磷吸收动力学参数Km和Cmin显著负相关。地下部磷含量与根系酸性磷酸酶活性、根系活力、有机酸总量以及草酸含量显著正相关,与其余指标相关性未达显著水平。【结论】适度增氧(中氧)增加叶片和根系中酸性磷酸酶活性、根系活力、草酸、酒石酸和柠檬酸分泌量,优化根系形态(增加根系总长度和表面积)和磷素吸收动力学参数,从而促进水稻幼苗对磷的吸收。因此,生产上可以通过栽培措施的调控改变根际氧环境从而提高水稻对磷吸收利用。
肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248.
XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition[J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
表1
不同氧处理对水稻幼苗生物量的影响"
品种 Variety | 处理 Treatment | 株高 Plant height (cm) | 分蘖数 Tiller number | 地上部干重 Shoot dry weight (g) | 地下部干重 Root dry weight (g) | 根冠比 Root-shoot ratio of dry weight |
---|---|---|---|---|---|---|
珍汕 97B Zhenshan 97B | 对照 Control | 87.56a | 4.40b | 11.41b | 1.81b | 0.158b |
中氧Middle oxygen | 88.92a | 5.68a | 12.95a | 2.31a | 0.178a | |
高氧 High oxygen | 85.38a | 4.54b | 10.05c | 1.88b | 0.187a | |
密阳 46 Miyang 46 | 对照 Control | 63.77ab | 5.53b | 7.95ab | 1.25b | 0.150b |
中氧 Middle oxygen | 68.13a | 6.13a | 8.65a | 1.51a | 0.175a | |
高氧 High oxygen | 62.57b | 5.47b | 7.09b | 1.19b | 0.168a | |
ANOVA | ||||||
品种 Variety (V) | ** | ** | ** | ** | * | |
处理 Treatment (T) | * | ** | ** | ** | ** | |
V × T | ns | ns | ns | ns | ns |
表2
不同氧处理对水稻幼苗根系形态的影响"
品种 Variety | 处理 Treatment | 总根长 Total root length (cm) | 总根系表面积 Total surface area (cm2) | 平均根粗 Average diameter (mm) | 总根系体积 Total root volume (cm3) |
---|---|---|---|---|---|
珍汕 97B Zhenshan 97B | 对照 Control | 1593.97b | 196.29b | 0.392b | 1.926a |
中氧 Middle oxygen | 1764.58a | 211.81a | 0.381c | 2.030a | |
高氧 High oxygen | 1359.80c | 175.94c | 0.412a | 1.816b | |
密阳 46 Miyang 46 | 对照 Control | 1320.76b | 124.27b | 0.300a | 0.932a |
中氧 Middle oxygen | 1560.55a | 142.33a | 0.286b | 0.978a | |
高氧 High oxygen | 1225.51c | 123.99b | 0.295a | 0.919a | |
ANOVA | |||||
品种 Variety (V) | ** | ** | ** | ** | |
处理 Treatment (T) | ** | ** | ** | ns | |
V × T | ns | * | ** | ns |
表3
不同氧处理对水稻幼苗磷吸收的影响"
磷吸收 Phosphorus uptake | 珍汕97B Zhenshan97B | 密阳46 Miyang46 | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|
对照 Control | 中氧 Medium oxygen | 高氧 High oxygen | 对照 Control | 中氧 Medium oxygen | 高氧 High oxygen | 品种 Variety (V) | 处理 Treatment (T) | V×T | |
地上部磷含量 Shoot phosphorus content (mg·g-1) | 5.83b | 6.12a | 6.14a | 5.42a | 5.51a | 5.50a | ** | ** | ns |
地下部磷含量 Root phosphorus content (mg·g-1) | 5.25c | 5.58b | 5.90a | 5.30b | 5.59a | 5.43ab | * | ** | ** |
地上部磷积累量 Shoot phosphorus accumulation (mg) | 13.30ab | 13.79a | 12.28b | 8.61b | 9.89a | 7.92b | ** | ** | ns |
地下部磷积累量 Root phosphorus accumulation (mg) | 1.89b | 2.33a | 2.10ab | 1.29b | 1.62a | 1.33b | ** | ** | ns |
单株磷积累量 Plant phosphorus accumulation (mg) | 15.19ab | 16.12a | 14.38b | 9.90ab | 10.98a | 9.25b | ** | ** | ns |
地上部磷分配率 Shoot phosphorus accumulation ratio (%) | 87.56a | 85.55b | 85.25b | 86.99a | 84.79b | 85.59b | ns | ** | ns |
地下部磷分配率 Root phosphorus accumulation ratio (%) | 12.44b | 14.45a | 14.75a | 13.01b | 15.21a | 14.41a | ns | ** | ns |
表4
不同氧处理对水稻磷吸收动力学参数的影响"
品种 Variety | 处理 Treatment | Imax (μg·g-1 root·DW·h-1) | Km (mg·L-1) | Cmin (mg·L-1) |
---|---|---|---|---|
珍汕97B Zhenshan97B | 对照 Control | 72.88b | 1.78b | 1.66a |
中氧Medium oxygen | 97.35a | 1.44c | 1.20b | |
高氧 High oxygen | 65.70c | 1.85a | 1.64a | |
密阳46 Miyang46 | 对照 Control | 71.37a | 2.08a | 1.94a |
中氧 Medium oxygen | 72.54a | 1.93b | 1.83b | |
高氧 High oxygen | 58.60b | 2.05a | 1.92a | |
ANOVA | ||||
品种 Variety (V) | ** | ** | ** | |
处理 Treatment (T) | ** | ** | ** | |
V×T | ** | ** | ** |
表5
不同氧处理对水稻的不同种类有机酸影响"
品种 Variety | 处理 Treatment | 草酸 Oxalic acid | 酒石酸 Tartaric acid | 柠檬酸 Citric acid |
---|---|---|---|---|
珍汕97B Zhenshan97B | 对照 Control | 0.260b | 1.334b | 0.015c |
中氧 Medium oxygen | 0.427a | 4.427a | 0.025b | |
高氧 High oxygen | 0.384a | 1.342b | 0.028a | |
密阳46 Miyang46 | 对照 Control | 0.188c | 0.291b | 0.044c |
中氧 Medium oxygen | 0.346a | 0.569a | 0.491a | |
高氧 High oxygen | 0.286b | 0.549a | 0.122b | |
ANOVA | ||||
品种 Variety (V) | ** | ** | ** | |
处理 Treatment (T) | ** | ** | ** | |
V × T | ns | ** | ** |
[1] | 马斌, 李群, 何祖华. 磷平衡机制与水稻产量调控. 植物生理学报, 2020, 56(10): 2017-2028. |
MA B, LI Q, HE Z H. Control of grain yield via best understanding of phosphorus homeostasis in rice. Plant Physiology Journal, 2020, 56(10): 2017-2028. (in Chinese) | |
[2] |
MAATHUIS F J M. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 2009, 12(3): 250-258.
doi: 10.1016/j.pbi.2009.04.003 pmid: 19473870 |
[3] | 梁翠月, 廖红. 植物根系响应低磷胁迫的机理研究. 生命科学, 2015, 27(3): 389-397. |
LIANG C Y, LIAO H. Molecular mechanisms underlying the responses of plant roots to low P stress. Chinese Bulletin of Life Sciences, 2015, 27(3): 389-397. (in Chinese) | |
[4] | 韩梅, 李东坡, 武志杰, 油伦成, 崔磊, 杨立杰. 持续六年施用不同磷肥对稻田土壤磷库的影响. 土壤通报, 2018, 49(4): 929-935. |
HAN M, LI D P, WU Z J, YOU L C, CUI L, YANG L J. Response of soil phosphorus pool after 6 years application of different phosphorus fertilizers in a paddy field. Chinese Journal of Soil Science, 2018, 49(4): 929-935. (in Chinese) | |
[5] | 龚海青, 张敬智, 陈晨, 郜红建, 常江, 章力干, 丁玉宇. 磷肥后移与减量对水稻磷素利用效率的影响. 中国农业大学学报, 2017, 22(5): 144-152. |
GONG H Q, ZHANG J Z, CHEN C, GAO H J, CHANG J, ZHANG L G, DING Y Y. Effect of phosphorus fertilizer postpone and reduction on phosphorus utilization efficiency of rice. Journal of China Agricultural University, 2017, 22(5): 144-152. (in Chinese) | |
[6] | 张忠学, 姜丽莉, 陈鹏, 聂堂哲, 陈帅宏, 赵健. 水磷运筹对水稻产量和磷素吸收与利用的影响. 农业机械学报, 2019, 50(9): 310-319. |
ZHANG Z X, JIANG L L, CHEN P, NIE T Z, CHEN S H, ZHAO J. Effects of water and phosphorus operation on rice yield and phosphorus absorption and utilization. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 310-319. (in Chinese) | |
[7] | 史燕捷, 金梦灿, 朱远芃, 马超, 叶新新, 郜红建. 水稻秸秆还田下磷肥减量对小麦产量及养分利用效率的影响. 中国土壤与肥料, 2020, 285(1): 75-81. |
SHI Y J, JIN M C, ZHU Y P, MA C, YE X X, GAO H J. Effects of reducing phosphorus fertilizer on wheat yield and nutrient use efficiency under rice straw return condition. Soil and Fertilizer Sciences in China, 2020, 285(1): 75-81. (in Chinese) | |
[8] | 胡继杰, 钟楚, 胡志华, 张均华, 曹小闯, 刘守坎, 金千瑜, 朱练峰. 溶解氧浓度对水稻分蘖期根系生长及氮素利用特性的影响. 中国农业科学, 2021, 54(7): 1525-1536. |
HU J J, ZHONG C, HU Z H, ZHANG J H, CAO X C, LIU S K, JIN Q Y, ZHU L F. Effects of dissolved oxygen concentration on root growth at tillering stage and nitrogen utilization characteristics of rice. Scientia Agricultura Sinica, 2021, 54(7): 1525-1536. (in Chinese) | |
[9] | 徐春梅, 陈丽萍, 王丹英, 陈松, 章秀福, 石庆华. 低氧胁迫对水稻幼苗根系功能和氮代谢相关酶活性的影响. 中国农业科学, 2016, 49(8): 1625-1634. |
XU C M, CHEN L P, WANG D Y, CHEN S, ZHANG X F, SHI Q H. Effects of low oxygen stress on the root function and enzyme activities related to nitrogen metabolism in roots of rice seedlings. Scientia Agricultura Sinica, 2016, 49(8): 1625-1634. (in Chinese) | |
[10] |
RAKOTOSON T, HOLZ M, WISSUWA M. Phosphorus deficiency tolerance in Oryza sativa: root and rhizosphere traits. Rhizosphere, 2020, 14: 100198.
doi: 10.1016/j.rhisph.2020.100198 |
[11] |
DINO A G, YOSHIAKI U, ENRICO H P, MATTHIAS W. Genetic and physiological traits for internal phosphorus utilization efficiency in rice. PLoS ONE, 2020, 15(11): e0241842-e0241842.
doi: 10.1371/journal.pone.0241842 |
[12] |
DING Y, WANG Z G, MO S R, LIU J, XING Y, WANG Y P, GE C L, WANG Y L. Mechanism of low phosphorus inducing the main root lengthening of rice. Journal of Plant Growth Regulation, 2020, 40(3): 1032-1043.
doi: 10.1007/s00344-020-10161-w |
[13] | 郭玉春, 林文雄, 石秋梅, 梁义元, 何华勤, 陈芳育. 低磷胁迫下不同磷效率水稻苗期根系的生理适应性研究. 应用生态学报, 2003, 14(1): 61-65. |
GUO Y C, LIN W X, SHI Q M, LIANG Y Y, HE H Q, CHEN F Y. Physiological adaptability of seeding rice genotypes with different P uptake efficiency under low P deficient stress. Chinese Journal of Applied Ecology, 2003, 14(1): 61-65. (in Chinese) | |
[14] | 蔡银美, 赵庆霞, 张成富. 低磷下植物根系分泌物对土壤磷转化的影响研究进展. 东北农业大学学报, 2021, 52(2): 79-86. |
CAI Y M, ZHAO Q X, ZHANG C F. Effect of plant root exudates on soil phosphorus transformation under low phosphorus: A review. Journal of Northeast Agricultural University, 2021, 52(2): 79-86. (in Chinese) | |
[15] |
乔胜锋, 邓亚萍, 瞿寒冰, 张伟杨, 顾骏飞, 张耗, 刘立军, 王志琴, 杨建昌. 不同籼稻品种对低磷响应的差异及其农艺生理性状. 中国水稻科学, 2021, 35(4): 396-406.
doi: 10.16819/j.1001-7216.2021.210304 |
QIAO S F, DENG Y P, QU H B, ZHANG W Y, GU J F, ZHANG H, LIU L J, WANG Z Q, YANG J C. Differences in response to low phosphorus stress among indica rice varieties and their agronomic and physiological characteristics. Chinese Journal of Rice Science, 2021, 35(4): 396-406. (in Chinese)
doi: 10.16819/j.1001-7216.2021.210304 |
|
[16] | XU F Y, SONG T, WANG K, XU W F, CHEN G L, XU M, ZHANG Q, LIU J P, ZHU Y Y, RENSING C, ZHANG J H, YUAN W. Frequent alternate wetting and drying irrigation mitigates the effect of low phosphorus on rice grain yield in a 4-year field trial by increasing soil phosphorus release and rice root growth. Food and Energy Security, 2020, 9(3): e206. |
[17] |
徐春梅, 王丹英, 陈松, 陈丽萍, 章秀福. 增氧对水稻根系生长与氮代谢的影响. 中国水稻科学, 2012, 26(3): 320-324.
doi: 10.3969/j.issn.10017216.2012.03.010 |
XU C M, WANG D Y, CHEN S, CHEN L P, ZHANG X F. Effect of aeration on root growth and nitrogen metabolism in rice. Chinese Journal of Rice Science, 2012, 26(3): 320-324. (in Chinese)
doi: 10.3969/j.issn.10017216.2012.03.010 |
|
[18] |
赵锋, 王丹英, 徐春梅, 张卫建, 李凤博, 毛海军, 章秀福. 根际增氧模式的水稻形态、生理及产量响应特征. 作物学报, 2010, 36(2): 303-312.
doi: 10.3724/SP.J.1006.2010.00303 |
ZHAO F, WANG D Y, XU C M, ZHANG W J, LI F B, MAO H J, ZHANG X F. Response of morphological, physiological and yield characteristics of rice (Oryza sativa L.) to different oxygen-increasing patterns in rhizosphere. Acta Agronomica Sinica, 2010, 36(2): 303-312. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00303 |
|
[19] | 周晚来, 易永健, 屠乃美, 谭志坚, 汪洪鹰, 杨媛茹, 王朝云, 易镇邪. 根际增氧对水稻根系形态和生理影响的研究进展. 中国生态农业学报, 2018, 26(3): 367-376. |
ZHOU W L, YI Y J, TU N M, TAN Z J, WANG H Y, YANG Y R, WANG C Y, YI Z X. Research progresses in the effects of rhizosphere oxygen-increasing on rice root morphology and physiology. Chinese Journal of Eco-Agriculture, 2018, 26(3): 367-376. (in Chinese) | |
[20] |
徐春梅, 谢涛, 王丹英, 陈松, 计成林, 章秀福, 石庆华. 根际氧浓度对水稻分蘖期养分吸收和根系形态的影响. 中国水稻科学, 2015, 29(6): 619-627.
doi: 10.3969/j.issn.1001G7216.2015.06.008 |
XU C M, XIE T, WANG D Y, CHEN S, JI C L, ZHANG X F, SHI Q H. Effects of rhizosphere oxygen concentration on nutrient uptake and root morphology of rice at tillering stage. Chinese Journal of Rice Science, 2015, 29(6): 619-627. (in Chinese)
doi: 10.3969/j.issn.1001G7216.2015.06.008 |
|
[21] | 张志良, 翟伟菁. 植物生理学实验指导第三版. 北京: 高等教育出版社, 2003. |
ZHANG Z L, ZHAI W J. Experimental Guidance of Plant Physiology. Beijing: Higher Education Press, 2003. (in Chinese) | |
[22] | 郜红建, 常江, 张自立, 丁士明, 魏俊岭. 研究植物根系分泌物的方法. 植物生理学通讯, 2003, 39(1): 56-60. |
GAO H J, CHANG J, ZHANG Z L, DING S M, WEI J L. Methods for investigating root exudates of plants. Plant Physiology Communications, 2003, 39(1): 56-60. (in Chinese) | |
[23] | 蒋廷惠, 郑绍建, 石锦芹, 胡霭堂, 史瑞和, 徐茂. 植物吸收养分动力学研究中的几个问题. 植物营养与肥料学报, 1995, 1(2): 11-17. |
JIANG T H, ZHENG S J, SHI J Q, HU A T, SHI R H, XU M. Several considerations in kinetic research on nutrients uptake by plants. Journal of Plant Nutrition and Fertilizers, 1995, 1(2): 11-17. (in Chinese) | |
[24] |
HAYES P E, ADEM G D, PARIASCA-TANAKA J, WISSUWA M. Leaf phosphorus fractionation in rice to understand internal phosphorus-use efficiency. Annals of Botany, 2021, 129(3): 287-302.
doi: 10.1093/aob/mcab138 pmid: 34875007 |
[25] |
SONG T, DAS D, HU Q J, YANG F, ZHANG J H. Alternate wetting and drying irrigation and phosphorus rates affect grain yield and quality and heavy metal accumulation in rice. Science of the Total Environment, 2021, 752: 141862-141862.
doi: 10.1016/j.scitotenv.2020.141862 |
[26] |
LAMBERS H, RAVEN J A, SHAVER G R, SMITH S E. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 2007, 23(2): 95-103.
doi: 10.1016/j.tree.2007.10.008 |
[27] |
李孝龙, 周俊, 彭飞, 钟宏韬, LAMBERS H. 植物养分捕获策略随成土年龄的变化及生态学意义. 植物生态学报, 2021, 45(7): 714-727.
doi: 10.17521/cjpe.2021.0160 |
LI X L, ZHOU J, PENG F, ZHONG H T, LAMBERS H. Temporal trends of plant nutrient-acquisition strategies with soil age and their ecological significance. Chinese Journal of Plant Ecology, 2021, 45(7): 714-727. (in Chinese)
doi: 10.17521/cjpe.2021.0160 |
|
[28] |
DENG Y P, MEN C B, QIAO S F, WANG W J, GU J F, LIU L J, ZHANG Z J, ZHANG H, WANG Z Q, YANG J C. Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth. The Crop Journal, 2020, 8(4): 534-547.
doi: 10.1016/j.cj.2020.01.002 |
[29] |
YANG C, YANG L, YANG Y, ZHU O. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management, 2004, 70(1): 67-81.
doi: 10.1016/j.agwat.2004.05.003 |
[30] |
BEKTAS H, HOHN C E, WAINES J G. Root and shoot traits of bread wheat (Triticum aestivum L.) landraces and cultivars. Euphytica, 2016, 212(2): 1-15.
doi: 10.1007/s10681-015-1511-3 |
[31] | 李锋, 潘晓华, 刘水英, 李木英, 杨福孙. 低磷胁迫对不同水稻品种根系形态和养分吸收的影响. 作物学报, 2004, 30(5): 438-442. |
LI F, PAN X H, LIU S Y, LI M Y, YANG F S. Effect of phosphorus deficiency stress on root morphology and nutrient absorption of rice cultivars. Acta Agronomica Sinica, 2004, 30(5): 438-442. (in Chinese) | |
[32] |
褚光, 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英. 优化栽培模式对水稻根-冠生长特性、水氮利用效率和产量的影响. 中国水稻科学, 2021, 35(6): 586-594.
doi: 10.16819/j.1001-7216.2021.201213 |
CHU G, XU R, CHEN S, XU C M, LIU Y H, ZHANG X F, WANG D Y. Effects of improved crop management on growth characteristic of root and shoot, water and nitrogen use efficiency, and grain yield in rice. Chinese Journal of Rice Science, 2021, 35(6): 586-594. (in Chinese)
doi: 10.16819/j.1001-7216.2021.201213 |
|
[33] | 郭士伟, 夏士健, 朱虹霞, 张云华, 施卫明. 水稻根系活力测定方法及超级稻两优培九生育后期根系活力研究. 土壤, 2012, 44(2): 308-311. |
GUO S W, XIA S J, ZHU H X, ZHANG Y H, SHI W M. Factors influencing collecting amount of rice roots bleeding and investigation on roots vigor after heading. Soils, 2012, 44(2): 308-311. (in Chinese) | |
[34] |
XU C M, CHEN L P, CHEN S, CHU G, WANG D Y, ZHANG X F. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice. Annals of Applied Biology, 2020, 177(1): 61-73.
doi: 10.1111/aab.12589 |
[35] | 赵宽, 周葆华, 马万征, 羊礼敏. 不同环境胁迫对根系分泌有机酸的影响研究进展. 土壤, 2016, 48(2): 235-240. |
ZHAO K, ZHOU B H, MA W Z, YANG L M. The influence of different environmental stresses on root-exuded organic acids: A review. Soils, 2016, 48(2): 235-240. (in Chinese) | |
[36] | 王永壮, 陈欣, 史奕, 鲁彩艳. 低分子量有机酸对土壤磷活化及其机制研究进展. 生态学杂志, 2018, 37(7): 2189-2198. |
WANG Y Z, CHEN X, SHI Y, LU C Y. Review on the effects of low-molecular-weight organic acids on soil phosphorus activation and mechanisms. Chinese Journal of Ecology, 2018, 37(7): 2189-2198. (in Chinese) | |
[37] |
LIANG S, WANG Y H, ZHANG H, YUN X Y, WU Y. Response of root-exuded organic acids in irrigated rice to different water management practices. Eurasian Soil Science, 2020, 53(11): 1572-1578.
doi: 10.1134/S1064229320110101 |
[38] |
BI J G, HOU D P, ZHANG X X, TAN J S, BI Q Y, ZHANG K K, LIU Y, WANG F M, ZHANG A N, CHEN L, LIU G L, LIU Z C, YU X I, LUO L J. A novel water-saving and drought-resistance rice variety promotes phosphorus absorption through root secreting organic acid compounds to stabilize yield under water-saving condition. Journal of Cleaner Production, 2021, 315: 127992.
doi: 10.1016/j.jclepro.2021.127992 |
[39] | 惠乾龙, 叶文彬, 郭晋隆, 袁照年, 许莉萍. 植物磷匮乏下的根系、代谢和分子响应研究进展. 中国糖料, 2021, 43(3): 34-42. |
HUI Q L, YE W B, GUO J L, YUAN Z N, XU L P. Insights into the roots, metabolic adaptations and molecular responses to phosphorus deprived plants. Sugar Crops of China, 2021, 43(3): 34-42. (in Chinese) | |
[40] | 林文雄, 石秋梅, 郭玉春, 梁义元, 何华勤, 陈芳育. 水稻磷效率差异的生理生化特性. 应用与环境生物学报, 2003, 9(6): 578-583. |
LIN W X, SHI Q M, GUO Y C, LIANG Y Y, HE H Q, CHEN F Y. Physio-biochemical characters of P-efficient differences in rice (Oryza sativa L.). Chinese Journal of Applied and Environmental Biology, 2003, 9(6): 578-583. (in Chinese) |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[3] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[4] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[5] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[6] | 王淼,张宇,李瑞强,辛晓平,朱晓昱,曹娟,周忠义,闫瑞瑞. 放牧强度对羊草草甸草原植物器官及群落氮磷化学计量的影响[J]. 中国农业科学, 2022, 55(7): 1371-1384. |
[7] | 张业军,张德权,侯成立,摆玉蔷,任驰,王旭,李欣. 蛋白质磷酸化对肌动球蛋白解离及其乙酰化水平的影响[J]. 中国农业科学, 2022, 55(7): 1433-1444. |
[8] | 巢成生,王玉乾,沈欣杰,代晶,顾炽明,李银水,谢立华,胡小加,秦璐,廖星. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172-1188. |
[9] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[10] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[11] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[12] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[13] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[14] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[15] | 房孟颖,卢霖,王庆燕,董学瑞,闫鹏,董志强. 乙矮合剂对不同施氮量夏玉米根系形态构建和产量的影响[J]. 中国农业科学, 2022, 55(24): 4808-4822. |
|