中国农业科学 ›› 2018, Vol. 51 ›› Issue (22): 4252-4263.doi: 10.3864/j.issn.0578-1752.2018.22.004
田景山(),张煦怡,虎晓兵,随龙龙,张鹏鹏,王文敏,勾玲(
),张旺锋(
)
收稿日期:
2018-05-14
接受日期:
2018-07-27
出版日期:
2018-11-16
发布日期:
2018-11-16
基金资助:
TIAN JingShan(),ZHANG XuYi,HU XiaoBing,SUI LongLong,ZHANG PengPeng,WANG WenMin,GOU Ling(
),ZHANG WangFeng(
)
Received:
2018-05-14
Accepted:
2018-07-27
Online:
2018-11-16
Published:
2018-11-16
摘要:
【目的】新疆是我国主要产棉区,该区棉花生育后期气温下降快。明确生育后期温度对棉纤维发育的影响,对新疆优质棉生产提供指导。【方法】采用分期播种、整段夜间增温(棉纤维发育期)和阶段夜间增温(开花至纤维素快速累积期起始时间、纤维素快速累积期和纤维素快速累积期终止时间至吐絮)的方式,使棉纤维发育处于不同的温度环境下,研究温度对纤维素累积特征的影响及其相互关系。【结果】结果表明,棉纤维比强度受纤维素快速累积期持续时间(T)、开花至纤维素快速累积期起始时间的平均累积速率(V1)和纤维素最大理论含量(Wm)的显著影响,其中棉纤维比强度与V1呈显著二次曲线关系、与Wm呈极显著线性关系。棉纤维发育期≥15℃有效积温是影响纤维比强度的主要温度因子,在开花至纤维素快速累积期起始时间内二者呈显著负相关关系,在纤维素快速累积期则呈显著正相关关系。自棉花开花至纤维素快速累积期起始时间内,较多的有效积温使纤维素在这段时间的平均累积速率(V1)直线降低,这并不利于纤维比强度的提高。在纤维素快速累积期,≥15℃有效积温的增加显著提高了V1,纤维素快速累积期持续时间(T)随有效积温的增加而显著延长,纤维比强度亦呈增加趋势。若获取≥30 cN/tex的纤维比强度,就需要V1维持在1.32%·d -1—1.76%·d -1,纤维素在铃龄6.7—13.3 d进入快速累积期,快速累积期持续20.2—25.6 d,纤维素累积时间经历39.0—46.9 d;在开花至纤维素快速累积期起始时间内需要≥15℃有效积温5.6℃—96.3℃,在纤维素快速累积期则需要181.5℃—262.3℃。 【结论】棉纤维不同发育阶段≥15℃有效积温对V1影响的差异性是造成纤维比强度差异的主要原因,适宜V1有利于形成高强纤维。
田景山,张煦怡,虎晓兵,随龙龙,张鹏鹏,王文敏,勾玲,张旺锋. 新疆产棉区高强棉纤维形成的纤维素累积特征及适宜温度[J]. 中国农业科学, 2018, 51(22): 4252-4263.
TIAN JingShan,ZHANG XuYi,HU XiaoBing,SUI LongLong,ZHANG PengPeng,WANG WenMin,GOU Ling,ZHANG WangFeng. Cellulose Deposition Characteristics of High Strength Cotton Fiber and Optimal Temperature Requirements in Xinjiang Region[J]. Scientia Agricultura Sinica, 2018, 51(22): 4252-4263.
表2
棉花纤维发育期夜间增温开始和结束日期及期间最低温度和夜间相对湿度与对照的差值"
年份 Year | 增温处理 Temperature regimes | 挂花日期(月-日) Anthesis dates (M-D) | 增温开始 日期(月-日) Initial dates (M-D) | 增温结束 日期(月-日) Final dates (M-D) | 增温时段 Elevated regimes (days post-anthesis, dpa) | 最低温度增加幅度 Difference values of minimum temperatures (℃) | 夜间相对湿度与对照的差值 Difference values of relative humidity (%) |
---|---|---|---|---|---|---|---|
2010 | N | 8-5 | 8-5 | 9-27 | 0-55 | 4.5 | -2.8 |
2014 | N1 | 7-31 | 7-31 | 8-15 | 0-15 | 4.3 | -0.4 |
N2 | 7-31 | 8-15 | 9-3 | 15-34 | 1.6 | 6.4 | |
N3 | 7-13 | 8-15 | 9-3 | 34-51 | 1.6 | 6.4 | |
2015 | N | 8-15 | 8-15 | 9-18 | 0-34 | 2.7 | 0.2 |
N1 | 8-15 | 8-15 | 9-6 | 0-22 | 3.1 | -0.8 | |
N2 | 8-12 | 9-6 | 9-18 | 22-34 | 2.0 | 2.0 |
表4
棉纤维发育不同阶段的温度因子与纤维素累积特征的相关分析"
纤维素累积阶段 Period of cotton fiber development | 纤维素特征值 Cellulose deposition parameters | 最低温度 Daily minimum temperature | 最高温度 Daily maximum temperature | 平均温度 Average temperature | ≥15℃有效积温 Growing degree days | 日温差 Diurnal temperature range |
---|---|---|---|---|---|---|
I 段区 Period I | t1 | -0.1511 | 0.0075 | -0.0078 | 0.8236** | 0.1807 |
(0—t1) | V1 | 0.2041 | 0.1679 | 0.1700 | -0.6589** | -0.0453 |
Wm | 0.0994 | 0.2906 | 0.2730 | -0.0926 | 0.2228 | |
Str | -0.1299 | -0.1067 | -0.1332 | -0.3696* | 0.0295 | |
II 段区 Period II | t2 | -0.6825** | -0.4674** | -0.5690** | 0.1098 | 0.4931** |
(t1—t2) | T | -0.3723* | -0.2861 | -0.2945 | 0.6738** | 0.2178 |
Vt | 0.6543** | 0.6358** | 0.6341** | -0.2759 | -0.1300 | |
Wm | 0.4187* | 0.6011** | 0.5526** | 0.5674** | 0.2887 | |
V1 | 0.4703** | 0.3247 | 0.4409** | 0.7481** | -0.3277 | |
Str | 0.1215 | 0.1480 | 0.1349 | 0.3636* | 0.0399 |
表3
纤维素累积特征值与比强度之间的相关分析"
因素Factor | t1 | t2 | T | V1 | Vt | Wm | Str |
---|---|---|---|---|---|---|---|
t1 | 1 | 0.0099 | 0.0045 | 0.0001 | 0.0983 | 0.1749 | 0.0754 |
t2 | 0.4241** | 1 | 0.0001 | 0.0527 | 0.0001 | 0.9894 | 0.6073 |
T | -0.4624** | 0.6069** | 1 | 0.0053 | 0.0001 | 0.2303 | 0.0363 |
V1 | -0.8822** | -0.3256 | 0.4554** | 1 | 0.3513 | 0.0030 | 0.0202 |
Vt | 0.2799 | -0.5932** | -0.8265** | -0.1600 | 1 | 0.1420 | 0.5900 |
Wm | -0.2312 | 0.0023 | 0.2050 | 0.4808** | 0.2497 | 1 | 0.0001 |
Str | -0.3001 | 0.0886 | 0.3501* | 0.3855* | -0.0929 | 0.6865** | 1 |
[1] | 田景山, 张煦怡, 张旺锋 . 新疆近年机采棉发展过程中的棉纤维品质变化. 中国棉花, 2017,44(12):27-31, 34. |
TIAN J S, ZHANG X Y, ZHANG W F . Change of fiber quality along with the development of machine-harvested cotton in Xinjiang. China Cotton, 2017,44(12):27-31, 34. (in Chinese) | |
[2] | 过兴先, 曾伟 . 新疆棉区的气温和棉铃发育关系的研究. 作物学报, 1989,15(3):202-212. |
GUO X X, ZENG W . A study on relationship between temperature and cotton boll development in Xinjiang. Acta Agronomica Sinica, 1989,15(3):202-212. (in Chinese) | |
[3] | SHU H M, ZHOU Z G, XU N Y, WANG Y H, ZHENG M . Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development. European Journal of Agronomy, 2009,31(2):61-68. |
[4] |
WANG Y H, SHU H M, CHEN B L, MCGIFFEN JR M E, ZHANG W J, XU N Y, ZHOU Z G . The rate of cellulose increase is highly related to cotton fibre strength and is significantly determined by its genetic background and boll period temperature. Plant Growth Regulation, 2009,57(3):203-209.
doi: 10.1007/s10725-008-9337-9 |
[5] |
DAI Y J, CHEN B L, MENG Y L, ZHAO W Q, ZHOU Z G. OOSTERHUIS D M, WANG Y H . Effects of elevated temperature on sucrose metabolism and cellulose synthesis in cotton fibre during secondary cell wall development. Functional Plant Biology, 2015,42(9):909-919.
doi: 10.1071/FP14361 |
[6] |
MEINERT M C, DELMER D P . Change in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiology, 1977,59(6):1088-1097.
doi: 10.1104/pp.59.6.1088 pmid: 16660000 |
[7] |
TOKUMOTO H, WAKABAYASHI K, KAMISAKA S, HOSON T . Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development. Plant and Cell Physiology, 2002,43(4):411-418.
doi: 10.1093/pcp/pcf048 pmid: 11978869 |
[8] |
HAIGLER C H, ZHANG D S, WILKERSON C G . Biotechnological improvement of cotton fibre maturity. Physiologia Plantarum, 2005,124(3):285-294.
doi: 10.1111/j.1399-3054.2005.00480.x |
[9] |
ABIDI N, HEQUET E, CABRALES L . Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers. Cellulose, 2010,17(1):153-160.
doi: 10.1007/s10570-009-9364-3 |
[10] |
HINCHLIFFE D J, MEREDITH W R, DELHOM C D, THIBODEAUX D P, FANG D D . Elevated growing degree days influence transition stage timing during cotton fiber development resulting in increased fiber-bundle strength. Crop Science, 2011,51(4):1683-1692.
doi: 10.2135/cropsci2010.10.0569 |
[11] |
HINCHLIFFE D J, MEREDITH W R, YEATER K M, KIM H J, WOODWARD A W, CHEN Z J, TRIPLETT B A . Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling. Theoretical and Applied Genetics, 2010,120(7):1347-1366.
doi: 10.1007/s00122-010-1260-6 pmid: 20087569 |
[12] |
张文静, 胡宏标, 陈兵林, 王友华, 周治国 . 棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系. 作物学报, 2008,34(5):859-869.
doi: 10.3724/SP.J.1006.2008.00859 |
ZHANG W J, HU H B, CHEN B L, WANG Y H, ZHOU Z G . Difference of physiological characteristics of cotton bolls in development of fiber thickening and its relationship with fiber strength. Acta Agronomica Sinica, 2008,34(5):859-869. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00859 |
|
[13] | 张文静, 胡宏标, 王友华, 陈兵林, 束红梅, 周治国 . 棉纤维发育相关酶活性的基因型差异与纤维比强度的关系. 中国农业科学, 2007,40(10):2177-2184. |
ZHANG W J, HU H B, WANG Y H, CHEN B L, SHU H M, ZHOU Z G . Fiber strength and enzyme activities of different cotton genotypes during fiber development. Scientia Agricultura Sinica, 2007,40(10):2177-2184. (in Chinese) | |
[14] |
束红梅, 王友华, 陈兵林, 胡宏标, 张文静, 周治国 . 棉花纤维素累积特性的基因型差异与纤维比强度形成的关系. 作物学报, 2007,33(6):921-926.
doi: 10.3321/j.issn:0496-3490.2007.06.009 |
SHU H M, WANG Y H, CHEN B L, HU H B, ZHANG W J, ZHOU Z G . Genotypic differences in cellulose accumulation of cotton fiber and its relationship with fiber strength. Acta Agronomica Sinica, 2007,33(6):921-926. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2007.06.009 |
|
[15] |
ZHANG W J, SHU H M, HU H B, CHEN B L, WANG Y H, ZHOU Z G . Genotypic differences in some physiological characteristics during cotton fiber thickening and its influence on fiber strength. Acta Physiologiae Plantarum, 2009,31(5):927-935.
doi: 10.1007/s11738-009-0306-3 |
[16] |
束红梅, 王友华, 张文静, 周治国 . 两个棉花品种纤维发育关键酶活性变化特性及其与纤维比强度的关系. 作物学报, 2008,34(3):437-446.
doi: 10.3724/SP.J.1006.2008.00437 |
SHU H M, WANG Y H, ZHANG W J, ZHOU Z G . Activity changes for enzymes associated with fiber development and relation to fiber strength in two cotton cultivars. Acta Agronomica Sinica, 2008,34(3):437-446. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00437 |
|
[17] |
刘娟, 宋宪亮, 朱玉庆, 李学刚, 陈二影, 孙学振 . 高品质陆地棉蔗糖代谢关键酶活性对纤维品质形成的影响. 作物学报, 2008,34(10):1781-1787.
doi: 10.3724/SP.J.1006.2008.01781 |
LIU J, SONG X L, ZHU Y Q, LI X G, CHEN E Y, SUN X Z . Effects of key activities in sucrose metabolism on fiber quality in high quality upland cotton. Acta Agronomica Sinica, 2008,34(10):1781-1787. (in Chinese)
doi: 10.3724/SP.J.1006.2008.01781 |
|
[18] |
田景山, 虎晓兵, 勾玲, 罗宏海, 张亚黎, 赵瑞海, 张旺锋 . 新疆棉花生育后期夜间增温对纤维产量和比强度的影响. 作物学报, 2012,38(1):140-147.
doi: 10.3724/SP.J.1006.2012.00140 |
TIAN J S, HU X B, GOU L, LUO H H, ZHANG Y L, ZHAO R H, ZHANG W F . Effects of nighttime temperature increase at the late growth stage on the cotton fiber yield and fiber strength in Xinjiang. Acta Agronomica Sinica, 2012,38(1):140-147. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00140 |
|
[19] |
TIAN J S, HU Y Y, GAN X X, ZHANG Y L, HU X B, GOU L, LUO H H, ZHANG W F . Effects of increased night temperature on cellulose synthesis and the activity of sucrose metabolism enzymes in cotton fiber. Journal of Integrative Agriculture, 2013,12(6):979-988.
doi: 10.1016/S2095-3119(13)60318-4 |
[20] |
白岩, 毛树春, 田立文, 李莉, 董合忠 . 新疆棉花高产简化栽培技术评述与展望. 中国农业科学, 2017,50(1):38-50.
doi: 10.3864/j.issn.0578-1752.2017.01.004 |
BAI Y, MAO S C, TIAN L W, LI L, DONG H Z . Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang cotton-growing area. Scientia Agricultura Sinica, 2017,50(1):38-50. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.01.004 |
|
[21] |
GIPSON J R, JOHAM H E . Influence of night temperature on growth and development of cotton (Gossypium birsutum L.). I. Fruiting and boll development. Agronomy Journal, 1968,60(3):292-295.
doi: 10.2134/agronj1968.00021962006000030014x |
[22] |
蒋光华, 孟亚利, 陈兵林, 卞海云, 周治国 . 低温对棉纤维比强度形成的生理机制影响. 植物生态学报, 2006,30(2):335-343.
doi: 10.17521/cjpe.2006.0045 |
JIANG G H, MENG Y L, CHEN B L, BIAN H Y, ZHOU Z G . Effects of low temperature on physiological mechanisms of cotton fiber strength formation process. Journal of Plant Ecology, 2006,30(2):335-343. (in Chinese)
doi: 10.17521/cjpe.2006.0045 |
|
[23] | 郭林涛, 徐波, 周治国, 赵文青, 王友华 . 棉纤维发育响应高温胁迫的关键时间窗口. 应用生态学报, 2015,26(8):2428-2436. |
GUO L T, XU B, ZHOU Z G, ZHAO W Q, WANG Y H . Key time window of fiber quality formation in response to short-term higher temperature stress. Chinese Journal of Applied Ecology, 2015,26(8):2428-2436. (in Chinese) | |
[24] |
CHEN Y L, WANG H M, HU W, WANG S S, SNIDER J L, ZHOU Z G . Co-occurring elevated temperature and waterlogging stresses disrupt cellulose synthesis by altering the expression and activity of carbohydrate balance-associated enzymes during fiber development in cotton. Environmental and Experimental Botany, 2017,135:106-117.
doi: 10.1016/j.envexpbot.2016.12.012 |
[25] | 贺新颖, 周治国, 戴艳娇, 强志英, 陈兵林, 王友华 . 铃期增温对棉花产量、品质的影响及其生理机制. 应用生态学报, 2013,24(12):3501-3507. |
HE X Y, ZHOU Z G, DAI Y J, QIANG Z Y, CHEN B L, WANG Y H . Effect of increased temperature in boll period on fiber yield and quality of cotton and its physiological mechanism. Chinese Journal of Applied Ecology, 2013,24(12):3501-3507. (in Chinese) | |
[26] |
JASDANWALA R T, SING Y D, CHINOY J J . Auxin metabolism in developing cotton hairs. Journal of Experimental Botany, 1977,28(5):1111-1116.
doi: 10.1093/jxb/28.5.1111 |
[27] |
GOKANI S J, THAKER V S . Physiological and biochemical changes associated with cotton fiber development Ⅸ. Role of IAA and PAA. Field Crops Research, 2002,77:127-136.
doi: 10.1007/s11738-999-0027-7 |
[28] | 田景山, 张旺锋, 王文敏, 徐守振, 勾玲, 罗宏海, 张亚黎 . 田间增温控制装置: 201620093391.0. 2016-06-15[2018-05-14]. |
TIAN J S, ZHANG W F, WANG W M, XU S Z, GOU L, LUO H H, ZHANG Y L . A device of elevating temperatures in the field: 201620093391.0. 2016-06-15[2018-05-14]. (in Chinese) | |
[29] | 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. |
LI H S. Principles and Techniques of Plant Physiological Experiment. Beijing: Higher Education Press, 2000. ( in Chinese) | |
[30] |
HUWYLER H R, FRANZ G, MERIER H . Changes in the composition of cotton fiber cell walls during development. Planta, 1979,146(5):635-642.
doi: 10.1007/BF00388844 |
[31] |
TIAN J S, HU X B, GOU L, LUO H H, ZHANG Y L, ZHANG W F . Growing degree days is the dominant factor associated with cellulose deposition in cotton fiber. Cellulose, 2014,21(1):813-822.
doi: 10.1007/s10570-013-0152-8 |
[32] |
ZHANG M L, SONG X L, JI H, WANG Z L, SUN X Z . Carbon partitioning in boll plays an important role in fiber quality in colored cotton. Cellulose, 2017,24(2):1087-1097.
doi: 10.1007/s10570-016-1139-z |
[33] |
王友华, 陈兵林, 卞海云, 蒋光华, 张文静, 胡宏标, 束红梅, 周治国 . 温度与棉株生理年龄的协同效应对棉纤维发育的影响. 作物学报, 2006,32(11):1671-1677.
doi: 10.3321/j.issn:0496-3490.2006.11.012 |
WANG Y H, CHEN B L, BIAN H Y, JIANG G H, ZHANG W J, HU H B, SHU H M, ZHOU Z G . Synergistic effect of temperature and cotton physiological age on fibre development. Acta Agronomica Sinica, 2006,32(11):1671-1677. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2006.11.012 |
|
[34] |
赵瑞海, 韩春丽, 张旺锋 . 棉纤维超分子结构及与纤维品质的关系. 棉花学报, 2005,17(2):112-116.
doi: 10.3969/j.issn.1002-7807.2005.02.010 |
ZHAO R H, HAN C L, ZHANG W F . Super-molecular structure and its relation to quality parameters in cotton fiber. Cotton Science, 2005,17(2):112-116. (in Chinese)
doi: 10.3969/j.issn.1002-7807.2005.02.010 |
|
[35] | 刘继华, 尹承佾, 于凤英, 孙清荣, 王永民, 贾景农, 边栋材 . 棉花纤维强度的形成机理与改良途径. 中国农业科学, 1994,27(5):10-16. |
LIU J H, YIN C Y, YU F Y, SUN Q R, WANG Y M, JIA J N, BIAN D C . Formation mechanism and improvement approach of cotton (Gossypium) fiber strength. Scientia Agricultura Sinica, 1994,27(5):10-16. (in Chinese) | |
[36] |
CATHEY G W, LUCKETT K E, RAYBURN JR S T . Accelerated cotton boll dehiscence with growth regulator and desiccant chemicals. Field Crops Research, 1982,5:113-120.
doi: 10.1016/0378-4290(82)90011-9 |
[37] |
SNIPES C E, WILLS G D . Influence of temperature and adjuvants on thidiazuron activity in cotton leaves. Weed Science, 1994,42(1):13-17.
doi: 10.1007/BF02358358 |
[38] |
SNIPES C E, BASKIN C C . Influence of early defoliation on cotton yield, seed quality, and fiber properties. Field Crops Research, 1994,37:137-143.
doi: 10.1016/0378-4290(94)90042-6 |
[39] |
BEDNARZ C W, SHURLEY W D, ANTHONY W S . Losses in yield, quality, and profitability of cotton from improper harvest timing. Agronomy Journal, 2002,94(5):1004-1011.
doi: 10.2134/agronj2002.1004 |
[40] |
FAIRCLOTH J C, EDMISTEN K L, WELLS R, STEWART A M . The influence of defoliation timing on yields and quality of two cotton cultivars. Crop Science, 2004,44(1):165-172.
doi: 10.2135/cropsci2004.0165 |
[41] |
BANGER M P, LONG R T, CONSTABLE G A, GORDON S G . Minimizing immature fiber and neps in upland cotton. Agronomy Journal, 2010,102(2):781-789.
doi: 10.2134/agronj2009.0454 |
[42] | 张煦怡, 田景山, 随龙龙, 张鹏鹏, 张旺锋 . 新疆棉区脱叶催熟剂喷施时间对棉铃发育的影响. 中国棉花, 2018,45(6):15-20, 35. |
ZHANG X Y, TIAN J S, SUI L L, ZHANG P P, ZHANG W F . The impact of defoliation timing on cotton boll development in Xinjiang Region. China Cotton, 2018,45(6):15-20, 35. (in Chinese) |
[1] | 王俊娟,陆许可,王延琴,王帅,阴祖军,付小琼,王德龙,陈修贵,郭丽雪,陈超,赵兰杰,韩迎春,孙亮庆,韩明格,张悦新,范亚朋,叶武威. 陆地棉遗传标准系TM-1的特性及其耐冷性[J]. 中国农业科学, 2022, 55(8): 1503-1517. |
[2] | 沈倩,张思平,刘瑞华,刘绍东,陈静,葛常伟,马慧娟,赵新华,杨国正,宋美珍,庞朝友. 棉花出苗期耐冷综合评价体系的构建及耐冷指标筛选[J]. 中国农业科学, 2022, 55(22): 4342-4355. |
[3] | 陈杨,徐孟泽,王玉红,白由路,卢艳丽,王磊. 有效积温与不同供氮水平夏玉米干物质和氮素积累定量化研究[J]. 中国农业科学, 2022, 55(15): 2973-2987. |
[4] | 王宁,冯克云,南宏宇,张铜会. 不同水分条件下有机无机肥配施对棉花根系特征及产量的影响[J]. 中国农业科学, 2022, 55(11): 2187-2201. |
[5] | 侯彤瑜,郝婷丽,王海江,张泽,吕新. 棉花生长发育模型及其在我国的研究和应用进展[J]. 中国农业科学, 2021, 54(6): 1112-1126. |
[6] | 娄善伟,董合忠,田晓莉,田立文. 新疆棉花“矮、密、早”栽培历史、现状和展望[J]. 中国农业科学, 2021, 54(4): 720-732. |
[7] | 陈杨,王磊,白由路,卢艳丽,倪露,王玉红,徐孟泽. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系[J]. 中国农业科学, 2021, 54(22): 4761-4777. |
[8] | 李青,鱼海鹏,张子豪,孙正文,张艳,张冬梅,王省芬,马峙英,阎媛媛. 棉花真叶原生质体分离及瞬时表达体系的优化[J]. 中国农业科学, 2021, 54(21): 4514-4524. |
[9] | 聂军军,代建龙,杜明伟,张艳军,田晓莉,李召虎,董合忠. 我国现代植棉理论与技术的新发展——棉花集中成熟栽培[J]. 中国农业科学, 2021, 54(20): 4286-4298. |
[10] | 周萌,韩晓旭,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于参数化和非参数化法的棉花生物量高光谱遥感估算[J]. 中国农业科学, 2021, 54(20): 4299-4311. |
[11] | 陈静,任佰朝,赵斌,刘鹏,杨今胜,张吉旺. 基于品种生育期有效积温确定夏玉米适宜播期[J]. 中国农业科学, 2021, 54(17): 3632-3646. |
[12] | 周京龙,冯自力,魏锋,赵丽红,张亚林,周燚,冯鸿杰,朱荷琴. 棉花内生细菌YUPP-10及其分泌蛋白CGTase对棉花枯萎病的防治作用及机理[J]. 中国农业科学, 2021, 54(17): 3691-3701. |
[13] | 文明, 李明华, 蒋家乐, 马学花, 李容望, 赵文青, 崔静, 刘扬, 马富裕. 氮磷钾运筹模式对北疆滴灌棉花生长发育和产量的影响[J]. 中国农业科学, 2021, 54(16): 3473-3487. |
[14] | 张小雪,孙天歌,张迎春,陈丽华,张新宇,李艳军,孙杰. 大丽轮枝菌木糖苷酶基因的鉴定及基于HIGS技术的功能分析[J]. 中国农业科学, 2021, 54(15): 3219-3231. |
[15] | 郑信诗,尚鹏祥,李景远,丁新伦,吴祖建,张洁. 木尔坦棉花曲叶病毒“C4 ORF”编码蛋白对病毒致病性的影响[J]. 中国农业科学, 2021, 54(10): 2095-2104. |
|