中国农业科学 ›› 2022, Vol. 55 ›› Issue (15): 2973-2987.doi: 10.3864/j.issn.0578-1752.2022.15.009
收稿日期:
2021-06-25
接受日期:
2021-09-10
出版日期:
2022-08-01
发布日期:
2022-08-02
通讯作者:
卢艳丽,王磊
作者简介:
陈杨,E-mail: 基金资助:
CHEN Yang(),XU MengZe,WANG YuHong,BAI YouLu,LU YanLi(
),WANG Lei(
)
Received:
2021-06-25
Accepted:
2021-09-10
Online:
2022-08-01
Published:
2022-08-02
Contact:
YanLi LU,Lei WANG
摘要:
【目的】探究基于有效积温的不同供氮水平夏玉米干物质和氮素积累动态预测模型及其特征参数,以期为利用有效积温预测夏玉米干物质和氮素积累提供理论依据。【方法】在河北廊坊进行两年大田试验(2019—2020年),以郑单958为试验材料,利用归一化法,通过模型筛选拟合不同供氮水平夏玉米干物质和氮素积累基于播种后有效积温的归一化Gompertz模型,并利用增长速率曲线及其特征参数定量分析夏玉米干物质和氮素积累特征。【结果】(1)在本试验条件下,当磷钾肥适量时,随施氮量的增加夏玉米最大干物质和氮素积累量持续增加。(2)以有效积温为自变量建立的夏玉米干物质和氮素积累量的归一化Gompertz模型具有较好的生物学意义,方程的决定系数分别为0.9962—0.9988和0.9887—0.9922。利用第2年数据进行模型验证,模拟值和实测值的相关系数分别0.9933—0.9959和0.9830—0.9923,标准化的均方根误差分别为6.64%—16.86%和7.31%—12.68%,预测效果达到良好水平。(3)不同供氮水平夏玉米干物质和氮素积累的增长速率均表现为“单峰曲线”,其变化与供氮水平关系密切,在处理间表现为:适量施肥条件下,增长速率曲线呈现上升快下降也快的特点,减肥处理增长速率曲线呈现上升慢下降也慢的特点。(4)夏玉米播种后干物质和氮素积累快增期有效积温范围分别为709.35—1 722.54 ℃·d和482.50—1 507.61 ℃·d,氮素积累达最大速率所需有效积温为995.05 ℃·d,小于干物质积累达最大速率对积温的需求(1 215.94 ℃·d)。供氮水平明显影响夏玉米干物质和氮素积累进入快增期、缓增期、达到最大增长速率所需积温,同时还影响最大增长速率和快增期平均增长速率;与不施氮肥处理相比,适量氮肥处理夏玉米进入各关键期所需有效积温明显减少,关键期增长速率明显增加。【结论】归一化Gompertz模型不仅能够很好地模拟和预测不同供氮水平夏玉米干物质和氮素积累随有效积温的动态变化,还明确了有效积温与干物质和氮素积累的定量化关系。基于有效积温的Gompertz模型可以用来预测作物长势和最佳施肥时期,具有较强的应用价值。
陈杨,徐孟泽,王玉红,白由路,卢艳丽,王磊. 有效积温与不同供氮水平夏玉米干物质和氮素积累定量化研究[J]. 中国农业科学, 2022, 55(15): 2973-2987.
CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels[J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
表1
非线性回归方程"
编号Number | 方程Equation | 公式Formula | 参数个数Number of parameters |
---|---|---|---|
1 | MMF方程 MMF equation | y=(ab+cxd)/(b+xd) | 4 |
2 | Gompertz方程 Gompertz equation | y=ae-exp(b-cx) | 3 |
3 | Richards方程 Richards equation | y=a/(1+eb-cx)1/d | 4 |
4 | 余弦函数 Cosine function | y=a+b×cos(cx+d) | 4 |
5 | 有理方程 Rational equation | y=(a+bx)/(1+cx+dx2) | 4 |
6 | 三次方程 Cubic equation | y=a+bx+cx2+dx3 | 4 |
表2
不同供氮水平对夏玉米干物质和氮素累积量的影响"
处理 Treatment | 最大干物质积累量 Maximum dry matter accumulation (kg·hm-2) | 最大氮素积累量 Maximum nitrogen accumulation (kg·hm-2) | ||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
N0 | 26862.31±1634.69b | 24111.16±1880.32b | 264.87±29.92b | 201.84±17.84b |
N1 | 29271.52±1806.12ab | 28996.05±340.83a | 314.32±26.66ab | 273.14±23.92a |
N2 | 30714.31±580.10a | 30089.04±1831.44a | 342.93±5.98a | 280.08±23.28a |
N3 | 30936.35±1896.94a | 29624.14±313.14a | 343.09±23.74a | 292.98±30.90a |
平均 Average | 29446.12 | 28205.1 | 316.3 | 262.01 |
表3
夏玉米相对干物质积累模型"
编号 Number | 模型 Simulation model | 参数 Parameter | 标准差 SD | 决定系数 R2 | |||
---|---|---|---|---|---|---|---|
a | b | c | d | ||||
1 | y=(ab+cxd)/(b+xd) | -0.0055 | 0.4904 | 1.5119 | 3.5484 | 0.0095 | 0.9996 |
2 | y=ae-exp(b-cx) | 1.4484 | 2.3009 | 3.3307 | 0.0098 | 0.9996 | |
3 | y=a/(1+eb-cx)1/d | 1.3829 | 0.1135 | 3.6825 | 0.0884 | 0.0101 | 0.9996 |
4 | y=a+b×cos(cx+d) | 0.6370 | 0.6553 | 2.6040 | 2.7469 | 0.0148 | 0.9992 |
5 | y=(a+bx)/(1+cx+dx2) | -0.0524 | 0.2708 | -1.7309 | 0.9534 | 0.0163 | 0.9990 |
6 | y=a+bx+cx2+dx3 | 0.0334 | -0.8299 | 3.1237 | -1.2881 | 0.0181 | 0.9987 |
表4
夏玉米相对氮素积累量模型"
编号 Number | 模型 Simulation model | 参数 Parameter | 标准差 SD | 决定系数 R2 | |||
---|---|---|---|---|---|---|---|
a | b | c | d | ||||
1 | y=(ab+cxd)/(b+xd) | -0.0453 | 0.7468 | 1.6946 | 2.1874 | 0.0300 | 0.9959 |
2 | y=a+bx+cx2+dx3 | -0.0350 | -0.1294 | 2.4306 | -1.3177 | 0.0320 | 0.9953 |
3 | y=a+b×cos(cx+d) | 0.4984 | 0.5434 | 2.5225 | 3.1609 | 0.0329 | 0.9951 |
4 | y=ae-exp(b-cx) | 1.1717 | 1.8794 | 3.3462 | 0.0341 | 0.9945 | |
5 | y=a/(1+eb-cx)1/d | 1.1435 | -0.6146 | 3.5800 | 0.0715 | 0.0357 | 0.9942 |
6 | y=(a+bx)/(1+cx+dx2) | -0.0949 | 0.6130 | -1.0822 | 0.6260 | 0.0377 | 0.9935 |
表5
不同供氮水平夏玉米RDMA和RNA的动态方程参数"
指标 Indicator | 处理 Treatment | 参数Parameter | 标准差 SD | 相关系数 R2 | ||
---|---|---|---|---|---|---|
a | b | c | ||||
相对干物质积累量 Relative dry matter accumulation | N0 | 1.53 | 2.32 | 3.22 | 0.0268 | 0.9969** |
N1 | 1.39 | 2.40 | 3.52 | 0.0298 | 0.9962** | |
N2 | 1.36 | 2.26 | 3.48 | 0.0174 | 0.9988** | |
N3 | 1.54 | 2.26 | 3.19 | 0.0253 | 0.9975** | |
相对氮素积累量 Relative nitrogen accumulation | N0 | 1.32 | 1.84 | 2.99 | 0.0481 | 0.9887** |
N1 | 1.22 | 1.86 | 3.22 | 0.0460 | 0.9893** | |
N2 | 1.05 | 2.01 | 4.01 | 0.0412 | 0.9922** | |
N3 | 1.26 | 1.82 | 3.29 | 0.0451 | 0.9907** |
表6
夏玉米RDMA和RNA实测值与模拟值检验评估"
指标 Indicator | 处理 Treatment | 相关系数 r | 均方根误差 RMSE | 标准化均方根误差 nRMSE(%) |
---|---|---|---|---|
相对干物质积累量 Relative dry matter accumulation | N0 | 0.9958 | 0.0535 | 12.00 |
N1 | 0.9933 | 0.0751 | 16.86 | |
N2 | 0.9959 | 0.0296 | 6.64 | |
N3 | 0.9944 | 0.0482 | 10.82 | |
相对氮素积累量 Relative nitrogen accumulation | N0 | 0.9882 | 0.0529 | 10.58 |
N1 | 0.9888 | 0.0564 | 11.19 | |
N2 | 0.9923 | 0.0384 | 7.31 | |
N3 | 0.9830 | 0.0644 | 12.68 |
表7
夏玉米DMA和NA动态变化Gompertz模型特征参数"
指标 Indicator | 处理 Treatment | 速率峰值参数 Rate peak parameter | 快增期参数 Rapid increase period parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
最大速率V1 (kg·hm-2·(℃·d)-1) | 最大速率所需有效积温 T1 (℃·d) | 进入快增期有效积温 T2 (℃·d) | 进入缓增期有效积温 T3 (℃·d) | 快增期平均增长速率 V2 (kg·hm-2·(℃·d)-1) | |||||||
相对值 | 实际值 | 相对值 | 实际值 | 相对值 | 实际值 | 相对值 | 实际值 | 相对值 | 实际值 | ||
干物质积累量 Dry matter accumulation | N0 | 1.8112 | 27.64c | 0.7229 | 1269.82a | 0.4234 | 743.71a | 1.0225 | 1795.94a | 1.5597 | 23.80c |
N1 | 1.8014 | 29.95b | 0.6821 | 1198.17ab | 0.4084 | 717.40a | 0.9559 | 1678.94ab | 1.5512 | 25.79b | |
N2 | 1.7350 | 30.33ab | 0.6509 | 1143.27b | 0.3745 | 657.75b | 0.9273 | 1628.79b | 1.4940 | 26.12ab | |
N3 | 1.8027 | 31.66a | 0.7131 | 1252.50a | 0.4091 | 718.52a | 1.0171 | 1786.49ab | 1.5523 | 27.26a | |
平均Average | 1.7876 | 29.90 | 0.6923 | 1215.94 | 0.4038 | 709.35 | 0.9807 | 1722.54 | 1.5393 | 25.74 | |
氮素积累量 Nitrogen accumulation | N0 | 1.4512 | 0.2129c | 0.6152 | 1101.93a | 0.2934 | 521.40a | 0.9369 | 1682.47a | 1.2496 | 0.1833c |
N1 | 1.4459 | 0.2561b | 0.5788 | 1021.59ab | 0.2801 | 492.50a | 0.8775 | 1550.68ab | 1.2451 | 0.2205b | |
N2 | 1.5470 | 0.2999a | 0.5007 | 884.90b | 0.2610 | 458.53a | 0.7405 | 1311.27b | 1.3321 | 0.2583a | |
N3 | 1.5269 | 0.2988a | 0.5530 | 971.79ab | 0.2603 | 457.57a | 0.8456 | 1486.01ab | 1.3148 | 0.2573a | |
平均Average | 1.4927 | 0.2669 | 0.5619 | 995.05 | 0.2737 | 482.50 | 0.8501 | 1507.61 | 1.2854 | 0.2299 |
[1] | 孔丽红, 赵玉路, 周福平. 简述小麦干物质积累运转与高产的关系. 山西农业科学, 2007, 35(8): 6-8. |
KONG L H, ZHAO Y L, ZHOU F P. The relations of the high production and the wheat dry matter accumulation and the revolution. Journal of Shanxi Agricultural Sciences, 2007, 35(8): 6-8. (in Chinese) | |
[2] |
LECOEUR J, GUILIONI L. Rate of leaf production in response to soil water deficits in field pea. Field Crops Research, 1998, 57(3): 319-328.
doi: 10.1016/S0378-4290(98)00076-8 |
[3] | 严美春, 曹卫星, 李存东, 王兆龙. 小麦发育过程及生育期机理模型的检验和评价. 中国农业科学, 2000, 33(2): 43-50. |
YAN M C, CAO W X, LI C D, WANG Z L. Validation and evaluation of a mechanistic model of phasic and phenological development of wheat. Scientia Agricultura Sinica, 2000, 33(2): 43-50. (in Chinese) | |
[4] | 张琪, 唐婕, 冯一淳, 张艺璇, 蔡成良. 基于积温产量模型确定山东夏玉米拔节前后的极端高温阈值. 中国农业气象, 2017, 38(12): 795-800. |
ZHANG Q, TANG J, FENG Y C, ZHANG Y X, CAI C L. Determination of extreme high temperature thresholds before and after summer corn jointing stage in Shandong based on accumulated temperature-yield model. Chinese Journal of Agrometeorology, 2017, 38(12): 795-800. (in Chinese) | |
[5] | 吕新. 生态因素对玉米生长发育影响及气候生态模型与评价系统建立的研究[D]. 泰安: 山东农业大学, 2002. |
LÜ X. Studies on effects of ecological factors on growth of maize and establishment of climate ecology model and appraisement system[D]. Taian: Shandong Agricultural University, 2002. (in Chinese) | |
[6] | 李立昆. 水分、氮素对设施厚皮甜瓜果实品质的影响效应及模拟研究[D]. 杨凌: 西北农林科技大学, 2010. |
LI L K. Effect and simulation of water and nitrogen on fruit quality of muskmelon in greenhouse[D]. Yangling: Northwest A & F University, 2010. (in Chinese) | |
[7] | 齐维强. 积温对日光温室番茄生长发育效应的研究以及模型初探[D]. 杨凌: 西北农林科技大学, 2004. |
QI W Q. Effects of accumulation temperature on growth and development of tomato in solar greenhouse and primary research of growth modeling[D]. Yangling: Northwest A & F University, 2004. (in Chinese) | |
[8] | 赵新华, 束红梅, 王友华, 陈兵林, 周治国. 施氮量对棉铃干物质和氮累积及分配的影响. 植物营养与肥料学报, 2011, 17(4): 888-897. |
ZHAO X H, SHU H M, WANG Y H, CHEN B L, ZHOU Z G. Effects of nitrogen fertilization on accumulation and distribution of dry weight and nitrogen of cotton bolls. Plant Nutrition and Fertilizer Science, 2011, 17(4): 888-897. (in Chinese) | |
[9] | 孙仕军, 姜浩, 陈志君, 朱振闯, 张旭东, 迟道才. 不同颜色地膜覆盖下春玉米主要生长性状对耕层积温的响应. 草业学报, 2019, 28(2): 61-72. |
SUN S J, JIANG H, CHEN Z J, ZHU Z C, ZHANG X D, CHI D C. Effects of surface-layer accumulated temperature on major growth traits of spring maize when un-mulched or under clear or black plastic film mulches. Acta Prataculturae Sinica, 2019, 28(2): 61-72. (in Chinese) | |
[10] | 蔡甲冰, 常宏芳, 陈鹤, 张宝忠, 魏征, 彭致功. 基于不同有效积温的玉米干物质累积量模拟. 农业机械学报, 2020, 51(5): 263-271. |
CAI J B, CHANG H F, CHEN H, ZHANG B Z, WEI Z, PENG Z G. Simulation of maize dry matter accumulation in normalized logistic model with different effective accumulated temperatures in field. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 263-271. (in Chinese) | |
[11] | 苏李君, 刘云鹤, 王全九. 基于有效积温的中国水稻生长模型的构建. 农业工程学报, 2020, 36(1): 162-174. |
SU L J, LIU Y H, WANG Q J. Rice growth model in China based on growing degree days. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 162-174. (in Chinese) | |
[12] | 王全九, 蔺树栋, 苏李君. 马铃薯主要生长指标对有效积温响应的定量分析. 农业机械学报, 2020, 51(3): 306-316. |
WANG Q J, LIN S D, SU L J. Quantitative analysis of response of potato main growth index to growing degree days. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 306-316. (in Chinese) | |
[13] | 乔嘉, 朱金城, 赵姣, 郑志芳, 王璞, 廖树华. 基于Logistic模型的玉米干物质积累过程对产量影响研究. 中国农业大学学报, 2011, 16(5): 32-38. |
QIAO J, ZHU J C, ZHAO J, ZHENG Z F, WANG P, LIAO S H. Study on the effect of dry matter accumulation process on maize yield based on Logistic model. Journal of China Agricultural University, 2011, 16(5): 32-38. (in Chinese) | |
[14] |
赵姣, 郑志芳, 方艳茹, 周顺利, 廖树华, 王璞. 基于动态模拟模型分析冬小麦干物质积累特征对产量的影响. 作物学报, 2013, 39(2): 300-308.
doi: 10.3724/SP.J.1006.2013.00300 |
ZHAO J, ZHENG Z F, FANG Y R, ZHOU S L, LIAO S H, WANG P. Effect of dry matter accumulation characteristics on yield of winter wheat analyzed by dynamic simulation model. Acta Agronomica Sinica, 2013, 39(2): 300-308. (in Chinese)
doi: 10.3724/SP.J.1006.2013.00300 |
|
[15] | 何萍, 金继运, 林葆, 王秀芳, 张宽. 不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究. 植物营养与肥料学报, 1998, 4(2): 123-130. |
HE P, JIN J Y, LIN B, WANG X F, ZHANG K. Dynamics of biomass and its components and models of nutrients absorption by spring maize under different nitrogen, phosphorous and potassium application rates. Plant Natrition and Fertilizen Science, 1998, 4(2): 123-130. (in Chinese) | |
[16] | 肖强, 闫连波, 朱欣宇, 张怀文, 曹兵, 倪小会, 李丽霞, 杨俊刚, 黄德明, 衣文平. 夏玉米植株干物质、氮磷钾养分积累速度和时间的动态分析. 植物营养与肥料学报, 2014, 20(3): 606-612. |
XIAO Q, YAN L B, ZHU X Y, ZHANG H W, CAO B, NI X H, LI L X, YANG J G, HUANG D M, YI W P. Dynamic analysis of dry matter and NPK accumulation with time in summer maize. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 606-612. (in Chinese) | |
[17] | 王雪, 苗泽兰, 孙志梅, 马文奇, 薛澄. 冀中平原主栽山药品种的生长发育和养分累积特征. 植物营养与肥料学报, 2019, 25(3): 510-518. |
WANG X, MIAO Z L, SUN Z M, MA W Q, XUE C. Growth and nutrient efficiency of the main yam varieties in central Hebei plain. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 510-518. (in Chinese) | |
[18] | 聂军军, 秦都林, 刘艳慧, 王双磊, 张美玲, 李金埔, 赵娜, 毛丽丽, 宋宪亮, 孙学振. 不同基因型抗虫棉氮磷钾养分吸收与分配特征. 植物营养与肥料学报, 2019, 25(10): 1690-1701. |
NIE J J, QIN D L, LIU Y H, WANG S L, ZHANG M L, LI J P, ZHAO N, MAO L L, SONG X L, SUN X Z. Characteristics on uptake and distribution of nitrogen, phosphorus and potassium in different genotypes of Bt cotton. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1690-1701. (in Chinese) | |
[19] |
孟天瑶, 葛佳琳, 张徐彬, 韦还和, 陆钰, 李心月, 陶源, 丁恩浩, 周桂生, 戴其根. 甬优中熟籼粳杂交稻栽后植株氮素积累模型与特征. 作物学报, 2020, 46(5): 798-806.
doi: 10.3724/SP.J.1006.2020.92046 |
MENG T Y, GE J L, ZHANG X B, WEI H H, LU Y, LI X Y, TAO Y, DING E H, ZHOU G S, DAI Q G. A dynamic model and its characteristics for nitrogen accumulation after transplanting in medium-maturity types of Yongyou Japonica/indica hybrids. Acta Agronomica Sinica, 2020, 46(5): 798-806. (in Chinese)
doi: 10.3724/SP.J.1006.2020.92046 |
|
[20] |
王贺, 白由路, 杨俐苹, 卢艳丽, 王磊. 利用有效积温建立夏玉米追肥时期决策模型. 中国生态农业学报, 2012, 20(4): 408-413.
doi: 10.3724/SP.J.1011.2012.00408 |
WANG H, BAI Y L, YANG L P, LU Y L, WANG L. A summer maize dressing decision-making model based on effective accumulated temperature. Chinese Journal of Eco-Agriculture, 2012, 20(4): 408-413. (in Chinese)
doi: 10.3724/SP.J.1011.2012.00408 |
|
[21] | 白由路. 高效施肥技术研究的现状与展望. 中国农业科学, 2018, 51(11): 2116-2125. |
BAI Y L. The situation and prospect of research on efficient fertilization. Scientia Agricultura Sinica, 2018, 51(11): 2116-2125. (in Chinese) | |
[22] | 张兵兵, 吴航, 杨璐, 吕晓, 张放, 张慧, 高全, 杨扬. 基于归一化法模拟分析东北地区春玉米干物质积累对播期和品种的动态响应. 中国农业气象, 2019, 40(6): 357-367. |
ZHANG B B, WU H, YANG L, LÜ X, ZHANG F, ZHANG H, GAO Q A, YANG Y. Simulation of the dynamic response of dry matter accumulation of spring maize in northeast China to sowing dates and varieties based on normalization method. Chinese Journal of Agrometeorology, 2019, 40(6): 357-367. (in Chinese) | |
[23] | 付雪丽, 赵明, 周宝元, 崔国美, 丁在松. 小麦、玉米粒重动态共性特征及其最佳模型的筛选与应用. 作物学报, 2009, 35(2): 309-316. |
FU X L, ZHAO M, ZHOU B Y, CUI G M, DING Z S. Optimal model for dynamic characteristics of grain weight commonly used in wheat and maize. Acta Agronomica Sinica, 2009, 35(2): 309-316. (in Chinese) | |
[24] |
沈杰, 蔡艳, 何玉亭, 李启权, 杜宣延, 王昌全, 罗定棋. 基于归一化法的烤烟干物质积累建模与特征分析. 作物学报, 2017, 43(3): 442-453.
doi: 10.3724/SP.J.1006.2017.00442 |
SHEN J, CAI Y, HE Y T, LI Q Q, DU X Y, WANG C Q, LUO D Q. Dynamic simulation of dry matter accumulation in flue-cured tobacco and analysis of its characteristics based on normalized method. Acta Agronomica Sinica, 2017, 43(3): 442-453. (in Chinese)
doi: 10.3724/SP.J.1006.2017.00442 |
|
[25] |
BANNAYAN M, HOOGENBOOM G. Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Research, 2009, 111(3): 290-302.
doi: 10.1016/j.fcr.2009.01.007 |
[26] | 王军保, 刘新荣, 李鹏, 郭建强. MMF模型在采空区地表沉降预测中的应用. 煤炭学报, 2012, 37(3): 411-415. |
WANG J B, LIU X R, LI P, GUO J Q. Study on prediction of surface subsidence in mined-out region with the MMF model. Journal of China Coal Society, 2012, 37(3): 411-415. (in Chinese) | |
[27] | 宋海星, 李生秀. 玉米生长量、养分吸收量及氮肥利用率的动态变化. 中国农业科学, 2003, 36(1): 71-76. |
SONG H X, LI S X. Dynamics of nutrient accumulation in maize plants under different water and N supply conditions. Scientia Agricultura Sinica, 2003, 36(1): 71-76. (in Chinese) | |
[28] | 王雪蓉, 张润芝, 李淑敏, 许宁, 牟尧, 张春怡. 不同供氮水平下玉米/大豆间作体系干物质积累和氮素吸收动态模拟. 中国生态农业学报(中英文), 2019, 27(9): 1354-1363. |
WANG X R, ZHANG R Z, LI S M, XU N, MU Y, ZHANG C Y. Simulation of dry matter accumulation and nitrogen absorption in a maize/soybean intercropping system supplied with different nitrogen levels. Chinese Journal of Eco-Agriculture, 2019, 27(9): 1354-1363. (in Chinese) | |
[29] | 何雪银, 文仁来, 吴翠荣. 隆玉2号玉米干物质积累与养分吸收特性研究. 西南农业学报, 2006, 19(5): 853-856. |
HE X Y, WEN R L, WU C R. Study on laws of dry matter accumulation and nutrient uptake of maize Longyu No.2. Southwest China Journal of Agricultural Sciences, 2006, 19(5): 853-856. (in Chinese) | |
[30] |
ZHAO R F, CHEN X P, ZHANG F S, ZHANG H L, SCHRODER J, RÖMHELD V. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agronomy Journal, 2006, 98(4): 938-945.
doi: 10.2134/agronj2005.0157 |
[31] | 赵营, 同延安, 赵护兵. 不同供氮水平对夏玉米养分累积、转运及产量的影响. 植物营养与肥料学报, 2006, 12(5): 622-627. |
ZHAO Y, TONG Y N, ZHAO H B. Effects of different N rates on nutrients accumulation, transformation and yield of summer maize. Plant Nutrition and Fertilizer Science, 2006, 12(5): 622-627. (in Chinese) | |
[32] | 李青军, 张炎, 胡伟, 孟凤轩, 冯广平, 胡国智, 刘新兰. 氮素运筹对玉米干物质积累、氮素吸收分配及产量的影响. 植物营养与肥料学报, 2011, 17(3): 755-760. |
LI Q J, ZHANG Y, HU W, MENG F X, FENG G P, HU G Z, LIU X L. Effects of nitrogen management on maize dry matter accumulation, nitrogen uptake and distribution and maize yield. Plant Nutrition and Fertilizer Science, 2011, 17(3): 755-760. (in Chinese) | |
[33] | 李格. 华北地区夏玉米滴灌施肥的肥料效应研究[D]. 北京: 中国农业科学院, 2019. |
LI G. Effects of drip fertigation on summer maize in North China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) | |
[34] | 李佳, 曹国军, 耿玉辉, 叶青, 王聪宇, 张鹰. 不同供氮水平对春玉米干物质积累及氮素吸收利用的影响. 中国农学通报, 2014, 30(27): 208-212. |
LI J, CAO G J, GENG Y H, YE Q, WANG C Y, ZHANG Y. Effects of different nitrogen application rates on dry matter accumulation, nitrogen absorption and utilization of spring maize. Chinese Agricultural Science Bulletin, 2014, 30(27): 208-212. (in Chinese) | |
[35] | 陆景陵. 植物营养学(上册). 北京: 北京农业大学出版社, 1994: 33-35. |
LU J L. Plant Nutrition (Volume One). Beijing: Beijing Agricultural University Press, 1994: 33-35. (in Chinese) | |
[36] | 王平. 温室番茄干物质积累与养分吸收模拟模型的研究[D]. 哈尔滨: 东北农业大学, 2004. |
WANG P. Study on the simulation model of dry matter accumulation and nutrient absorption of tomato in greenhouse[D]. Harbin: Northeast Agricultural University, 2004. (in Chinese) | |
[37] |
YU Q A, LIU J D, ZHANG Y Q, LI J. Simulation of rice biomass accumulation by an extended logistic model including influence of meteorological factors. International Journal of Biometeorology, 2002, 46(4): 185-191.
doi: 10.1007/s00484-002-0141-3 |
[38] | 张迪, 王冀川, 陈慧, 黄振江, 孙婷. 密度对夏玉米干物质积累的影响及其归一化模拟模型的建立. 玉米科学, 2018, 26(5): 58-64, 70. |
ZHANG D, WANG J C, CHEN H, HUANG Z J, SUN T. Effect of density on dry matter accumulation of summer maize and establishment of normalized simulation model. Journal of Maize Sciences, 2018, 26(5): 58-64, 70. (in Chinese) | |
[39] |
刘娟, 熊淑萍, 杨阳, 翟清云, 王严峰, 王静, 马新明. 基于归一化法的小麦干物质积累动态预测模型. 生态学报, 2012, 32(17): 5512-5520.
doi: 10.5846/stxb201112041853 |
LIU J, XIONG S P, YANG Y, ZHAI Q Y, WANG Y F, WANG J, MA X M. A model to predict dry matter accumulation dynamics in wheat based on the normalized method. Acta Ecologica Sinica, 2012, 32(17): 5512-5520. (in Chinese)
doi: 10.5846/stxb201112041853 |
|
[40] | 侯玉虹, 陈传永, 郭志强, 侯立白, 董志强, 赵明. 作物高产群体干物质积累动态模型的构建及生长特性分析. 玉米科学, 2008, 16(6): 90-95. |
HOU Y H, CHEN C Y, GUO Z Q, HOU L B, DONG Z Q, ZHAO M. Establishment of dry matter accumulation dymamic simulation model and analysis of growth characteristic for high-yielding population of spring maize. Journal of Maize Sciences, 2008, 16(6): 90-95. (in Chinese) | |
[41] |
李向岭, 赵明, 李从锋, 葛均筑, 侯海鹏, 李琦, 侯立白. 播期和密度对玉米干物质积累动态的影响及其模型的建立. 作物学报, 2010, 36(12): 2143-2153.
doi: 10.3724/SP.J.1006.2010.02143 |
LI X L, ZHAO M, LI C F, GE J Z, HOU H P, LI Q, HOU L B. Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize. Acta Agronomica Sinica, 2010, 36(12): 2143-2153. (in Chinese)
doi: 10.3724/SP.J.1006.2010.02143 |
|
[42] | 李艳大, 汤亮, 陈青春, 张玉屏, 曹卫星, 朱艳. 水稻地上部干物质积累动态的定量模拟. 应用生态学报, 2010, 21(6): 1504-1510. |
LI Y D, TANG L, CHEN Q C, ZHANG Y P, CAO W X, ZHU Y. Dry matter accumulation in rice aboveground part: Quantitative simulation. Chinese Journal of Applied Ecology, 2010, 21(6): 1504-1510. (in Chinese) | |
[43] |
沈杰, 蔡艳, 何玉亭, 李启权, 杜宣延, 王昌全, 罗定棋. 基于归一化法的烤烟干物质积累建模与特征分析. 作物学报, 2017, 43(3): 442-453.
doi: 10.3724/SP.J.1006.2017.00442 |
SHEN J, CAI Y, HE Y T, LI Q Q, DU X Y, WANG C Q, LUO D Q. Dynamic simulation of dry matter accumulation in flue-cured tobacco and analysis of its characteristics based on normalized method. Acta Agronomica Sinica, 2017, 43(3): 442-453. (in Chinese)
doi: 10.3724/SP.J.1006.2017.00442 |
|
[44] | 高伟, 金继运, 何萍, 李书田. 我国北方不同地区玉米养分吸收及累积动态研究. 植物营养与肥料学报, 2008, 14(4): 623-629. |
GAO W, JIN J Y, HE P, LI S T. Dynamics of maize nutrient uptake and accumulation in different regions of Northern China. Plant Nutrition and Fertilizer Science, 2008, 14(4): 623-629. (in Chinese) | |
[45] |
李国强, 汤亮, 张文宇, 曹卫星, 朱艳. 不同株型小麦干物质积累与分配对氮肥响应的动态分析. 作物学报, 2009, 35(12): 2258-2265.
doi: 10.3724/SP.J.1006.2009.02258 |
LI G Q, TANG L, ZHANG W Y, CAO W X, ZHU Y. Dynamic analysis on response of dry matter accumulation and partitioning to nitrogen fertilizer in wheat cultivars with different plant types. Acta Agronomica Sinica, 2009, 35(12): 2258-2265. (in Chinese)
doi: 10.3724/SP.J.1006.2009.02258 |
|
[46] | 纪洪亭, 冯跃华, 何腾兵, 潘剑, 范乐乐, 李云, 武彪, 肖铭, 梁显林. 超级杂交稻群体干物质和养分积累动态模型与特征分析. 中国农业科学, 2012, 45(18): 3709-3720. |
JI H T, FENG Y H, HE T B, PAN J, FAN L L, LI Y, WU B, XIAO M, LIANG X L. A dynamic model of dry matter and nutrient accumulation in super hybrid rice and analysis of its characteristics. Scientia Agricultura Sinica, 2012, 45(18): 3709-3720. (in Chinese) | |
[47] | 田景山, 张煦怡, 虎晓兵, 随龙龙, 张鹏鹏, 王文敏, 勾玲, 张旺锋. 新疆产棉区高强棉纤维形成的纤维素累积特征及适宜温度. 中国农业科学, 2018, 51(22): 4252-4263. |
TIAN J S, ZHANG X Y, HU X B, SUI L L, ZHANG P P, WANG W M, GOU L, ZHANG W F. Cellulose deposition characteristics of high strength cotton fiber and optimal temperature requirements in Xinjiang region. Scientia Agricultura Sinica, 2018, 51(22): 4252-4263. (in Chinese) | |
[48] |
SCHNYDER H, BAUM U. Growth of the grain of wheat (Triticum aestivum L.). The relationship between water content and dry matter accumulation. European Journal of Agronomy, 1992, 1(2): 51-57.
doi: 10.1016/S1161-0301(14)80001-4 |
[49] | 刘奎. 施肥对夏玉米养分代谢及光合特性的效应研究[D]. 郑州: 河南农业大学, 2001. |
LIU K. Application on nutrient metabolism and characteristics of photosynthesis in summer maize[D]. Zhengzhou: Henan Agricultural University, 2001. (in Chinese) | |
[50] |
BUNTING E S. Accumulated temperature and maize development in England. The Journal of Agricultural Science, 1976, 87(3): 577-583.
doi: 10.1017/S0021859600033207 |
[51] | 姜会飞, 郭勇, 张玉莹, 姜少杰, 闫梦玲, 王晓晨, 王潇潇, 张子源, 温德永, 廖树华. 不同下限基点温度对积温模型模拟效果的影响. 中国农业大学学报, 2018, 23(5): 131-141. |
JIANG H F, GUO Y, ZHANG Y Y, JIANG S J, YAN M L, WANG X C, WANG X X, ZHANG Z Y, WEN D Y, LIAO S H. Impact of base temperature on the growing degree-day and simulation effect of GDD model. Journal of China Agricultural University, 2018, 23(5): 131-141. (in Chinese) |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[3] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[4] | 邹温馨, 苏卫华, 陈远学, 陈新平, 郎明. 长期施氮对酸性紫色土氨氧化微生物群落及其硝化作用的影响[J]. 中国农业科学, 2022, 55(3): 529-542. |
[5] | 房孟颖,卢霖,王庆燕,董学瑞,闫鹏,董志强. 乙矮合剂对不同施氮量夏玉米根系形态构建和产量的影响[J]. 中国农业科学, 2022, 55(24): 4808-4822. |
[6] | 伊英杰,韩坤,赵斌,刘国利,林佃旭,陈国强,任昊,张吉旺,任佰朝,刘鹏. 长期不同施肥措施冬小麦-夏玉米轮作体系周年氨挥发损失的差异[J]. 中国农业科学, 2022, 55(23): 4600-4613. |
[7] | 耿文杰,李宾,任佰朝,赵斌,刘鹏,张吉旺. 种植密度和喷施乙烯利对夏玉米木质素代谢和抗倒伏性能的调控[J]. 中国农业科学, 2022, 55(2): 307-319. |
[8] | 张川,刘栋,王洪章,任昊,赵斌,张吉旺,任佰朝,刘存辉,刘鹏. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响[J]. 中国农业科学, 2022, 55(19): 3710-3722. |
[9] | 李小凡,邵靖宜,于维祯,刘鹏,赵斌,张吉旺,任佰朝. 高温干旱复合胁迫对夏玉米产量及光合特性的影响[J]. 中国农业科学, 2022, 55(18): 3516-3529. |
[10] | 胡旦旦,李荣发,刘鹏,董树亭,赵斌,张吉旺,任佰朝. 密植条件下玉米品种混播提高籽粒灌浆性能和产量[J]. 中国农业科学, 2021, 54(9): 1856-1868. |
[11] | 邓飞,何连华,陈多,田青兰,李秋萍,曾玉玲,李博,陈虹,王丽,任万军. 不同日产量类型机插杂交籼稻的氮素吸收利用特性[J]. 中国农业科学, 2021, 54(7): 1469-1481. |
[12] | 蔡倩,孙占祥,郑家明,王文斌,白伟,冯良山,杨宁,向午燕,张哲,冯晨. 辽西半干旱区玉米大豆间作模式对作物干物质积累分配、产量及土地生产力的影响[J]. 中国农业科学, 2021, 54(5): 909-920. |
[13] | 徐田军,吕天放,赵久然,王荣焕,邢锦丰,张勇,蔡万涛,刘月娥,刘秀芝,陈传永,王元东,刘春阁. 黄淮海区主推夏播玉米品种籽粒脱水特性研究[J]. 中国农业科学, 2021, 54(4): 708-719. |
[14] | 陈杨,王磊,白由路,卢艳丽,倪露,王玉红,徐孟泽. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系[J]. 中国农业科学, 2021, 54(22): 4761-4777. |
[15] | 于维祯,张晓驰,胡娟,邵靖宜,刘鹏,赵斌,任佰朝. 弱光涝渍复合胁迫对夏玉米产量及光合特性的影响[J]. 中国农业科学, 2021, 54(18): 3834-3846. |
|