中国农业科学 ›› 2022, Vol. 55 ›› Issue (11): 2187-2201.doi: 10.3864/j.issn.0578-1752.2022.11.009
收稿日期:
2021-04-06
接受日期:
2021-06-23
出版日期:
2022-06-01
发布日期:
2022-06-16
通讯作者:
张铜会
作者简介:
王宁,E-mail: 基金资助:
WANG Ning1,2,3(),FENG KeYun3,NAN HongYu3,ZHANG TongHui1(
)
Received:
2021-04-06
Accepted:
2021-06-23
Online:
2022-06-01
Published:
2022-06-16
Contact:
TongHui ZHANG
摘要:
【目的】 探究不同水分条件下有机无机肥配施对棉花根系生长发育、干物质积累和产量的影响,为干旱区合理利用水肥资源提供理论依据。【方法】 2018—2019年进行田间定位试验,采用裂区试验设计,主区为重度水分亏缺(W1)、轻度水分亏缺(W2)和正常水分(W3),控制土壤含水量分别为田间持水量的32%—46%、51%—62%、67%—81%,副区为不施肥(F0)、单施化肥(F1)、30%有机肥+70%化肥(F2)和70%有机肥+30%化肥(F3),分析不同水分条件下施肥对棉花花铃期根系形态特征、根长垂直分布、根系活力、地上部干物质积累和产量的影响。【结果】 水分亏缺抑制了棉花花铃期根系生长,根长、根表面积、根体积、根系活力较正常水分显著降低,地上部干重下降而根冠比增大,单株铃数和单铃重降低并导致籽棉产量的下降,其中W1负面影响最为严重。不同水分条件下各施肥处理对根系形态特征的影响存在显著差异,W2和W3下,施肥显著增加棉花根长、根表面积和根体积,且有机无机肥配施显著高于单施化肥F1处理,其中W2下,根长、根表面积和根体积随有机肥配施比例的提高而增加,F3较F1处理根长、根表面积和根体积两年平均分别提高18.1%、12.2%和35.0%;W3下,F2处理对根系形态的促进效应最为显著,较F1根长、根表面积和根体积分别提高7.6%、17.0%和20.1%;W1下,各施肥对根长和根表面积具有抑制作用,其中F1处理抑制效应最显著。W2和W3水分条件下有机无机肥配施能够促进20—40 cm土层根系的生长,并显著提高根系在该土层的分布比例,较单施化肥能显著提高各土层根系活力,促进地上部和根系干重的增加并降低根冠比,增加单株铃数和籽棉产量,其中W2下F3处理单株铃数和籽棉产量最高,较F1处理单株铃数和籽棉产量分别提高13.2% 和17.2%,而W3下F2处理单株铃数和籽棉产量表现最高,较F1分别提高16.1% 和9.2%。【结论】 有机无机肥配施能够优化根系形态与空间分布,提高根系活力,促进地上部干物质积累并提高籽棉产量,缓解轻度水分亏缺对棉花根系生长发育的影响。不同水分下有机无机肥配施处理中,轻度水分亏缺下70%有机肥+30%化肥(F3),正常水分下30%有机肥+70%化肥(F2)为最优施肥处理。
王宁,冯克云,南宏宇,张铜会. 不同水分条件下有机无机肥配施对棉花根系特征及产量的影响[J]. 中国农业科学, 2022, 55(11): 2187-2201.
WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions[J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
表1
试验地播前0—20 cm土层土壤化学性质"
年份 Year | 处理 Treatment | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Alkaline-hydrolytic N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|---|
2018 | F0 | 7.34 | 10.86 | 0.65 | 58.63 | 11.68 | 85.64 |
F1 | 7.28 | 12.64 | 0.82 | 64.75 | 28.87 | 123.56 | |
F2 | 7.23 | 13.82 | 0.87 | 67.84 | 29.14 | 136.43 | |
F3 | 7.19 | 15.16 | 0.94 | 68.52 | 31.67 | 139.35 | |
2019 | F0 | 7.31 | 10.72 | 0.63 | 57.15 | 11.46 | 87.69 |
F1 | 7.25 | 12.79 | 0.84 | 65.24 | 29.42 | 124.86 | |
F2 | 7.22 | 13.46 | 0.93 | 68.17 | 30.28 | 138.64 | |
F3 | 7.18 | 15.29 | 1.02 | 69.36 | 32.19 | 141.27 |
表2
不同施肥处理氮磷钾总养分投入量"
处理 Treatment | N (kg·hm-2) | P2O5 (kg·hm-2) | K2O (kg·hm-2) | 有机无机氮施用量 Organic and inorganic nitrogen application rates |
---|---|---|---|---|
F0 | 0 | 0 | 0 | 不施氮 No nitrogen application |
F1 | 450 | 90 | 40 | 450 kg·hm-2 无机氮 450 kg·hm-2 Inorganic nitrogen |
F2 | 450 | 90 | 40 | 135 kg·hm-2 有机氮+315 kg·hm-2无机氮 135 kg·hm-2 Organic nitrogen+315 kg·hm-2 Inorganic nitrogen |
F3 | 450 | 90 | 40 | 315 kg·hm-2 有机氮+135 kg·hm-2无机氮 315 kg·hm-2 Organic nitrogen+135 kg·hm-2 Inorganic nitrogen |
表3
不同水分条件下施肥对棉花根系形态的影响"
土壤水分 Soil water condition | 施肥 Fertilizer | 根长 Root length (m) | 根表面积 Root surface area (cm2) | 根体积 Root biomass (cm3) | |||
---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||
W1 | F0 | 24.2a | 25.8a | 378.2a | 392.1a | 38.2a | 41.3a |
F1 | 18.6c | 20.1c | 314.7c | 356.2c | 40.3a | 42.8a | |
F2 | 19.0c | 22.7b | 356.1b | 372.8b | 41.5a | 43.4a | |
F3 | 22.2b | 23.1b | 371.5a | 385.6a | 43.6a | 45.1a | |
W2 | F0 | 33.7d | 35.3d | 432.8d | 446.7d | 64.7d | 68.9d |
F1 | 38.3c | 40.1c | 516.3c | 529.4c | 87.3c | 92.4c | |
F2 | 42.6b | 42.4b | 531.7b | 558.6b | 105.2b | 112.4b | |
F3 | 47.3a | 45.3a | 576.2a | 597.3a | 117.9a | 124.7a | |
W3 | F0 | 42.2d | 41.1d | 457.1d | 462.8d | 67.8c | 73.1d |
F1 | 55.3c | 56.5c | 623.5c | 610.7c | 125.4b | 133.6c | |
F2 | 59.6a | 60.7a | 714.8a | 729.3a | 152.1a | 158.9a | |
F3 | 56.4b | 58.7b | 653.2b | 682.5b | 130.7b | 146.3b | |
方差分析 ANOVA | |||||||
W | ** | ** | ** | ** | ** | ** | |
F | ** | ** | ** | ** | ** | ** | |
W×F | ** | ** | ** | ** | ** | ** |
表4
不同水分条件下施肥对棉花花铃期地上部干物质量、根系干重和根冠比的影响"
土壤水分 Soil water condition | 施肥 Fertilizer | 地上部干重 Shoot dry matter (g/plant) | 根系干重 Root dry matter (g/plant) | 根冠比 R/S ratio | |||
---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||
W1 | F0 | 33.9c | 34.5c | 6.1a | 6.5a | 0.18a | 0.19a |
F1 | 38.8b | 40.7b | 6.2a | 6.6a | 0.16b | 0.16b | |
F2 | 40.2a | 41.6a | 6.3a | 7.0a | 0.16b | 0.17b | |
F3 | 40.7a | 42.5a | 6.2a | 7.2a | 0.15b | 0.17b | |
W2 | F0 | 42.7d | 43.1d | 6.8c | 6.8c | 0.16a | 0.16a |
F1 | 51.4c | 53.6c | 7.1c | 6.4c | 0.14c | 0.12d | |
F2 | 59.7b | 61.4b | 8.9b | 8.5b | 0.15b | 0.14c | |
F3 | 62.3a | 67.2a | 9.3a | 10.0a | 0.15b | 0.15b | |
W3 | F0 | 46.9d | 48.6d | 6.0c | 6.8c | 0.13a | 0.14a |
F1 | 58.9c | 54.4c | 5.8c | 5.9d | 0.10c | 0.11d | |
F2 | 67.5a | 71.2a | 8.1a | 9.2a | 0.12b | 0.13b | |
F3 | 63.4b | 67.3b | 7.6b | 8.1b | 0.12b | 0.12c | |
方差分析 ANOVA | |||||||
W | ** | ** | ** | ** | * | * | |
F | ** | ** | ** | ** | * | ** | |
W×F | ** | ** | ** | ** | ns | ns |
表5
水分、施肥对棉花产量及产量构成因素的影响"
水分 Water | 施肥 Fertilizer | 单株铃数 Number of bolls | 单铃重 Boll mass (g) | 衣分 Lint percentage (%) | 籽棉产量 Lint yield (kg·hm-2) | ||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||
W1 | F0 | 3.4b | 3.3b | 4.3b | 4.5b | 42.9a | 43.1a | 2137.5b | 2318.6b |
F1 | 4.1a | 3.9a | 5.5a | 5.6a | 43.1a | 43.0a | 2859.4a | 2937.2a | |
F2 | 4.3a | 4.2a | 5.7a | 5.6a | 43.2a | 43.1a | 3025.7a | 2986.1a | |
F3 | 4.4a | 4.2a | 5.5a | 5.8a | 43.0a | 43.2a | 3012.5a | 2954.3a | |
W2 | F0 | 3.9d | 4.1d | 5.6b | 5.8b | 42.5a | 42.4a | 2412.7d | 2569.2d |
F1 | 5.2c | 5.4c | 6.3a | 6.2a | 42.4a | 42.4a | 3628.4c | 3714.6c | |
F2 | 5.6b | 5.7b | 6.4a | 6.5a | 42.3a | 42.5a | 3965.1b | 4086.5b | |
F3 | 5.9a | 6.1a | 6.4a | 6.4a | 42.3a | 42.4a | 4217.3a | 4386.5a | |
W3 | F0 | 4.4d | 4.7d | 5.9b | 6.1b | 41.8a | 41.6a | 2675.2d | 2834.7d |
F1 | 5.6c | 5.8c | 6.3a | 6.5a | 42.0a | 41.7a | 4325.8c | 4410.6c | |
F2 | 6.5a | 6.9a | 6.4a | 6.4a | 41.5a | 41.8a | 4713.5a | 4822.3a | |
F3 | 6.1b | 6.3b | 6.5a | 6.4a | 41.6a | 41.7a | 4593.7b | 4617.9b | |
方差分析 ANOVA | |||||||||
W | ** | ** | ** | ** | ** | ** | ** | ** | |
F | ** | ** | ** | ** | ns | ns | ** | ** | |
W×F | ** | ** | ** | ** | ns | ns | ** | ** |
[1] |
冯克云, 王宁, 南宏宇. 甘肃河西棉花全生育期不同灌溉量对生长发育的影响及抗旱性评价. 干旱地区农业研究, 2015, 33(5): 140-146. doi: 10.7606/j.issn.1000-7601.2015.05.26.
doi: 10.7606/j.issn.1000-7601.2015.05.26 |
FENG K Y, WANG N, NAN H Y. Effects of different irrigation volumes during the entire growth period on development of cotton in Hexi area of Gansu and evaluation of its drought resistance. Agricultural Research in the Arid Areas, 2015, 33(5): 140-146. doi: 10.7606/j.issn.1000-7601.2015.05.26. (in Chinese)
doi: 10.7606/j.issn.1000-7601.2015.05.26 |
|
[2] |
马忠明, 王平, 陈娟, 包兴国. 适量有机肥与氮肥配施方可提高河西绿洲土壤肥力及作物生产效益. 植物营养与肥料学报, 2016, 22(5): 1298-1309. doi: 10.11674/zwyf.15346.
doi: 10.11674/zwyf.15346 |
MA Z M, WANG P, CHEN J, BAO X G. Combined long-term application of organic materials with nitrogen fertilizer in suitable amount could improve soil fertility and crop production profit in He-xi Oasis of Gansu Province. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1298-1309. (in Chinese)
doi: 10.11674/zwyf.15346 |
|
[3] | 冯克云, 张秉贤, 南宏宇. 河西内陆灌区不同灌水施氮水平对棉花产量构成的影响. 干旱地区农业研究, 2011, 29(6): 49-53. |
FENG K Y, ZHANG B X, NAN H Y. Effect of different water and nitrogen supply on yield and its components of cotton in inland irrigation district of Hexi in Gansu. Agricultural Research in the Arid Areas, 2011, 29(6): 49-53. (in Chinese) | |
[4] | 吕凤莲, 侯苗苗, 张弘弢, 强久次仁, 周应田, 路国艳, 赵秉强, 杨学云, 张树兰. 土冬小麦-夏玉米轮作体系有机肥替代化肥比例研究. 植物营养与肥料学报, 2018, 24(1): 22-32. |
LÜ F L, HOU M M, ZHANG H T, QIANG J, ZHOU Y T, LU G Y, ZHAO B Q, YANG X Y, ZHANG S L. Replacement ratio of chemical fertilizer nitrogen with manure under the winter wheat-summer maize rotation system in Lou soil. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 22-32. (in Chinese) | |
[5] |
侯俊, 王帅, 崔士通, 王会刚, 张卫峰. 沙土地有机肥替代化肥与灌溉优化在苜蓿上的耦合效应研究. 中国土壤与肥料, 2018(6): 104-111. doi: 10.11838/sfsc.20180615.
doi: 10.11838/sfsc.20180615 |
HOU J, WANG S, CUI S T, WANG H G, ZHANG W F. The coupling effect on alfalfa from integrated improvement of replacing chemical with organic fertilization and optimized irrigation on sandy soil. Soils and Fertilizers Sciences in China, 2018(6): 104-111. doi: 10.11838/sfsc.20180615. (in Chinese)
doi: 10.11838/sfsc.20180615 |
|
[6] |
张国娟, 濮晓珍, 张鹏鹏, 张旺锋. 干旱区棉花秸秆还田和施肥对土壤氮素有效性及根系生物量的影响. 中国农业科学, 2017, 50(13): 2624-2634. doi: 10.3864/j.issn.0578-1752.2017.13.020.
doi: 10.3864/j.issn.0578-1752.2017.13.020 |
ZHANG G J, PU X Z, ZHANG P P, ZHANG W F. Effects of stubble returning to soil and fertilization on soil nitrogen availability and root biomass of cotton in arid region. Scientia Agricultura Sinica, 2017, 50(13): 2624-2634. doi: 10.3864/j.issn.0578-1752.2017.13.020. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.13.020 |
|
[26] |
PANG C H, ZHANG Z W, ZHANG Y Q. Effects of water and phosphorus coupling on root growth, biomass allocation and yield of quinoa. Scientia Agricultura Sinica, 2017, 50(21): 4107-4117. doi: 10.3864/j.issn.0578-1752.2017.21.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.21.005 |
[27] |
BENGOUGH A G, MCKENZIE B M, HALLETT P D, VALENTINE T A. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 2011, 62(1): 59-68. doi: 10.1093/jxb/erq350.
doi: 10.1093/jxb/erq350 |
[7] |
宿顺顺, 冯浩, 吴淑芳, 胡亚瑾, 陈光杰, 陈霁菲. 亏缺灌溉与有机肥结合对夏玉米水分及产量影响. 水土保持学报, 2020, 34(2): 165-172. doi: 10.13870/j.cnki.stbcxb.2020.02.024.
doi: 10.13870/j.cnki.stbcxb.2020.02.024 |
SU S S, FENG H, WU S F, HU Y J, CHEN G J, CHEN J F. Effect of deficit irrigation combined with organic fertilizer on water content and yield of summer maize. Journal of Soil and Water Conservation, 2020, 34(2): 165-172. doi: 10.13870/j.cnki.stbcxb.2020.02.024. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2020.02.024 |
|
[8] |
张永清, 苗果园. 水分胁迫条件下有机肥对小麦根苗生长的影响. 作物学报, 2006, 32(6): 811-816. doi: 10.3321/j.issn:0496-3490.2006.06.004.
doi: 10.3321/j.issn:0496-3490.2006.06.004 |
ZHANG Y Q, MIAO G Y. Effects of manure on root and shoot growth of winter wheat under water stress. Acta Agronomica Sinica, 2006, 32(6): 811-816. doi: 10.3321/j.issn:0496-3490.2006.06.004. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2006.06.004 |
|
[9] |
XU C L, TAO H B, TIAN B J, GAO Y B, REN J H, WANG P. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat. Field Crops Research, 2016, 196: 268-275. doi: 10.1016/j.fcr.2016.07.009.
doi: 10.1016/j.fcr.2016.07.009 |
[10] |
SHARP R E, HSIAO T C, SILK W K. Growth of the maize primary root at low water potentials: II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiology, 1990, 93(4): 1337-1346. doi: 10.1104/pp.93.4.1337.
doi: 10.1104/pp.93.4.1337 |
[11] |
邓忠, 翟国亮, 宗洁, 吕谋超, 李迎, 冯俊杰, 蔡九茂, 张文正. 干旱区水氮调控对棉花根、冠生长特性及产量的影响. 中国土壤与肥料, 2015(6): 57-64. doi: 10.11838/sfsc.20150609.
doi: 10.11838/sfsc.20150609 |
DENG Z, ZHAI G L, ZONG J, LÜ M C, LI Y, FENG J J, CAI J M, ZHANG W Z. Effects of water and nitrogen regulation on root and shoot growth characteristics and yield of cotton in arid area. Soils and Fertilizers Sciences in China, 2015(6): 57-64. doi: 10.11838/sfsc.20150609. (in Chinese)
doi: 10.11838/sfsc.20150609 |
|
[12] | 王宁, 李继光, 娄翼来, 王义东, 李忠芳, 宋吉青, 张晓军. 作物根系形态对施肥措施的响应. 中国农学通报, 2020, 36(3): 53-58. |
WANG N, LI J G, LOU Y L, WANG Y D, LI Z F, SONG J Q, ZHANG X J. Response of crop root morphology to fertilization measures. Chinese Agricultural Science Bulletin, 2020, 36(3): 53-58. (in Chinese) | |
[13] |
张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004.
doi: 10.3864/j.issn.0578-1752.2019.01.004 |
ZHANG X Y, WANG Y, CHEN J, CHEN A J, WANG L Y, GUO X Y, NIU Y L, ZHANG X Y, CHEN L D, GAO Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Scientia Agricultura Sinica, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.01.004 |
|
[14] |
王秀波, 上官周平. 干旱胁迫下氮素对不同基因型小麦根系活力和生长的调控. 麦类作物学报, 2017, 37(6): 820-827. doi: 10.7606/j.issn.1009-1041.2017.06.014.
doi: 10.7606/j.issn.1009-1041.2017.06.014 |
WANG X B, SHANGGUAN Z P. Effect of nitrogen on root vigor and growth in different genotypes of wheat under drought stress. Journal of Triticeae Crops, 2017, 37(6): 820-827. doi: 10.7606/j.issn.1009-1041.2017.06.014. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2017.06.014 |
|
[15] | 谢志良, 田长彦, 卞卫国. 膜下滴灌水氮对棉花根系构型的影响. 棉花学报, 2009, 21(6): 508-514. |
XIE Z L, TIAN C Y, BIAN W G. Effects of water and nitrogen on cotton root architecture under film drip irrigation. Cotton Science, 2009, 21(6): 508-514. (in Chinese) | |
[16] |
余炳凤, 王海江, 侯振安, 温鹏飞, 张强, 朱鹏, 吕新. 膜下滴灌水氮对不同生育期棉花根系与产量影响. 石河子大学学报(自然科学版), 2015, 33(3): 265-269. doi: 10.13880/j.cnki.65-1174/n.2015.03.001.
doi: 10.13880/j.cnki.65-1174/n.2015.03.001 |
YU B F, WANG H J, HOU Z N, WEN P F, ZHANG Q, ZHU P, LÜ X. Effect of water-nitrogen on cotton yield and root characteristics in different growth stage under mulching drip irrigation. Journal of Shihezi University (Natural Science), 2015, 33(3): 265-269. doi: 10.13880/j.cnki.65-1174/n.2015.03.001. (in Chinese)
doi: 10.13880/j.cnki.65-1174/n.2015.03.001 |
|
[17] |
李文昊, 王振华, 朱延凯, 马东青. 水氮调控对轻度盐化土滴灌棉花根系生长的影响. 干旱地区农业研究, 2019, 37(6): 207-213. doi: 10.7606/j.issn.1000-7601.2019.06.30.
doi: 10.7606/j.issn.1000-7601.2019.06.30 |
LI W H, WANG Z H, ZHU Y K, MA D Q. Effects of water and nitrogen fertilization on root growth of cotton under drip irrigation in mildly salinized soil. Agricultural Research in the Arid Areas, 2019, 37(6): 207-213. doi: 10.7606/j.issn.1000-7601.2019.06.30. (in Chinese)
doi: 10.7606/j.issn.1000-7601.2019.06.30 |
|
[18] |
LI R, TAO R, LING N, CHU G X. Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: implications for soil biological quality. Soil and Tillage Research, 2017, 167: 30-38. doi: 10.1016/j.still.2016.11.001.
doi: 10.1016/j.still.2016.11.001 |
[19] | 路文涛, 贾志宽, 张鹏, 蔡太义, 李儒, 侯贤清, 杨保平, 李永平. 宁南旱区有机培肥对冬小麦光合特性和水分利用效率的影响. 植物营养与肥料学报, 2011, 17(5): 1066-1074. |
LU W T, JIA Z K, ZHANG P, CAI T Y, LI R, HOU X Q, YANG B P, LI Y P. Effects of organic fertilization on winter wheat photosynthetic characteristics and water use efficiency in semi-arid areas of southern Ningxia. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1066-1074. (in Chinese) | |
[20] |
杨清龙, 刘鹏, 董树亭, 张吉旺, 赵斌, 李荣发, 任昊, 任寒, 韩祥飞. 有机无机肥配施对夏玉米氮素气态损失及籽粒产量的影响. 中国农业科学, 2018, 51(13): 2476-2488. doi: 10.3864/j.issn.0578-1752.2018.13.004.
doi: 10.3864/j.issn.0578-1752.2018.13.004 |
YANG Q L, LIU P, DONG S T, ZHANG J W, ZHAO B, LI R F, REN H, REN H, HAN X F. Effects of combined application of manure and chemical fertilizers on loss of gaseous nitrogen and yield of summer maize. Scientia Agricultura Sinica, 2018, 51(13): 2476-2488. doi: 10.3864/j.issn.0578-1752.2018.13.004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.13.004 |
|
[21] |
冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响. 作物学报, 2021, 47(1): 125-137. doi: 10.3724/SP.J.1006.2021.04077.
doi: 10.3724/SP.J.1006.2021.04077 |
FENG K Y, WANG N, NAN H Y, GAO J G. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton. Acta Agronomica Sinica, 2021, 47(1): 125-137. doi: 10.3724/SP.J.1006.2021.04077. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04077 |
|
[22] |
KUCHENBUCH R O, GERKE H H, BUCZKO U. Spatial distribution of maize roots by complete 3D soil monolith sampling. Plant and Soil, 2009, 315(1/2): 297-314. doi: 10.1007/s11104-008-9752-8.
doi: 10.1007/s11104-008-9752-8 |
[23] | 张志良. 植物生理学实验指导. 2版. 北京: 高等教育出版社, 1990. |
ZHANG Z L. Experimental Guide for Plant Physiology. 2nd ed. Beijing: Higher Education Press, 1990. (in Chinese) | |
[24] |
杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44(1): 36-46. doi: 10.3864/j.issn.0578-1752.2011.01.005.
doi: 10.3864/j.issn.0578-1752.2011.01.005 |
YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Scientia Agricultura Sinica, 2011, 44(1): 36-46. doi: 10.3864/j.issn.0578-1752.2011.01.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.01.005 |
|
[25] |
刘世全, 曹红霞, 张建青, 胡笑涛. 不同水氮供应对小南瓜根系生长、产量和水氮利用效率的影响. 中国农业科学, 2014, 47(7): 1362-1371. doi: 10.3864/j.issn.0578-1752.2014.07.013.
doi: 10.3864/j.issn.0578-1752.2014.07.013 |
LIU S Q, CAO H X, ZHANG J Q, HU X T. Effects of different water and nitrogen supplies on root growth, yield and water and nitrogen use efficiency of small pumpkin. Scientia Agricultura Sinica, 2014, 47(7): 1362-1371. doi: 10.3864/j.issn.0578-1752.2014.07.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.07.013 |
|
[26] |
庞春花, 张紫薇, 张永清. 水磷耦合对藜麦根系生长、生物量积累及产量的影响. 中国农业科学, 2017, 50(21): 4107-4117. doi: 10.3864/j.issn.0578-1752.2017.21.005.
doi: 10.3864/j.issn.0578-1752.2017.21.005 |
[28] |
郑福丽, 刘苹, 李国生, 张柏松, 李燕, 魏建林, 谭德水. 有机-无机肥协同调控小麦-玉米两熟作物产量及土壤培肥效应. 中国农业科学, 2020, 53(21): 4355-4364. doi: 10.3864/j.issn.0578-1752.2020.21.005.
doi: 10.3864/j.issn.0578-1752.2020.21.005 |
ZHENG F L, LIU P, LI G S, ZHANG B S, LI Y, WEI J L, TAN D S. Organic-inorganic coordinated regulation to wheat-maize double crop yield and soil fertility. Scientia Agricultura Sinica, 2020, 53(21): 4355-4364. doi: 10.3864/j.issn.0578-1752.2020.21.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.21.005 |
|
[29] |
李絮花, 杨守祥, 于振文, 余松烈. 有机肥对小麦根系生长及根系衰老进程的影响. 植物营养与肥料学报, 2005, 11(4): 467-472. doi: 10.3321/j.issn:1008-505X.2005.04.007.
doi: 10.3321/j.issn:1008-505X.2005.04.007 |
LI X H, YANG S X, YU Z W, YU S L. Effects of organic manure application on growth and senescence of root in winter wheat. Plant Nutrition and Fertilizer Science, 2005, 11(4): 467-472. doi: 10.3321/j.issn:1008-505X.2005.04.007. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2005.04.007 |
|
[30] |
陈伟, 周波, 束怀瑞. 生物炭和有机肥处理对平邑甜茶根系和土壤微生物群落功能多样性的影响. 中国农业科学, 2013, 46(18): 3850-3856. doi: 10.3864/j.issn.0578-1752.2013.18.014.
doi: 10.3864/j.issn.0578-1752.2013.18.014 |
CHEN W, ZHOU B, SHU H R. Effects of organic fertilizer and biochar on root system and microbial functional diversity of Malus hupehensis rehd. Scientia Agricultura Sinica, 2013, 46(18): 3850-3856. doi: 10.3864/j.issn.0578-1752.2013.18.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.18.014 |
|
[31] |
王兴龙, 朱敏, 杨帆, 豆攀, 张嘉莉, 马晓君, 袁继超, 孔凡磊. 配施有机肥减氮对川中丘区土壤微生物量与酶活性的影响. 水土保持学报, 2017, 31(3): 271-276. doi: 10.13870/j.cnki.stbcxb.2017.03.045.
doi: 10.13870/j.cnki.stbcxb.2017.03.045 |
WANG X L, ZHU M, YANG F, DOU P, ZHANG J L, MA X J, YUAN J C, KONG F L. Effects of reducing nitrogen and applying organic fertilizers on soil microbial biomass carbon and enzyme activity in the hilly area of central Sichuan Basin. Journal of Soil and Water Conservation, 2017, 31(3): 271-276. doi: 10.13870/j.cnki.stbcxb.2017.03.045. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2017.03.045 |
|
[32] |
LYNCH J. Root architecture and plant productivity. Plant Physiology, 1995, 109(1): 7-13. doi: 10.1104/pp.109.1.7.
doi: 10.1104/pp.109.1.7 |
[33] |
张合理, 罗宏海, 李璐, 张亚黎, 张旺锋. 膜下滴灌高产棉花根、冠生物量累积特性研究. 棉花学报, 2015, 27(5): 427-434. doi: 10.11963/issn.1002-7807.201505006.
doi: 10.11963/issn.1002-7807.201505006 |
ZHANG H L, LUO H H, LI L, ZHANG Y L, ZHANG W F. Characteristics of root and shoot biomass accumulation in high-yield cotton fields with mulch-drip irrigation. Cotton Science, 2015, 27(5): 427-434. doi: 10.11963/issn.1002-7807.201505006. (in Chinese)
doi: 10.11963/issn.1002-7807.201505006 |
|
[34] |
王素芳, 薛惠云, 张志勇, 汤菊香. 棉花根系生长与叶片衰老的协调性. 作物学报, 2020, 46(1): 93-101. doi: 10.3724/SP.J.1006.2020.94043.
doi: 10.3724/SP.J.1006.2020.94043 |
WANG S F, XUE H Y, ZHANG Z Y, TANG J X. Coordination of root growth and leaf senescence in cotton. Acta Agronomica Sinica, 2020, 46(1): 93-101. doi: 10.3724/SP.J.1006.2020.94043. (in Chinese)
doi: 10.3724/SP.J.1006.2020.94043 |
|
[35] | 王飞飞, 张善平, 邵立杰, 李耕, 陈晓璐, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵斌. 夏玉米不同土层根系对花后植株生长及产量形成的影响. 中国农业科学, 2013, 46(19): 4007-4017. |
WANG F F, ZHANG S P, SHAO L J, LI G, CHEN X L, LIU P, ZHAO B Q, DONG S T, ZHANG J W, ZHAO B. Effect of root in different soil layers on plant growth and yield formation after anthesis in summer maize. Scientia Agricultura Sinica, 2013, 46(19): 4007-4017. (in Chinese) | |
[36] |
WALECKA-HUTCHISON C M, WALWORTH J L. Evaluating the effects of gross nitrogen mineralization, immobilization, and nitrification on nitrogen fertilizer availability in soil experimentally contaminated with diesel. Biodegradation, 2007, 18(2): 133-144. doi: 10.1007/s10532-006-9049-7.
doi: 10.1007/s10532-006-9049-7 |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[4] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[5] | 娄义宝,康宏亮,王文龙,沙小燕,冯兰茜,聂慧莹,史倩华. 黄土高原沟壑区沟头植被根系垂直分布及其对土壤抗侵蚀性的影响[J]. 中国农业科学, 2023, 56(1): 90-103. |
[6] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[7] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[8] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[9] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[10] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[11] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[12] | 王俊娟,陆许可,王延琴,王帅,阴祖军,付小琼,王德龙,陈修贵,郭丽雪,陈超,赵兰杰,韩迎春,孙亮庆,韩明格,张悦新,范亚朋,叶武威. 陆地棉遗传标准系TM-1的特性及其耐冷性[J]. 中国农业科学, 2022, 55(8): 1503-1517. |
[13] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[14] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[15] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
|