[1] |
WAND K B, WAND Z W, LI F G, YE W W, WANG J Y, SONG G L, YUE Z, CONG L, SHANG H H, ZHU S L, ZOU C S, LI Q, YUAN Y L, LU C R, WEI H L, GOU C Y, ZHENG Z Q, YIN Y, ZHANG X Y, LIU K, WANG B, SONG C, SHI N, RUSSELL J K, RICHARD G P, JOHN Z Y, ZHU Y X, WANG J, YU S X. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 2012, 44(7052):1098-1103.
doi: 10.1038/ng.2371
|
[2] |
WANG K, WAND D H, ZHENG X M, QIN A, ZHOU J, GUO B Y, CHEN Y J, WEN X P, YE W, ZHOU Y, ZHU Y X. Multi-strategic RNA-seq analysis reveals a high-resolution transcriptional landscape in cotton. Nature Communications, 2019, 10(1):4714-4729.
doi: 10.1038/s41467-019-12575-x
|
[3] |
ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG D W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, ZHANG H, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5):531-537.
doi: 10.1038/nbt.3207
|
[4] |
WANG M J, TU L L, YUAN D J, ZHU D, SHEN C, LI J Y, LIU F Y, PEI L L, WANG P C, ZHAO G N, YE Z X, HUANG H, YAN F L, MA Y Z, ZHANG L, LIU M, YOU J Q, YANG Y C, LIU Z P, HUANG F, LI B Q, QIU P, ZHANG Q H, ZHU L F, JIN S X, YANG X Y, MIN L, LI G L, CHEN L L, ZHENG H K, LINDSEY K, LIN Z X, UDALL J A, ZHANG X L. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nature Genetics, 2019, 51(2):224-229.
doi: 10.1038/s41588-018-0282-x
|
[5] |
HUANG G, WU Z G, RICHARD G. P, BAI M Z, LI Y, JAMES E. F, HU J, WANG K, JOHN Z. Y, ZHU Y X. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nature Genetics, 2020, 52(5):516-524.
doi: 10.1038/s41588-020-0607-4
|
[6] |
JASON G W, ELI R, EDWARD S B. On the road to breeding 4.0: Unraveling the good, the bad and the boring of crop quantitative genomics. Annual Reveiew of Genetics, 2018, 52(26):1-24.
|
[7] |
ZOU J J, WEI F J, WANG C, WU J J, RATNASEKERA D, LIU W X, WU W H. Arabidopsis calcium dependent protein kinase CPK10 functions in abscisic acid and Ca2+ mediated stomata regulation in response to drought stress. Plant Physiology, 2010, 154:1232-1243.
doi: 10.1104/pp.110.157545
|
[8] |
JIANG L, WANG J, LIU Z, WANG L, ZHANG F, LIU G C, ZHONG Q. Silencing induced by inverted repeat constructs in protoplasts of Nicotiana benthamiana. Plant Cell Tissue and Organ Culture, 2010, 100:139-148.
doi: 10.1007/s11240-009-9629-4
|
[9] |
孙鹤, 郎志宏, 朱莉, 黄大昉. 玉米、小麦、水稻原生质体制备条件优化. 生物工程学报, 2013, 29(2):224-234.
|
|
SUN H, LANG Z H, ZHU L, HUANG D F. Optimized condition for protoplast isolation from maize, wheat and rice leaves. Chinese Journal of Biotechnology, 2013, 29(2):224-234. (in Chinese)
|
[10] |
ZHANG H, NI L, LIU Y P, WANG Y F, ZHANG A Y, TAN M P, JIANG M Y. The C2H2-type Zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice. Journal of Integrative Plant Biology, 2012, 54:500-510.
doi: 10.1111/jipb.2012.54.issue-7
|
[11] |
ZHANG Y, XIAO W K, LUO L J, PANG J H, RONG W, HE C Z. Down regulation of OsPK1, a cytosolic pyruvate kinase, by T-DNA in sertion causes dwarfism and panicle enclosure in rice. Planta, 2012, 235:25-38.
doi: 10.1007/s00425-011-1471-3
|
[12] |
XIONG L, LI C, LI H Y, LYU X G, ZHAO T, LIU J, ZUO Z C, LIU B. A transient expression system in soybean mesophyll protoplasts reveals the formation of cytoplasmic GmCRY1 photobody-like structures. Science China Life Sciences, 2019, 62(8):1070-1077.
doi: 10.1007/s11427-018-9496-5
|
[13] |
GAO L, SHEN G J, ZHANG L D, QI J F, C ZHANG C P, MA C R, LI J, WANG L, SAIF U M, WU J Q. An efficient system composed of maize protoplast transfection and HPLC-MS for studying the biosynthesis and regulation of maize benzoxazinoids. Plant Methods, 2019, 15(1):144-157.
doi: 10.1186/s13007-019-0529-2
|
[14] |
PATIENCE C, MARIE E C R. A cassava protoplast system for screening genes associated with the response to South African Cassava Mosaic Virus. Virology Journal, 2020, 17(1):184-199.
doi: 10.1186/s12985-020-01453-4
|
[15] |
SU Y Y, CHEN Y E, CHEN J, ZHANG Z J, GUO J Y, CAI Y, ZHU C Y, LI Z Y, ZHANG H Y. Effectors of Puccinia striiformis f. sp. tritici suppressing the pathogenic-associated molecular pattern-triggered immune response were screened by transient expression of wheat protoplasts. International Journal of Molecular Sciences, 2021, 22(9):4985-5003.
doi: 10.3390/ijms22094985
|
[16] |
张宝红. 棉花原生质体培养研究进展. 四川农业大学学报, 1995, 13(1):55-61.
|
|
ZHANG B H. Research progress on culture of cotton protoplasts. Journal of Sichuan Agricultural University, 1995, 13(1):55-61. (in Chinese)
|
[17] |
孙玉强. 棉花原生质体培养和原生质体对称融合研究. 华中农业大学学报, 2011, 30(6):784-786.
|
|
SUN Y Q. Research on cotton protoplasts culture and fusion. Journal of Huazhong Agricultural University, 2011, 30(6):784-786. In Chinese. (in Chinese)
|
[18] |
李妮娜, 丁林云, 张志远. 棉花叶肉原生质体分离及目标基因瞬时表达体系的建立. 作物学报, 2014, 40(2):231-239.
|
|
LI N N, DING L Y, ZHANG Z Y. Establishment of isolation of cotton mesophll protoplast and transient expression system of target gene. The Crop Journal, 2014, 40(2):231-239. (in Chinese)
|
[19] |
李婧瑶, 刘龙飚, 丁兵, 杨海昕, 吴琼, 张旸. 植物原生质体分离及培养研究进展. 分子植物育种, 2021: 1-20. https://kns.cnki.net/kcms/detail/46.1068.S.20210308.1639.026.html .
|
|
LI J Y, LIU L B, DING B, YANG H X, WU Q, ZHANG C. Research progress on plant protoplasts isolation and culture. Molecular PlantBreeding, 2021: 1-20. https://kns.cnki.net/kcms/detail/46.1068.S.20210308.1639.026.html . (in Chinese)
|
[20] |
LI X Y. A transient expression assay using Arabidopsis mesophyll protoplasts. Bio-Protocol, 2011, 1(10):e70.
|
[21] |
FU L L, YANG X Y, ZHANG X L, WANG Z W, FENG C H, LIU Z X, JIANG P Y, ZHANG J L. Regeneration and identification of inter-specific asymmetric somatic hybrids obtained by donor-recipient fusion in cotton. Chinese Science Bulletin, 2009, 54:2219-2227.
|
[22] |
EECKHAUT T, VAN H W, BRUZNICAN S, LEUS L, VAN H J. Somaclonal variation in chrysanthemum × morifolium protoplast regenerants. Frontiers in Plant Science, 2020, 11:607171-607187.
doi: 10.3389/fpls.2020.607171
|
[23] |
ELŻBIETA J, ALEKSANDRA N, ANNA M. Progress towards sugar beet improvement through somatic hybridization: I. Inactivation of nuclei and cytoplasm in donor and recipient protoplasts. Acta Societatis Botanicorum Poloniae, 1995, 64(4):341-347.
doi: 10.5586/asbp.1995.044
|
[24] |
谢鑫, 蒋君梅, 王勇, 任明见. 高粱原生质体的制备及转化方法研究. 种子, 2019, 38(8):43-46.
|
|
XIE X, JIANG J M, WANG Y, REN M J. Study on the method of protoplast isolation and transformation of Sorghum bicolor. Seed, 2019, 30(8):43-46. (in Chinese)
|
[25] |
SANDHYA D, JOGAM P, ALLINI V R, ABBAGANI S, ALOK A. The present and potential future methods for delivering CRISPR/Cas9 components in plants. Biotechnology & Genetic Engineering Reviews, 2020, 18(1):25-36.
|
[26] |
NICOLIA A, FÄLT A, HOFVANDER P, ANDERSSON M. Protoplast-based method for genome editing in tetraploid potato. Methods in Molecular Biology, 2021, 2264(24):177-186.
|
[27] |
WU S P, ZHU H C, LIU J X, YANG Q S, SHAO X H, BI F C, HU C H, HUO H Q, CHEN K L, YI G J. Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana. Plant Biology, 2020, 20(1):1-10.
doi: 10.1111/plb.12676
|
[28] |
JIN D M, CHOI S H, LEE M H, JIE E Y, AHN W S, JOO S J, AHN J W, JO Y D, AHN S J, KIM S W. Development of a rapid selection system for salt-resistant mutants of nicotiana benthamiana through protoplast culture after gamma irradiation. Plants, 2020, 9(12):1720-1733.
doi: 10.3390/plants9121720
|
[29] |
HUANG M K, ZHANG L, ZHOU L M, WANG M Z, YUNG W S, WANG Z L, DUAN S W, XIAO Z X, WANG Q W, WANG X, LI M W, LAM H M. An expedient survey and characterization of the soybean JAGGED 1 (GmJAG1) transcription factor binding preference in the soybean genome by modified ChIP mentation on soybean protoplasts. Genomics, 2021, 113(1):344-355.
doi: 10.1016/j.ygeno.2020.12.026
|
[30] |
SAHAB S, HAYDEN M J, MASON J, SPANGENBERG G. Mesophyll protoplasts and PEG-mediated transfections: Transient assays and generation of stable transgenic canola plants. Methods in Molecular Biology, 2019, 1864:131-152.
|
[31] |
ZHOU Q Y, JIANG Z H, LI Y M, ZHANG T, ZHU H L, ZHAO F, ZHAO Z. Mesophyll protoplast isolation technique and flow cytometry analysis of ancient Platycladus orientalis. Turkish Journal of Agriculture and Forestry, 2019(3):275-287.
|
[32] |
HU Y F, SONG D L, GAO L, BABATOPE S A, WANG Y B, HUANG H H, ZHANG J J, LIU H M, LIU Y H, YU G W, LIU Y J, LI Y P, HUANG Y B. Optimization of isolation and transfection conditions of maize endosperm protoplasts. Plant Methods, 2020, 16(1):1-15.
doi: 10.1186/s13007-019-0534-5
|
[33] |
赵严伟, 黄志刚, 李合松. 洗液对拟南芥叶原生质体分离的影响. 中国农学通报, 2011, 27(12):187-190.
|
|
ZHAO Y W, HUANG Z G, LI H S. EffectS of washing solution on protoplast isolation from Arabidopsis thaliana leave. Chinese Agricultural Science Bulletin, 2011, 27(12):187-190. (in Chinese)
|
[34] |
朱俊, 聂琼, 杨川龙, 陈茜. 不同质膜稳定剂对烟草原生质体细胞壁再生的影响. 山地农业生物学报, 2012, 31(3):222-227.
|
|
ZHU J, NIE Q, YANG C L, CHEN X. Effects of different plasma membrane stabilizers on cell wall regeneration of tobacco protoplasts. Journal of Mountain Agriculture and Biology, 2012, 31(3):222-227. (in Chinese)
|
[35] |
王喆之, 张苏锋, 胡正海. 陆地棉胚性愈伤组织原生质体的制备、培养及植株再生. 植物学报, 1998, 40:234-240.
|
|
WANG Z Z, ZHANG S F, HU Z H. Production, culture and plant regeneration of protoplasts from embryogenic callus of Gossypium hirsutum. Journal of Integrative Plant Biology, 1998, 40:234-240. (in Chinese)
|
[36] |
YANG X Y, ZHANG X L, JIN S X, FU L L, WANG L G. Production and characterization of asymmetric hybrids between upland cotton Coker 201 (Gossypium hirsutum) and wild cotton (G. klozschianum Anderss). Plant Cell Tissue and Organ Culture, 2007, 89(2/3):225-235.
doi: 10.1007/s11240-007-9245-0
|
[37] |
李仁敬, 张忠新, 石玉瑚. 棉花叶肉原生质体的分离初报. 遗传, 1980, 2(4):36-37.
|
|
LI R J, ZHANG Z X, SHI Y H. Reports of isolation of cotton mesophyll protoplast. Heridity, 1980, 2(4):36-37. (in Chinese)
|
[38] |
曾弓剑, 程云伟, 韩少鹏, 吕阳, 陆业磊, 周超, 张德春, 沈祥陵. 高粱品种BTx623原生质体分离及瞬时表达体系的建立. 生物资源, 2021, 43(1):42-49.
|
|
ZENG G J, CHENG Y W, HAN S P, LÜ Y, LU Y L, ZHOU C, ZHANG D C, SHEN X L. The establishment of protoplast isolation and transient expresion system in sorghum cultivar BTx623. Biotic Resources, 2021, 43(1):42-49. (in Chinese)
|
[39] |
YOO S D, CHO Y, SHEEN J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2007(2):1565-1572.
|
[40] |
ZHANG Y, SU J B, DUAN S, AO Y, DAI J R, LIU J, WANG P, LI Y G, LIU B, FENG D R, WANG J F, WANG H B. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 2011, 7(1):30-44.
doi: 10.1186/1746-4811-7-30
|
[41] |
GUO J J, MORRELL-FALVEY J L, LABBÉ J L, MUCHERO W, KALLURI U C, TUSKAN G A, CHEN J G. Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS ONE, 2012, 7(9):44908-44917.
|