中国农业科学 ›› 2021, Vol. 54 ›› Issue (6): 1112-1126.doi: 10.3864/j.issn.0578-1752.2021.06.004
收稿日期:
2020-06-19
接受日期:
2020-11-25
出版日期:
2021-03-16
发布日期:
2021-03-25
通讯作者:
吕新
作者简介:
侯彤瑜,E-mail:基金资助:
TongYu HOU1(),TingLi HAO2,HaiJiang WANG1,Ze ZHANG1,Xin LÜ1()
Received:
2020-06-19
Accepted:
2020-11-25
Online:
2021-03-16
Published:
2021-03-25
Contact:
Xin Lü
摘要:
棉花是一种重要的经济作物,棉花优质高产高效生产对于我国具有战略意义。棉花生长发育模拟模型从棉花的内部生理过程、外部形态结构及其与生长环境的动态交互出发,实现作物生长发育和产量品质形成过程的动态描述和精确模拟,为棉田生产管理措施的优化决策提供了极大的帮助和便利。本文在综合介绍棉花生理生态过程模型、棉花形态结构模型和棉花功能-结构模型的技术原理、组成结构和功能特点的基础上,深入探讨了棉花生长发育模拟模型在国内外研究进展,对棉花生长发育模型在我国棉花生长发育和产量形成、灌溉优化、施肥决策、病虫害管理及棉花生产区域系统评估方面的应用现状进行了系统介绍。根据我国棉花生产的实际情况,结合我国农业信息化发展方向,从模型的本地化研究、尺度提升及其推广示范方面为我国棉花生长发育模拟模型研究、发展和应用提出了建议,以期进一步推动我国棉花产业的现代化发展。
侯彤瑜,郝婷丽,王海江,张泽,吕新. 棉花生长发育模型及其在我国的研究和应用进展[J]. 中国农业科学, 2021, 54(6): 1112-1126.
TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China[J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
表1
国外经典棉花生理生态过程模型要点比较"
模型要素 Model components | GOSSYM[ | Cotton2K[ | OZCOT[ | CSM-CROPGRO-Cotton[ | |
---|---|---|---|---|---|
模型输入 Input | 环境 Environment | 日尺度气象数据;土壤初始水、氮含量 Daily weather data, initial soil water and nitrogen content | 小时尺度气象数据;土壤初始水、氮含量 Hourly weather data, initial soil water and nitrogen content | 日尺度气象数据;土壤初始水、氮含量 Daily weather data, initial soil water and nitrogen content | 日尺度气象数据;土壤初始水、氮含量 Daily weather data, initial soil water and nitrogen content |
品种 Cultivar | 品种遗传参数 Genetic coefficients | 品种遗传参数 Genetic coefficients | 品种遗传参数 Genetic coefficients | 品种遗传参数 Genetic coefficients | |
栽培 Management operations | 播期、密度、灌溉、施肥、化调、脱叶 Planting date, plant density, irrigation, fertilizer, growth regulators and defoliation | 播期、密度、滴灌、施肥、耕作、化调、脱叶 Planting date, plant density, drip irrigation, fertilizer, tillage, growth regulators and defoliation | 播期、密度、灌溉、施肥、脱叶 Planting date, plant density, irrigation, fertilizer and defoliation | 播期、密度、灌溉、施肥、留茬、耕作、脱叶 Planting date, plant density, irrigation, fertilizer, residue, tillage and defoliation | |
生育进程 Phenology | 基于日平均温度和碳氮供需平衡调节生育进程 Develop based on daily thermal time and C:N ratio | 基于小时尺度平均温度和碳氮供需平衡调节生育进程 Develop based on hourly thermal time and C:N ratio | 基于出苗到现蕾所需积温的经验值计算现蕾时间 Based on the empirical accumulating day degrees between sowing and the appearance of the first square | 基于生理日数模拟生育进程 Develop based on physiological degree days | |
物质积累和分配 Dry matter accumulation and allocation | 光合 Photosynthesis | 基于群体冠层对太阳辐射的截获效率计算潜在光合 Canopy-level radiation interception | 基于群体冠层对太阳辐射的截获效率计算潜在光合 Canopy-level radiation interception | 基于群体冠层对太阳辐射的截获效率计算潜在光合 Canopy-level radiation interception | 将单叶小时尺度的潜在光合整合为日尺度的冠层光合 Leaf-level biochemistry |
呼吸 Respiration | 基于光强、温度及生物量的经验公式 Uses an empirical function of respiration based on light, air temperature and biomass | 由器官的物质构成确定生长呼吸;由光合生产量确定维持呼吸 Calculates growth and maintenance respiration and photorespiration | 基于果节数量和温度调节因子的经验公式 Uses empirical functions of respiration based on fruiting site count and air temperature | 由器官的物质构成确定生长呼吸;由光合生产量确定维持呼吸 Calculates growth and maintenance respiration | |
分配 Partitioning | 根据各类器官的需求将积累的干物质按比例分配 Allocates carbon to individual growing organs based on the organ's contribution to the total demand | 根据各类器官的需求将积累的干物质按比例分配 Allocates carbon to individual growing organs based on the organ's contribution to the total demand | 将积累的干物质分配给每个棉铃,以估计棉铃的生长 Allocates carbon to cohort pools for developing bolls | 按照生殖器官优先原则和各器官生长需求实现干物质动态分配 Reproductive tissues have first priority, then allocates carbon to single pools for leaves, stems and roots | |
器官生长 Organ growth | 受温度、水分、氮素及碳水化合物供应状态调控的潜在生长 Potential growth with the stresses related to air temperature, water, C, and N | 受温度、水分、氮素及碳水化合物供应状态调控的潜在生长 Potential growth with the stresses related to air temperature, water, C, and N | 受温度、水分、氮素及碳水化合物供应状态调控的潜在生长 Potential growth with the stresses related to air temperature, water, C, and N | 受温度、水分、氮素及碳水化合物供应状态调控的潜在生长 Potential growth with the stresses related to air temperature, water, C, and N | |
蕾铃脱落 Shedding of buds and bolls | 根据蕾铃的碳氮供应模拟生理性脱落;兼顾虫害、阴雨对蕾铃脱落的影响 Physiological shedding based on the carbon and nitrogen stress, and the other shedding based on the insects or weather stresses | 根据蕾铃的碳氮供应模拟生理性脱落;兼顾虫害、阴雨对蕾铃脱落的影响 Physiological shedding based on the carbon and nitrogen stress, and the other shedding based on the insects or weather stress | 根据棉铃承载力与实际载铃量的比值确定棉铃脱落状态 Shedding based on the ratio of load to carrying capacity | 当干物质分配无法满足生殖器官生长需求时即发生脱落 Shedding occurs when dry matter allocation cannot meet the growth needs of reproductive organs | |
模型要素 Model components | GOSSYM[ | Cotton2K[ | OZCOT[ | CSM-CROPGRO-Cotton[ | |
水分平衡 Water Balance | 土壤 Soil | 2D RHIZOS模型 2D RHIZOS model | 2D RHIZOS 模型 2D RHIZOS model | Ritchie水分平衡 Ritchie model | Ritchie水分平衡 Ritchie model |
蒸散 ET | Ritchie水分平衡 Ritchie model | CIMIS彭曼公式 CIMIS Penman model | Ritchie水分平衡 Ritchie model | FAO-56彭曼公式 FAO-56 | |
氮素平衡 Nitrogen Balance | 2D RHIZOS模型 2D RHIZOS model | 对2D RHIZOS模型土壤氮素动态平衡模块进行了优化 Optimized 2D RHIZOS model | 基于氮素池实现土壤-棉花-器官间氮素动态平衡 Dynamic nitrogen pools | 由土壤-棉花氮平衡模块实现土壤-棉花-器官间氮素动态平衡 Based on the soil carbon and nitrogen balance sub module | |
模型输出 Output | 棉花产量、株式图、水分利用效率、氮肥利用效率等 Yield, plant maps, WUE, NUE | 棉花产量、株式图、水分利用效率、氮肥利用效率等 Yield, plant maps, WUE, NUE | 棉花产量、载铃量、水分利用效率、氮肥利用效率等 Yield, boll load, plant maps, WUE, NUE | 棉花产量、生物量、载铃量、水分利用效率、氮肥利用效率等 Yield, biomass, boll load, plant maps, WUE, NUE | |
应用情况 Application | 机理性强,输入参数多,使用前需进行参数校验,在美国植棉区已经广泛应用[ Mainly applied in the cotton belt of U.S.[ | 针对干旱半干旱环境和栽培措施的优化使其在以色列[ Mainly applied in arid and semi-arid environments such as Israel[ | 重点关注棉铃生长和脱落,对底层生理考虑较少,受澳大利亚官方支持应用广泛[ Mainly applied in Australia [ | 模块化组织提升了开发应用便捷性,目前在美国东南植棉区应用较多[ Mainly appliied in in the southeastern U.S. [ |
[1] | LANDIVAR J A, REDDY K R, HODGES H F. Physiological simulation of cotton growth and yield//STEWART J M, OOSTERHUIS D M, HEITHOLT J J, MAUNEY J R. Physiology of Cotton. Springer, Dordrecht, 2010: 318-331. |
[2] | THORP K R, ALE S, BANGE M P, BARNES E M, HOOGENBOOM G, LASCANO R J, MCCARTHY A C, NAIR S, PAZ J O, RAJAN N, REDDY K R, WALL G W, WHITE J W. Development and application of process-based simulation models for cotton production: A review of past, present, and future directions. Journal of Cotton Science, 2014,18(1):10-47. |
[3] | 潘学标, 韩湘玲, 石元春. COTGROW: 棉花生长发育模拟模型. 棉花学报, 1996,8(4):180-188. |
PAN X B, HAN X L, SHI Y C. COTGROW: Cotton growth and development simulation model. Acta Gossypii Sinica, 1996,8(4):180-188. (in Chinese) | |
[4] | 马富裕, 朱艳, 曹卫星, 杨建荣, 郑重, 程海涛, 慕彩芸. 棉纤维品质指标形成的动态模拟. 作物学报, 2006,32(3):442-448. |
MA F Y, ZHU Y, CAO W X, YANG J R, ZHENG Z, CHENG H T, MU C Y. Modeling fiber quality formation in cotton. Acta Agronomica Sinica, 2006,32(3):442-448. (in Chinese) | |
[5] | BAKER D N, LAMBERT J R, MCKINION J M. GOSSYM: A simulator of cotton crop growth and yield. Technical Bulletin, 1983: 1-135. |
[6] | HEARN A B. OZCOT: A simulation model for cotton crop management. Agricultural Systems, 1994,44(3):257-299. |
[7] | STAPLETON H N, BUXTON D R, WATSON F L, NOITING D J. Cotton: A Computer Simulation of Cotton Growth. College of Agriculture, University of Arizona, Tucson, Arizona, 1974. |
[8] | JONES J W, HOOGENBOOM G, PORTER C H, BOOTE K J, BATCHELOR W D, HUNT L A, WILKENS P W, SINGH U, GIJSMAN A J, RITCHIE J T. The DSSAT cropping system model. European Journal of Agronomy, 2003,18(3):235-265. |
[9] | 刘文, 王恩利. 棉花生长发育的计算机模拟模型研究初探. 中国农业气象, 1992,13(6):10-16. |
LIU W, WANG E L. A preliminary study on computer simulation model of cotton growth and development. Chinese Journal of Agrometeorology, 1992,13(6):10-16. (in Chinese) | |
[10] | MARANI A. Cotton2K model version 4.0. Rehovot, Israel: Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 2000. |
[11] | BOOTE K J, JONES J W, HOOGENBOOM G. Crop simulation models as tools for agro-advisories for weather and disease effects on production. Journal of Agrometeorology, 2008(1):9-17. |
[12] | CAMMARANO D, PAYERO J, BASSO B, WILKENS P, GRACE P. Agronomic and economic evaluation of irrigation strategies on cotton lint yield in Australia. Crop and Pasture Science, 2012,63(7):647-655. |
[13] | 王雪姣, 潘学标, 陈超, 龙步菊. 基于COSIM模型的棉花冷害预测研究. 棉花学报, 2015,24(1):52-61. |
WANG X J, PAN X B, CHEN C, LONG B J. Forecasting cotton chilling damage based on COSIM. Cotton Science, 2015,24(1):52-61. (in Chinese) | |
[14] | LIANG X Z, XU M, GAO W, REDDY K R, KUNKEL K, SCHMOLDT D L, SAMEL A N. Physical modeling of U.S. cotton yields and climate stresses during 1979 to 2005. Agronomy Journal, 2012,104(3):675-683. |
[15] | 潘学标, 李玉娥. 新疆棉花生产区域评估系统研究. 中国农业科学, 2003,36(1):37-43. |
PAN X B, LI Y E. Study on cotton production regional assessment system of Xinjiang. Scientia Agricultura Sinica, 2003,36(1):37-43. (in Chinese) | |
[16] | JIN X L, KUMAR L, LI Z H, FENG H K, XU X G, YANG G J, WANG J H. A review of data assimilation of remote sensing and crop models. European Journal of Agronomy, 2018,92:141-152. |
[17] | STAPLETON H N. Crop production system simulation. Transactions of the American Society of Agricultural Engineers, 1970(1):110-113. |
[18] | DUNCAN W. SIMCOT: A simulator of cotton growth and yield// MURPHY C. Proceedings of Workshop for Modeling Tree Growth. Duke University, Durham, North Carolina, 1972. |
[19] | HESKETH J D, MCKINION J M, JONES J W, BAKER D N. SIMCOT: A computer simulation of cotton growth and yield. Joint Automatic Control Conference. Texas: American Institute of Chemical Engineers, 1974: 337. |
[20] | JONES J W, THOMPSON A C, HESKETH J D. Analysis of SIMCOT: Nitrogen and growth//Proceedings: Beltwide Cotton Production Research Conferences. Texas: National Cotton Council, 1974: 111-118. |
[21] | MCKINION J M, BAKER D N, HESKETH J D, JONES J W. SIMCOT II: A simulation of cotton growth and yield. Computer Simulation of a Cotton Production System-Users Manual.USDA-ARS-S: 1975a(52):27-82. |
[22] | BAKER D N, LAMBERT J R, PHENE C J, MCKINION J M. GOSSYM: A simulator of cotton crop dynamics//Proceedings of Seminar on Agricultural Industrial Complexes. Scientific Research Institute of Planning, Latvian GOSPLAN. Moscow, Kishinev, 1976: 100-133. |
[23] | BAR-YOSEF B, LAMBERT J R, BAKER D N. Rhizos: A simulation of root growth and soil processes. sensitivity analysis and validation for cotton. Transactions of the ASAE, 1982,25(5):1268-1273. |
[24] |
LEMMON H. COMAX: An expert system for cotton crop management. Science, 1986,233(4759):29-33.
pmid: 17812886 |
[25] | MCKINION J M, BAKER D N, WHISLER F D, LAMBERT J R. Application of the GOSSYM/COMAX system to cotton crop management. Agricultural Systems, 1989,31(1):55-65. |
[26] | ATTIA A, RAJAN N, NAIR S S, DELAUNE P B, XUE Q, IBRAHIM A M H, HAYS D B. Modeling cotton lint yield and water use efficiency responses to irrigation scheduling using Cotton2K. Agronomy Journal, 2016,108(4):1614-1623. |
[27] | NAIR S, MAAS S, WANG C, MAUGET S. Optimal field partitioning for center-pivot-irrigated cotton in the Texas high plains. Agronomy Journal, 2013,105(1):124-133. |
[28] | YANG Y M, OUYANG Z, YANG Y H, LIU X J. Simulation of the effect of pruning and topping on cotton growth using COTTON2K model. Field Crops Research, 2008,106(2):126-137. |
[29] | YANG Y M, YANG Y H, MOIWO J P, HU Y K. Estimation of irrigation requirement for sustainable water resources reallocation in North China. Agricultural Water Management, 2010,97(11):1711-1721. |
[30] |
PATHAK T B, FRAISSE C W, JONES J W, MESSINA C D, HOOGENBOOM G. Use of global sensitivity analysis for CROPGRO cotton model development. Transactions of the Asabe, 2007,50(50):2295-2302.
doi: 10.13031/2013.24082 |
[31] | HOOGENBOOM G, PORTER C H, SHELIA V, BOOTE K J, SINGH U, WHITE J W, HUNT L A, OGOSHI R, LIZASO J I, KOO J, ASSENG S, SINGELS A, MORENO L P, JONES J W. Decision support system for agrotechnology transfer (DSSAT). Florida: DSSAT Foundation, 2019. |
[32] | SULEIMAN A A, TOJO SOLER C M, HOOGENBOOM G. Evaluation of FAO-56 crop coefficient procedures for deficit irrigation management of cotton in a humid climate. Agricultural Water Management, 2007,91(1):33-42. |
[33] | HEARN A B, BANGE M P. SIRATAC and CottonLOGIC: Persevering with DSSs in the Australian cotton industry. Agricultural Systems, 2002,74(1):27-56. |
[34] | HEARN A B, DA ROZA G D. A simple model for crop management applications for cotton (Gossypium hirsutum L.). Field Crops Research, 1985,12:49-69. |
[35] | RITCHIE J T. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 1972,8(5):1204-1213. |
[36] | RICHARDS Q D, BANGE M P, JOHNSTON S B. HydroLOGIC: An irrigation management system for Australian cotton. Agricultural Systems, 2008,98(1):40-49. |
[37] | NELSON R A, HOLZWORTH D P, HAMMER G L, HAYMAN P T. Infusing the use of seasonal climate forecasting into crop management practice in North East Australia using discussion support software. Agricultural Systems, 2002,74(3):393-414. |
[38] | WALL G W, AMTHOR J S, KIMBALL B A. COTCO2: A cotton growth simulation model for global change. Agricultural and Forest Meteorology, 1994,70:289-342. |
[39] | LIANG X Z, XU M, GAO W, REDDY K R, KUNKEL K, SCHMOLDT D L, SAMEL A N. A distributed cotton growth model developed from GOSSYM and its parameter determination. Agronomy Journal, 2012,104(3):661. |
[40] | VAN DIEPEN C A, WOLF J, KEULEN H, RAPPOLDT C. WOFOST: A simulation model of crop production. Soil Use & Management, 1989,5(1):16-24. |
[41] | FARAHANI H J, IZZI G, OWEIS T Y. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy Journal, 2009,101(3):469-476. |
[42] | KO J, MAAS S J, LASCANO R J, WANJURA D. Modification of the GRAMI model for cotton. Agronomy Journal, 2005,97(5):1374-1379. |
[43] | MAAS S J. Parameterized model of gramineous crop growth: I. leaf area and dry mass simulation. Agronomy Journal, 1993,85(2):348-353. |
[44] | MAAS S J. Parameterized model of gramineous crop growth: II. within-season simulation calibration. Agronomy Journal, 1993,85(2):354-358. |
[45] | SOMMER R, KIENZLER K, CONRAD C, IBRAGIMOV N, LAMERS J, MARTIUS C, VLEK P. Evaluation of the CropSyst model for simulating the potential yield of cotton. Agronomy for Sustainable Development, 2008,28(2):345-354. |
[46] | 吴国伟, 翟连荣, 李典谟, 兰仲雄. 棉花生长发育模拟模型的研究. 生态学报, 1988,8(3):201-210. |
WU G W, ZHAI L R, LI D M, LAN Z X. Simulation model of cotton growth and development. Acta Ecologica Sinaca, 1988,8(3):201-210. (in Chinese) | |
[47] | 翟连荣, 李典谟. 棉铃虫与棉花生长发育耦合系统的建立. 应用生态学报, 1991,2(2):134-140. |
ZHAI L R, LI D M. Establishment of a field management system with coupling cotton bollworm (Helitothis armigera) dynamics and cotton plant development. Chinese Journal of Applied Ecology, 1991,2(2):134-140. (in Chinese) | |
[48] | 冯利平, 韩学信. 棉花栽培计算机模拟决策系统(COTSYS). 棉花学报, 1999,11(5):251-254. |
FENG L P, HAN X X. COTSYS-Cotton cultivational simulation and decision-making system. Acta Gossypii Sinica, 1999,11(5):251-254. (in Chinese) | |
[49] | 杨艳敏, 刘小京, 欧阳竹. COTTON2K在新疆棉花精准种植管理中的应用. 中国生态农业学报, 2005,13(3):123-126. |
YANG Y M, LIU X J, OUYANG Z. Application of COTTON2K in the precision planting management of cotton in Xinjiang. Chinese Journal of Eco-Agriculture, 2005,13(3):123-126. (in Chinese) | |
[50] |
ZHANG L Z, WERF W V D, CAO W X, LI B G, PAN X B, SPIERTZ J H J. Development and validation of SUCROS-Cotton: A potential crop growth simulation model for cotton. NJAS - Wageningen Journal of Life Sciences, 2008,56(1):59-83.
doi: 10.1007/s11427-012-4425-5 pmid: 23314868 |
[51] | 马富裕. 棉铃发育及纤维品质形成的生态效应与模拟研究[D]. 南京: 南京农业大学, 2004. |
MA F Y. Eco-study and simulation of boll development and fiber quality formation in cotton[D]. Nanjing: Nanjing Agricultural University, 2004. (in Chinese) | |
[52] | LI W F, ZHOU Z G, MENG Y L, XU N Y, FOK M. Modeling boll maturation period, seed growth, protein, and oil content of cotton (Gossypium hirsutum L.) in China. Field Crops Research, 2009,112(2):131-140. |
[53] | 李文峰, 孟亚利. 棉籽蛋白质和油分含量预测的生态模型. 生态学杂志, 2011,30(11):2653-2658. |
LI W F, MENG Y L. Ecological model for predicting the protein and oil contents in cottonseed. Chinese Journal of Ecology, 2011,30(11):2653-2658. (in Chinese) | |
[54] | CHEN M L, ZHAO W Q, MENG Y L, CHEN B L, WANG Y H, ZHOU Z G, OOSTERHUIS D M. A model for simulating the cotton (Gossypium hirsutum L.) embryo oil and protein accumulation under varying environmental conditions. Field Crops Research, 2015,183:79-91. |
[55] |
ZHAO W Q, MENG Y L, LI W F, CHEN B L, XU N Y, WANG Y H, ZHOU Z G, OOSTERHUIS D M. A model for cotton (Gossypium hirsutum L.) fiber length and strength formation considering temperature-radiation and N nutrient effects. Ecological Modelling, 2012,243:112-122.
doi: 10.1016/j.ecolmodel.2012.06.015 |
[56] |
ZHAO W Q, ZHOU Z G, MENG Y L, CHEN B L, WANG Y H. Modeling fiber fineness, maturity, and micronaire in cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture, 2013,12(1):67-79.
doi: 10.1016/S2095-3119(13)60206-3 |
[57] | 康孟珍. 植物功能结构模型研究的回顾与展望. 系统仿真学报, 2012,24(10):2039-2048. |
KANG M Z. Review and perspectives on research about functional- structural plant models. Journal of System Simulation, 2012,24(10):2039-2048. (in Chinese) | |
[58] | GODIN C, COSTES E, SINOQUET H. A Method for describing plant architecture which integrates topology and geometry. Annals of Botany, 1999,84(3):343-357. |
[59] | 郭焱, 李保国. 虚拟植物的研究进展. 科学通报, 2001,46(4):273-280. |
GUO Y, LI B G. Advances in virtual plants. Chinese Science Bulletin, 2001,46(4):273-280. (in Chinese) | |
[60] |
LINDENMAYER A. Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. Journal of Theoretical Biology, 1968,18(3):300-315.
doi: 10.1016/0022-5193(68)90080-5 pmid: 5659072 |
[61] | DE REFFYE P, EDELIN C, FRANCCON J, JAEGER M, PUECH C. Plant models faithful to botanical structure and development// Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1988: 151-158. |
[62] | PRADAL C, BOUDON F, NOUGUIER C, CHOPARD J, GODIN C. PlantGL: A Python-based geometric library for 3D plant modelling at different scales. Graphical Models, 2009,71(1):1-21. |
[63] |
DAUZAT J, CLOUVEL P, LUQUET D, MARTIN P. Using virtual plants to analyse the light-foraging efficiency of a low-density cotton crop. Annals of Botany, 2008,101(8):1153-1166.
doi: 10.1093/aob/mcm316 pmid: 18184646 |
[64] | MUTSAERS H J W. KUTUN: A morphogenetic model for cotton (Gossypium hirsutum L.). Agricultural Systems, 1984,14(4):229-257. |
[65] | LANG A R G. Leaf orientation of a cotton plant. Agricultural Meteorology, 1973,11:37-51. |
[66] | SINOQUET H, THANISAWANYANGKURA S, MABROUK H, KASEMSAP P. Characterization of the light environment in canopies using 3D digitising and image processing. Annals of Botany, 1998,82(2):203-212. |
[67] | 杨娟, 赵明, 潘学标. 基于NURBS和VC++6.0的棉花生长可视化研究. 农业工程学报, 2006,22(10):159-162. |
YANG J, ZHAO M, PAN X B. Visualization of cotton growth based on NURBS and VC++6.0. Transactions of the Chinese Society of Agricultural Engineering, 2006,22(10):159-162. (in Chinese) | |
[68] | 周娟, 周治国, 陈兵林, 孟亚利. 基于形态模型的棉花(Gossypium hirsutum L.)虚拟生长系统研究. 中国农业科学, 2009,42(11):3843-3851. |
ZHOU J, ZHOU Z G, CHEN B L, MENG Y L. Morphogenesis model-based virtual growth system of cotton (Gossypium hirsutum L.). Scientia Agricultura Sinica, 2009,42(11):3843-3851. (in Chinese) | |
[69] | 陈超, 潘学标, 张立祯, 庞艳梅, 刘琰琰. 棉花地上部形态模拟模型的建立. 中国生态农业学报, 2012,20(12):1650-1656. |
CHEN C, PAN X B, ZHANG L Z, PANG Y M, LIU Y Y. Establishment of morphology simulation model for above-ground part of cotton plant. Chinese Journal of Eco-Agriculture, 2012,20(12):1650-1656. (in Chinese) | |
[70] |
GU S H, EVERS J B, ZHANG L Z, MAO L L, ZHANG S P, ZHAO X H, LIU S D, VAN DER WERF W, LI Z H. Modelling the structural response of cotton plants to mepiquat chloride and population density. Annals of Botany, 2014,114(4):877-887.
doi: 10.1093/aob/mct309 pmid: 24489020 |
[71] | HANAN J S, HEARN A B. Linking physiological and architectural models of cotton. Agricultural Systems, 2003,75(1):47-77. |
[72] | JALLAS E, SEQUEIRA R, MARTIN P, TURNER S, PAPAJORGJI P. Mechanistic virtual modeling: Coupling a plant simulation model with a three-dimensional plant architecture component. Environmental Modeling & Assessment, 2009,14(1):29-45. |
[73] | 丁维龙, 马培良, 程志君. 基于结构-功能互反馈机制的植物生长可视化建模与仿真. 农业工程学报, 2008,24(11):165-168. |
DING W L, MA P L, CHENG Z J. Visual modeling and simulation of plant growth based on plant functional-structural mutual feedback mechanism. Transactions of the Chinese Society of Agricultural Engineering, 2008,24(11):165-168. (in Chinese) | |
[74] | ZHAN Z G, REY H, LI D, GUO Y, COURNÈDE P H, DE REFFYE P. Study on the effects of defoliation on the growth of cotton plant using the functional structural model GREENLAB//2006 Second International Symposium on Plant Growth Modeling and Applications. NW Washington, DC: IEEE, 2006: 194-201. |
[75] | 张吴平, 李保国. 棉花根系生长发育的虚拟研究. 系统仿真学报, 2006(z1):283-286. |
ZHANG W P, LI B G. Three-dimensional model simulating development and growth of cotton root system. Journal of System Simulation, 2006(z1):283-286. (in Chinese) | |
[76] |
VOS J, EVERS J B, BUCK-SORLIN G H, ANDRIEU B, CHELLE M, DE VISSER P H B. Functional-structural plant modelling: A new versatile tool in crop science. Journal of Experimental Botany, 2010,61(8):2101-2115.
pmid: 19995824 |
[77] | DE REFFYE P, BLAISE F, CHEMOUNY S, JAFFUEL S, FOURCAUD T, HOULLIER F. Calibration of a hydraulic architecture- based growth model of cotton plants. Agronomie, 1999,19(3/4):265-280. |
[78] |
RENTON M, HANAN J, BURRAGE K. Using the canonical modelling approach to simplify the simulation of function in functional-structural plant models. New Phytologist, 2005,166(3):845-857.
doi: 10.1111/j.1469-8137.2005.01330.x |
[79] |
GUO Y, MA Y T, ZHAN Z G, LI B G, DINGKUHN M, LUQUET D, DE REFFYE P. Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Annals of Botany, 2006,97(2):217-230.
doi: 10.1093/aob/mcj033 pmid: 16390847 |
[80] |
HEMMERLING R, KNIEMEYER O, LANWERT D, KURTH W, BUCK-SORLIN G. The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition. Functional Plant Biology, 2008,35(10):739-750.
doi: 10.1071/FP08052 pmid: 32688828 |
[81] | 陈超, 潘学标, 张立祯, 庞艳梅. 棉花地上部生长的功能-结构模型研究. 作物学报, 2012,38(12):2237-2245. |
CHEN C, PAN X B, ZHANG L Z, PANG Y M. Functional and structural model for above-ground growth in cotton. Acta Agronomica Sinica, 2012,38(12):2237-2245. (in Chinese) | |
[82] | WANG X J, ZHANG L Z, EVERS J B, MAO L L, WEI S J, PAN X B, ZHAO X H, VAN DER WERF W, LI Z H. Predicting the effects of environment and management on cotton fibre growth and quality: A functional-structural plant modelling approach. AoB Plants, 2014,6:1-16. |
[83] | JEGEDE A. Top 10 largest cotton producing countries in the world. The Daily Records, 2019. http://www.thedailyrecords.com/2018- 2019-2020-2021/world-famous-top-10-list/world/largest-cotton-producing-countries-world/12785/. |
[84] | 李锋. 2020 年中国和美国棉花生产成本估计及其技术需求分析. 农业科研经济管理, 2019(2):1-6. |
LI F. . Estimation of cotton production cost and analysis of technology demand in China and America in 2020. Management for Economy in Agricultural Scientific Research, 2019(2):1-6. (in Chinese) | |
[85] | 董占山, 韩湘玲, 潘学标. GOSSYM模拟模型在黄淮海棉区的验证. 棉花学报, 1996,8(6):318-322. |
DONG Z S, HAN X L, PAN X B. Validation of GOSSYM: In the condition of Huanghuaihai cotton region. Acta Gossypii Sinica, 1996,8(6):318-322. (in Chinese) | |
[86] | 赵黎, 钟骏平, 赵富强, 毕双杰, 段瑞萍, 刘忠元. 棉花生长模拟模型GOSSYM及其在北疆棉区的应用. 新疆农业大学学报, 1999(1):43-50. |
ZHAO L, ZHONG J P, ZHAO F Q, BI S J, DUAN R P, LIU Z Y. GOSSYM and application under the condition of north Xinjiang cotton region. Journal of Xinjiang Agricultural University, 1999(1):43-50. (in Chinese) | |
[87] | 杨艳敏, 欧阳竹, 王淑芬. 基于COTTON2K的华北平原和新疆2个棉区棉花耗水特征比较. 华北农学报, 2012,27(s1):229-233. |
YANG Y M, OUYANG Z, WANG S F. Comparison of cotton growth and water use in North China Plain and Xinjiang based on cotton simulation model COTTON2K. Acta Agriculturae Boreali-Sinica, 2012,27(s1):229-233. (in Chinese) | |
[88] | 吴立峰, 张富仓, 范军亮, 周罕觅, 邢英英, 强生才. 不同灌水水平下CROPGRO棉花模型敏感性和不确定性分析. 农业工程学报, 2015,31(15):55-64. |
WU L F, ZHANG F C, FAN J L, ZHOU H M, XING Y Y, QIANG S C. Sensitivity and uncertainty analysis for CROPGRO-cotton model at different irrigation levels. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(15):55-64. (in Chinese) | |
[89] | LI M, DU Y J, ZHANG F C, BAI Y G, FAN J L, ZHANG J H, CHEN S M. Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-CROPGRO-cotton model. Agricultural Water Management, 2019,218:124-138. |
[90] | TAN S, WANG Q J, ZHANG J H, CHEN Y, SHAN Y Y, XU D. Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China. Agricultural Water Management, 2018,196:99-113. |
[91] | 孙莉, 陈曦, 周可法, 罗毅, 包安明, 欧阳竹. 应用Cotton2k模型模拟北疆棉花生长结果的分析. 干旱区地理, 2006,29(2):262-268. |
SUN L, CHEN X, ZHOU K F, LUO Y, BAO A M, OUYANG Z. Simulation of cotton growth in Xinjiang with Cotton2k model. Arid Land Geography, 2006,29(2):262-268. | |
[92] | 吕新, 魏亦农, 李少昆. 基于GIS的土壤肥力信息管理及棉花施肥推荐支持决策系统研究. 中国农业科学, 2002,35(7):883-887. |
LÜ X, WEI Y N, LI S K. Research on management of soil fertility information and fertilization decision support system in cotton. Scientia Agricultura Sinica, 2002,35(7):883-887. (in Chinese) | |
[93] | 顾佳敏, 王佩玲, 刘阳天, 高攀, 郭文超. 基于数字图像的棉田复杂背景下棉蚜统计方法. 新疆农业科学, 2018,55(12):2279-2287. |
GU J M, WANG P L, LIU Y T, GAO P, GUO W C. A statistical method for counting cotton aphis under complex background in cotton field based on digital image. Xinjiang Agricultural Sciences, 2018,55(12):2279-2287. (in Chinese) | |
[94] | 许敬诚, 吕新, 林皎, 张泽, 姚秋双, 范向龙, 洪延宏. 基于叶片纹理特征的棉花蚜害诊断模型研究. 棉花学报, 2020,32(2):133-142. |
XU J C, LÜ X, LIN J, ZHANG Z, YAO Q S, FAN X L, HONG Y H. The diagnostic model of cotton aphids based on leaf textural features. Cotton Science, 2020,32(2):133-142. (in Chinese) | |
[95] | 陈兵, 王刚, 刘景德, 马占鸿, 王静, 李天南. 高光谱的病害棉叶光合参数提取. 光谱学与光谱分析, 2018,38(6):1834-1838. |
CHEN B, WANG G, LIU J D, MA Z H, WANG J, LI T N. Extraction of photosynthetic parameters of cotton leaves under disease stress by hyperspectral remote sensing. Spectroscopy and Spectral Analysis, 2018,38(6):1834-1838. (in Chinese) | |
[96] | 王姣, 李志沛, 张立福, 黄长平. 基于棉花黄萎病多“症状”特征的植被指数构建及病情遥感监测研究. 地理与地理信息科学, 2019,35(5):46-51. |
WANG J, LI Z P, ZHANG L F, HUANG C P. Study of cotton verticillium wilt: Construction of a vegetation index based on multiple "symptoms" characteristics and remote sensing monitoring. Geography and Geo-Information Science, 2019,35(5):46-51. (in Chinese) | |
[97] | ZHANG J H, KONG F T, WU J Z, HAN S Q, ZHAI Z F. Automatic image segmentation method for cotton leaves with disease under natural environment. Journal of Integrative Agriculture, 2018,17(8):1800-1814. |
[98] | HUANG H S, DENG J Z, LAN Y B, YANG A Q, DENG X L, ZHANG L, WEN S, JIANG Y, SUO G Y, CHEN P C. A two-stage classification approach for the detection of spider mite- infested cotton using UAV multispectral imagery. Remote Sensing Letters, 2018,9(10):933-941. |
[99] | 陈超, 潘学标, 李慧阳, 张立祯, 龙步菊. 基于COSIM模型的新疆棉花延迟型冷害指标分析. 棉花学报, 2009,21(3):201-205. |
CHEN C, PAN X B, LI H Y, ZHANG L Z, LONG B J. Analysis of cotton delayed cool injury indices in Xinjiang based on COSIM. Cotton Science, 2009,21(3):201-205. (in Chinese) | |
[100] | 王雪姣, 潘学标, 王森, 胡莉婷, 郭燕云, 李新建. 基于COSIM模型的新疆棉花产量动态预报方法. 农业工程学报, 2017,33(8):160-165. |
WANG X J, PAN X B, WANG S, HU L T, GUO Y Y, LI X J. Dynamic prediction method for cotton yield based on COSIM model in Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(8):160-165. (in Chinese) | |
[101] |
CHEN J, LIU L T, WANG Z B, SUN H C, ZHANG Y J, LU Z Y, LI C D. Determining the effects of nitrogen rate on cotton root growth and distribution with soil cores and minirhizotrons. PLoS ONE, 2018,13(5):e0197284.
doi: 10.1371/journal.pone.0197284 pmid: 29750816 |
[102] | ZHANG J, WANG Y M, DONG Q X, HOU J L. Research advances of cotton dynamic simulation models. Transactions of the CSAE, 2007,23(3):257-266. |
[103] |
PENG B, GUAN K Y, TANG J Y, AINSWORTH E A, ASSENG S, BERNACCHI C J, COOPER M, DELUCIA E H, ELLIOTT J W, EWERT F, GRANT R F, GUSTAFSON D I, HAMMER G L, JIN Z N, JONES J W, KIMM H, LAWRENCE D M, LI Y, LOMBARDOZZI D L, MARSHALL-COLON A, MESSINA C D, ORT D R, SCHNABLE J C, VALLEJOS C E, WU A, YIN X Y, ZHOU W. Towards a multiscale crop modelling framework for climate change adaptation assessment. Nature Plants, 2020,6(4):338-348.
doi: 10.1038/s41477-020-0625-3 pmid: 32296143 |
[104] | ROZENSTEIN O, HAYMANN N, KAPLAN G, TANNY J. Validation of the cotton crop coefficient estimation model based on Sentinel-2 imagery and eddy covariance measurements. Agricultural Water Management, 2019,223:105715. |
[105] | 赵春江, 杨信廷, 李斌, 李明, 闫华. 中国农业信息技术发展回顾及展望. 农学学报, 2018,8(1):180-186. |
ZHAO C J, YANG X T, LI B, LI M, YAN H. The retrospect and prospect of agricultural information technology in China. Journal of Agriculture, 2018,8(1):180-186. (in Chinese) |
[1] | 王俊娟,陆许可,王延琴,王帅,阴祖军,付小琼,王德龙,陈修贵,郭丽雪,陈超,赵兰杰,韩迎春,孙亮庆,韩明格,张悦新,范亚朋,叶武威. 陆地棉遗传标准系TM-1的特性及其耐冷性[J]. 中国农业科学, 2022, 55(8): 1503-1517. |
[2] | 沈倩,张思平,刘瑞华,刘绍东,陈静,葛常伟,马慧娟,赵新华,杨国正,宋美珍,庞朝友. 棉花出苗期耐冷综合评价体系的构建及耐冷指标筛选[J]. 中国农业科学, 2022, 55(22): 4342-4355. |
[3] | 王宁,冯克云,南宏宇,张铜会. 不同水分条件下有机无机肥配施对棉花根系特征及产量的影响[J]. 中国农业科学, 2022, 55(11): 2187-2201. |
[4] | 张承启,廖露露,齐永霞,丁克坚,陈莉. 禾谷镰孢核孔蛋白基因FgNup42的功能分析[J]. 中国农业科学, 2021, 54(9): 1894-1903. |
[5] | 陈茜,刘英杰,董勇浩,刘金燕,李炜,徐蓬军,臧云,任广伟. 黄瓜花叶病毒侵染烟草对烟蚜生长发育、取食和选择行为的影响[J]. 中国农业科学, 2021, 54(8): 1673-1683. |
[6] | 娄善伟,董合忠,田晓莉,田立文. 新疆棉花“矮、密、早”栽培历史、现状和展望[J]. 中国农业科学, 2021, 54(4): 720-732. |
[7] | 李青,鱼海鹏,张子豪,孙正文,张艳,张冬梅,王省芬,马峙英,阎媛媛. 棉花真叶原生质体分离及瞬时表达体系的优化[J]. 中国农业科学, 2021, 54(21): 4514-4524. |
[8] | 聂军军,代建龙,杜明伟,张艳军,田晓莉,李召虎,董合忠. 我国现代植棉理论与技术的新发展——棉花集中成熟栽培[J]. 中国农业科学, 2021, 54(20): 4286-4298. |
[9] | 周萌,韩晓旭,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于参数化和非参数化法的棉花生物量高光谱遥感估算[J]. 中国农业科学, 2021, 54(20): 4299-4311. |
[10] | 周京龙,冯自力,魏锋,赵丽红,张亚林,周燚,冯鸿杰,朱荷琴. 棉花内生细菌YUPP-10及其分泌蛋白CGTase对棉花枯萎病的防治作用及机理[J]. 中国农业科学, 2021, 54(17): 3691-3701. |
[11] | 文明, 李明华, 蒋家乐, 马学花, 李容望, 赵文青, 崔静, 刘扬, 马富裕. 氮磷钾运筹模式对北疆滴灌棉花生长发育和产量的影响[J]. 中国农业科学, 2021, 54(16): 3473-3487. |
[12] | 张小雪,孙天歌,张迎春,陈丽华,张新宇,李艳军,孙杰. 大丽轮枝菌木糖苷酶基因的鉴定及基于HIGS技术的功能分析[J]. 中国农业科学, 2021, 54(15): 3219-3231. |
[13] | 郑信诗,尚鹏祥,李景远,丁新伦,吴祖建,张洁. 木尔坦棉花曲叶病毒“C4 ORF”编码蛋白对病毒致病性的影响[J]. 中国农业科学, 2021, 54(10): 2095-2104. |
[14] | 张陇艳,程功敏,魏恒玲,王寒涛,芦建华,马峙英,喻树迅. 陆地棉种子萌发期对低温胁迫的响应及耐冷性鉴定[J]. 中国农业科学, 2021, 54(1): 19-33. |
[15] | 赵卫松,郭庆港,李社增,王培培,鹿秀云,苏振贺,张晓云,马平. 花铃期棉花黄萎病抗病与感病品种对 土壤细菌群落结构的影响[J]. 中国农业科学, 2020, 53(5): 942-954. |
|