中国农业科学 ›› 2021, Vol. 54 ›› Issue (15): 3219-3231.doi: 10.3864/j.issn.0578-1752.2021.15.007
张小雪(),孙天歌,张迎春,陈丽华,张新宇,李艳军(),孙杰
收稿日期:
2020-11-09
接受日期:
2020-12-18
出版日期:
2021-08-01
发布日期:
2021-08-10
通讯作者:
李艳军
作者简介:
张小雪,E-mail: 基金资助:
ZHANG XiaoXue(),SUN TianGe,ZHANG YingChun,CHEN LiHua,ZHANG XinYu,LI YanJun(),SUN Jie
Received:
2020-11-09
Accepted:
2020-12-18
Online:
2021-08-01
Published:
2021-08-10
Contact:
YanJun LI
摘要:
【目的】 从大丽轮枝菌(Verticillium dahliae)中鉴定木糖苷酶基因,研究其与大丽轮枝菌致病力的关系,为解析大丽轮枝菌致病分子机制提供理论依据,同时为制定更好的棉花黄萎病防治策略提供科学依据。【方法】 利用生物信息学方法从大丽轮枝菌基因组数据库中鉴定全部木糖苷酶基因,并对基因编码蛋白的结构域、基因的染色体定位及进化关系等进行分析。利用实时荧光定量PCR(qRT-PCR)技术检测木糖苷酶基因在不同抗/感棉花品种根系分泌物培养0、6、12、24和48 h大丽轮枝菌中的表达量。利用寄主诱导的基因沉默(host-induced gene silencing,HIGS)技术对木糖苷酶基因VdxyL3在大丽轮枝菌侵染过程中的功能进行初步分析。将VdxyL3的目标片段转化棉花,采用伤根法接种大丽轮枝菌Vd991,观察转化植株的表型,调查病情指数,同时利用qRT-PCR技术对植株中真菌生物量和VdxyL3的表达量进行检测。【结果】 利用生物信息学方法从大丽轮枝菌中查找出13个木糖苷酶基因(VdxyL1—VdxyL13),其编码序列长度介于1 461—2 544 bp,蛋白质分子量介于38.78—90.97 kD,理论等电点介于4.67—5.89。结构域和进化树分析发现13个木糖苷酶基因中包括9个糖苷水解酶43家族成员、1个3家族成员和3个31家族成员。染色体定位分析发现13个基因分布在6条染色体上,未形成基因簇。qRT-PCR结果发现选取的6个基因均受到根系分泌物的诱导,在一种或多种根系分泌物中培养6 h或12 h后,表达量均明显升高,然后降低。其中VdxyL3受海岛棉根系分泌物诱导后表达量明显升高,表明该基因的表达明显受海岛棉根系分泌物的诱导。HIGS研究结果表明,接菌14 d和21 d后转化VdxyL3基因干扰片段的棉花发病明显较重,其病情指数(33.3和83.9)明显高于空载体对照(21.7和66.1)。qRT-PCR分析发现转化VdxyL3基因干扰片段的棉花植株茎中VdxyL3的表达量明显低于空载体对照,真菌生物量显著多于对照。【结论】 利用HIGS技术将VdxyL3基因沉默后,棉株的抗病性明显降低,表明VdxyL3在大丽轮枝菌致病及宿主-病原体互作过程中可能发挥着重要的作用。
张小雪,孙天歌,张迎春,陈丽华,张新宇,李艳军,孙杰. 大丽轮枝菌木糖苷酶基因的鉴定及基于HIGS技术的功能分析[J]. 中国农业科学, 2021, 54(15): 3219-3231.
ZHANG XiaoXue,SUN TianGe,ZHANG YingChun,CHEN LiHua,ZHANG XinYu,LI YanJun,SUN Jie. Identification of Xylosidase Genes from Verticillium dahliae and Functional Analysis Based on HIGS Technology[J]. Scientia Agricultura Sinica, 2021, 54(15): 3219-3231.
表1
引物序列"
基因名称 Gene name | 引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 用途 Purpose |
---|---|---|---|
VdxyL3 (VDAG_01866) | VdxyL3-F1 | GGAATTCCTGGGCCTCTTCGCTCTATG | PCR |
VdxyL3-R1 | GGGTACCACAGCACTGAGACCAGCATC | PCR | |
VdxyL3-F | CGGAAACATTCACCTCCCCA | qRT-PCR | |
VdxyL3-R | GGCGTAAGCCTCGAAAGCAT | qRT-PCR | |
VdxyL4 (VDAG_04702) | VdxyL4-F | CAGCGCCATTGAAATCGAGG | qRT-PCR |
VdxyL4-R | GGATTATTCCAGAGAAACCC | qRT-PCR | |
VdxyL6 (VDAG_09393) | VdxyL6-F | CTCAACGCCAGCTTCTACGT | qRT-PCR |
VdxyL6-R | CGTCGGGATCGTAGCGTAAA | qRT-PCR | |
VdxyL8 (VDAG_05579) | VdxyL8-F | TAAGACCATTGAGAGCCGCG | qRT-PCR |
VdxyL8-R | AGTTAACGTCGTGCCCTTGT | qRT-PCR | |
VdxyL10 (VDAG_09302) | VdxyL10-F | CGCCAAACCCACTTCTCCTA | qRT-PCR |
VdxyL10-R | TAGGACGACTCGGAGCTCAT | qRT-PCR | |
VdxyL12 (VDAG_02226) | VdxyL12-F | CGATCTGCTGCTTGAGGAGT | qRT-PCR |
VdxyL12-R | AGGTCGAGGAATGGCTGTTG | qRT-PCR | |
Tubulin | Tubulin-F | TCCACCTTCGTCGGTAACTC | qRT-PCR |
Tubulin-R | GCCTCCTCCTCGTACTCCTC | qRT-PCR | |
Ve-ITS1 | Ve-ITS1-F | AAAGTTTTAATGGTTCGCTAAGA | qRT-PCR |
ST-VE1 | ST-VE1-R | CTTGGTCATTTAGAGGAAGTAA | qRT-PCR |
GhUBQ7 | GhUBQ7-F | GAAGGCATTCCACCTGACCAAC | qRT-PCR |
GhUBQ7-R | CTTGACCTTCTTCTTCTTGTGCTTG | qRT-PCR |
表2
大丽轮枝菌中木糖苷酶基因的鉴定"
基因名称 Gene name | 序列号 Sequence number | 编码序列 Coding sequence (bp) | 编码蛋白 Coding protein (aa) | 分子量 Molecular weight (kD) | 等电点 pI | 基因的描述 Gene description | 亚细胞定位预测 Subcellular location prediction |
---|---|---|---|---|---|---|---|
VdxyL1 | VDAG_01169 | 1786 | 558 | 62.33 | 5.16 | β-木糖苷酶β-xylosidase | 细胞膜外的蛋白质 Extracellular proteins |
VdxyL2 | VDAG_02166 | 1804 | 571 | 65.15 | 4.97 | 木糖苷酶/阿拉伯糖苷酶 Xylosidase/arabinosidase | 细胞膜外的蛋白质 Extracellular proteins |
VdxyL3 | VDAG_01866 | 2544 | 834 | 90.97 | 4.67 | 木糖苷酶/阿拉伯糖苷酶 Xylosidase/arabinosidase | 细胞膜外的蛋白质 Extracellular proteins |
VdxyL4 | VDAG_04702 | 1089 | 335 | 38.78 | 5.31 | α-木糖苷酶α-xylosidase | 细胞质Cytoplasm |
VdxyL5 | VDAG_07817 | 1611 | 512 | 56.13 | 5.04 | β-木糖苷酶β-xylosidase | 细胞膜外的蛋白质 Extracellular proteins |
VdxyL6 | VDAG_09393 | 1943 | 609 | 67.13 | 4.88 | β-木糖苷酶β-xylosidase | 细胞膜外的蛋白质 Extracellular proteins |
VdxyL7 | VDAG_03859 | 1881 | 572 | 62.66 | 5.89 | β-葡糖苷酶/β-木糖苷酶 β-glucosidase/β-xylosidase | 溶酶体Lysosome |
VdxyL8 | VDAG_05579 | 2353 | 764 | 85.22 | 5.18 | α-木糖苷酶α-xylosidase | 溶酶体Lysosome |
VdxyL9 | VDAG_06173 | 2020 | 488 | 54.44 | 5.96 | β-木糖苷酶β-xylosidase | 高尔基体Golgi apparatus |
VdxyL10 | VDAG_09302 | 1614 | 537 | 60.70 | 5.68 | β-木糖苷酶β-xylosidase | 细胞质Cytoplasm |
VdxyL11 | VDAG_00716 | 1841 | 533 | 59.45 | 5.28 | 木糖苷酶/阿拉伯糖苷酶 Xylosidase/arabinosidase | 细胞核Cell nucleus |
VdxyL12 | VDAG_02226 | 1995 | 664 | 76.09 | 5.88 | α-木糖苷酶α-xylosidase | 细胞质Cytoplasm |
VdxyL13 | VDAG_03628 | 1461 | 400 | 44.70 | 5.78 | 木糖苷酶/阿拉伯糖苷酶 Xylosidase/arabinosidase | 细胞膜外的蛋白质 Extracellular proteins |
[1] |
KLOSTERMAN S J, ATALLAH Z K, VALLAD G E, SUBBARAO K V. Diversity, pathogenicity, and management of Verticillium species. Annual Review of Phytopathology, 2009, 47:39-62.
doi: 10.1146/annurev-phyto-080508-081748 |
[2] | 马存, 简桂良, 孙文姬. 我国棉花抗黄萎病育种现状、问题及对策. 中国农业科学, 1997, 30(2):58-64. |
MA C, JIAN G L, SUN W J. Current status, problem and countermeasure on resistance breeding to verticillium wilt of cotton in China. Scientia Agricultura Sinica, 1997, 30(2):58-64. (in Chinese) | |
[3] | 张绪振, 张树琴, 陈吉棣, 李庆基, 陈壁, 姚跃文. 我国棉花黄萎病菌“种”的鉴定. 植物病理学报, 1981, 11(3):13-20. |
ZHANG X Z, ZHANG S Q, CHEN J D, LI Q J, CHEN B, YAO Y W. Identification of verticillium wilt pathogen of cotton in China. Acta Phytopathologica Sinica, 1981, 11(3):13-20. (in Chinese) | |
[4] |
GERIK J S, HUISMAN O C. Study of field-grown cotton roots infected with Verticillium dahliae using an immunoenzymatic staining technique. Phytopathology, 1988, 78(9):1174-1178.
doi: 10.1094/Phyto-78-1174 |
[5] |
FRADIN E F, THOMMA B P H J. Physiology and molecular aspects of verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 2006, 7(2):71-86.
doi: 10.1111/mpp.2006.7.issue-2 |
[6] |
GUI Y J, CHEN J Y, ZHANG D D, LI N Y, LI T G, ZHANG W Q, WANG X Y, SHORT D P, LI L, GUO W, KONG Z Q, BAO Y M, SUBBARAO K V, DAI X F. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Environmental Microbiology, 2017, 19(5):1914-1932.
doi: 10.1111/1462-2920.13695 |
[7] |
QIN J, WANG K L, SUN L F, XING H Y, WANG S, LI L, CHEN S, GUO H S, ZHANG J. The plant-specific transcription factors CBP60G and SARD1 are targeted by a Verticillium secretory protein VDSCP41 to modulate immunity. eLife, 2018, 7:e34902.
doi: 10.7554/eLife.34902 |
[8] |
ZHANG L S, NI H, DU X, WANG S, MA X W, NRNBERGER T, GUO H S, HUA C L. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. New Phytologist, 2017, 215(1):368-381.
doi: 10.1111/nph.2017.215.issue-1 |
[9] |
XU J, WANG X Y, LI Y Q, ZENG J G, WANG G L, DENG C Y, GUO W Z. Host-induced gene silencing of a regulator of G protein signaling gene (VdRGS1) confers resistance to verticillium wilt in cotton. Plant Biotechnology Journal, 2018, 16(9):1629-1643.
doi: 10.1111/pbi.2018.16.issue-9 |
[10] |
ZHAO Y L, ZHANG T, GUO H S. Penetration assays, fungal recovery and pathogenicity assays for Verticillium dahliae. Bio-Protocol, 2017, 7(4): DOI: 10.21769/BioProtoc.2133.
doi: 10.21769/BioProtoc.2133 |
[11] |
HOGENHOUT S A, VAN DER HOORN R A, TERAUCHI R, KAMOUN S. Emerging concepts in effector biology of plant- associated organisms. Molecular Plant-Microbe Interactions, 2009, 22(2):115-122.
doi: 10.1094/MPMI-22-2-0115 |
[12] | 张志东. 棉花黄萎病致病相关基因的挖掘与功能分析[D]. 上海: 上海交通大学, 2017. |
ZHANG Z D. Mining and function analysis of genes related to cotton verticillium wilt[D]. Shanghai: Shanghai Jiaotong University, 2017. (in Chinese) | |
[13] |
HUANG X L, LI Z, DU C Y, WANG J F, LI S. Improved expression and characterization of a multidomain xylanase from Thermoanaerobacterium aotearoense SCUT27 in Bacillus subtilis. Journal of Agricultural and Food Chemistry, 2015, 63(28):6430-6439.
doi: 10.1021/acs.jafc.5b01259 |
[14] |
ZHANG S Y, WANG H M, SHI P J, XU B, BAI Y G, LUO H Y, YAO B. Cloning, expression, and characterization of a thermostable β-xylosidase from thermoacidophilic Alicyclobacillus sp. A4. Process Biochemistry, 2014, 49(9):1422-1428.
doi: 10.1016/j.procbio.2014.05.020 |
[15] |
NGUYEN Q B, ITOH K, VU B V, TOSA Y, NAKAYASHIKI H. Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae. Molecular Microbiology, 2011, 81(4):1008-1019.
doi: 10.1111/mmi.2011.81.issue-4 |
[16] |
BRITO N, ESPINO J J, GONZÁLEZ C. The endo-β-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Molecular Plant-Microbe Interactions, 2006, 19(1):25-32.
doi: 10.1094/MPMI-19-0025 |
[17] |
MUSSATTO S I, MANCILHA I M. Non-digestible oligosaccharides: A review. Carbohydrate Polymers, 2007, 68(3):587-597.
doi: 10.1016/j.carbpol.2006.12.011 |
[18] |
VAN RENSBURG P, STRAUSS M L A, LAMBRECHTS M G, CORDERO OTERO R R, PRETORIU I S. The heterologous expression of polysaccharidase-encoding genes with oenological relevance in Saccharomyces cerevisiae. Journal of Applied Microbiology, 2007, 103(6):2248-2257.
doi: 10.1111/jam.2007.103.issue-6 |
[19] |
BOSETTO A, JUSTO P I, ZANARDI B, VENZON S S, GRACIANO L, DOS SANTOS E L, DE CASSIA GARCIA SIMAO R. Research progress concerning fungal and bacterial β-xylosidases. Applied Biochemistry and Biotechnology, 2016, 178(4):766-795.
doi: 10.1007/s12010-015-1908-4 |
[20] |
MUSTAFA G, KOUSAR S, RAJOKA M I, JAMIL A. Molecular cloning and comparative sequence analysis of fungal β-xylosidases. AMB Express, 2016, 6(1):30.
doi: 10.1186/s13568-016-0202-3 |
[21] |
ZHANG X Y, CHENG W H, FENG Z D, ZHU Q H, SUN Y Q, LI Y J, SUN J. Transcriptomic analysis of gene expression of Verticillium dahliae upon treatment of the cotton root exudates. BMC Genomics, 2020, 21(1):155.
doi: 10.1186/s12864-020-6448-9 |
[22] | 熊显鹏. Gh4CL30和GhWRKY70D13在棉花抗黄萎病中的功能研究[D]. 石河子: 石河子大学, 2020. |
XIONG X P. Functional analysis of Gh4CL30 and GhWRKY70D13 in cotton resistance to verticillium wilt[D]. Shihezi: Shihezi University, 2020. (in Chinese) | |
[23] |
ELLENDORFF U, FRADIN E F, DE JONGE R, THOMMA B P. RNA silencing is required for Arabidopsis defence against verticillium wilt disease. Journal of Experimental Botany, 2009, 60(2):591-602.
doi: 10.1093/jxb/ern306 |
[24] |
YANG X Z, SHI P J, HUANG H Q, LUO H Y, WANG Y R, ZHANG W, YAO B. Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chemistry, 2014, 148:381-387.
doi: 10.1016/j.foodchem.2013.10.062 |
[25] |
JORDAN D B, LI X L. Variation in relative substrate specificity of bifunctional β-d-xylosidase/α-l-arabinofuranosidase by single-site mutations: Roles of substrate distortion and recognition. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2007, 1774(9):1192-1198.
doi: 10.1016/j.bbapap.2007.06.010 |
[26] |
LEE R C, HRMOVA M, BURTON R A, LAHNSTEIN J, FINCHER G B. Bifunctional family 3 glycoside hydrolases from barley with α-L-arabinofuranosidase and β-D-xylosidase activity. Journal of Biological Chemistry, 2003, 278(7):5377-5387.
doi: 10.1074/jbc.M210627200 |
[27] |
El-BEBANY A F, HENRIQUEZ M A, BADAWI M, ADAM L R, HADRAMI A E, DAAYF F. Induction of putative pathogenicity- related genes in Verticillium dahliae in response to elicitation with potato root extracts. Environmental and Experimental Botany, 2011, 72(2):251-257.
doi: 10.1016/j.envexpbot.2011.03.012 |
[28] | 袁虹霞, 李洪连, 王烨, 房卫平, 王振跃. 棉花不同抗性品种根系分泌物分析及其对黄萎病菌的影响. 植物病理学报, 2002, 32(2):127-131. |
YUAN H X, LI H L, WANG Y, FANG W P, WANG Z Y. The root exudates of cotton cultivars with the different resistance and their effects on Verticillium dahliae. Acta Phytopathologica Sinica, 2002, 32(2):127-131. (in Chinese) | |
[29] | 郑倩, 李俊华, 危常州, 褚贵新. 不同抗性棉花品种根系分泌物及酚酸类物质对黄萎病菌的影响. 棉花学报, 2012, 24(4):363-369. |
ZHENG Q, LI J H, WEI C Z, CHU G X. Effects of root exudates and phenolic acids from differently resistant cotton cultivars on Verticillium dahliae. Cotton Science, 2012, 24(4):363-369. (in Chinese) | |
[30] |
KOMBRINK A, ROVENICH H, SHI-KUNNE X, ROJAS-PADILLA E, DOMAZAKIS E, VAN DEN BERG G C M, DOMAZAKIS E, DE JONGE R, VALKENBURG D J, SANCHEZ-VALLET A, SEIDL M F, THOMMA B P H J. Verticillium dahliae LysM effectors differentially contribute to virulence on plant hosts. Molecular Plant Pathology, 2017, 18(4):596-608.
doi: 10.1111/mpp.2017.18.issue-4 |
[31] |
TZIMA A K, PAPLOMATAS E J, RAUYAREE P, OSPINA- GIRALDO M D, KANG S. VdSNF1, the sucrose non-fermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation. Molecular Plant-Microbe Interactions, 2011, 24(1):129-142.
doi: 10.1094/MPMI-09-09-0217 |
[32] |
LIU S Y, CHEN J Y, WANG J L, LI L, XIAO H L, ADAM S M, DAI X F. Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae. Gene, 2013, 529(2):307-316.
doi: 10.1016/j.gene.2013.06.089 |
[33] |
SANTHANAM P, THOMMA B P. Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes. Molecular Plant-Microbe Interactions, 2013, 26(2):249-256.
doi: 10.1094/MPMI-08-12-0198-R |
[34] |
LI Z F, LIU Y J, FENG Z L, FENG H J, KLOSTERMAN S J, ZHOU F F, ZHAO L H, SHI Y Q, ZHU H Q. VdCYC8, encoding CYC8 glucose repression mediator protein, is required for microsclerotia formation and full virulence in Verticillium dahliae. PLoS ONE, 2015, 10(12):e0144020.
doi: 10.1371/journal.pone.0144020 |
[35] |
ZHANG Y L, LI Z F, FENG Z L, FENG H J, SHI Y Q, ZHAO L H, ZHANG X L, ZHU H Q. Functional analysis of the pathogenicity- related gene VdPR1 in the vascular wilt fungus Verticillium dahliae. PLoS ONE, 2016, 11(11):e0166000.
doi: 10.1371/journal.pone.0166000 |
[36] |
QI X L, SU X F, GUO H M, QI J C, CHENG H M. VdThit, a thiamine transport protein, is required for pathogenicity of the vascular pathogen Verticillium dahliae. Molecular Plant-Microbe Interactions, 2016, 29(7):545-559.
doi: 10.1094/MPMI-03-16-0057-R |
[37] | CHEN J Y, XIAO H L, GUI Y J, ZHANG D D, LI L, BAO Y M, DAI X F. Characterization of the Verticillium dahliae exoproteome involves in pathogenicity from cotton-containing medium. Frontiers in Microbiology, 2016, 7:1709. |
[38] | 赵玉兰, 苏晓峰, 程红梅. 利用寄主诱导的基因沉默技术验证大丽轮枝菌糖代谢相关基因的致病力. 中国农业科学, 2015, 48(7):1321-1329. |
ZHAO Y L, SU X F, CHENG H M. Verification of Verticillium dahliae pathogenicity of glycometabolism related genes by using host-induced gene silencing method. Scientia Agricultura Sinica, 2015, 48(7):1321-1329. (in Chinese) |
[1] | 王俊娟,陆许可,王延琴,王帅,阴祖军,付小琼,王德龙,陈修贵,郭丽雪,陈超,赵兰杰,韩迎春,孙亮庆,韩明格,张悦新,范亚朋,叶武威. 陆地棉遗传标准系TM-1的特性及其耐冷性[J]. 中国农业科学, 2022, 55(8): 1503-1517. |
[2] | 沈倩,张思平,刘瑞华,刘绍东,陈静,葛常伟,马慧娟,赵新华,杨国正,宋美珍,庞朝友. 棉花出苗期耐冷综合评价体系的构建及耐冷指标筛选[J]. 中国农业科学, 2022, 55(22): 4342-4355. |
[3] | 王宁,冯克云,南宏宇,张铜会. 不同水分条件下有机无机肥配施对棉花根系特征及产量的影响[J]. 中国农业科学, 2022, 55(11): 2187-2201. |
[4] | 侯彤瑜,郝婷丽,王海江,张泽,吕新. 棉花生长发育模型及其在我国的研究和应用进展[J]. 中国农业科学, 2021, 54(6): 1112-1126. |
[5] | 娄善伟,董合忠,田晓莉,田立文. 新疆棉花“矮、密、早”栽培历史、现状和展望[J]. 中国农业科学, 2021, 54(4): 720-732. |
[6] | 李青,鱼海鹏,张子豪,孙正文,张艳,张冬梅,王省芬,马峙英,阎媛媛. 棉花真叶原生质体分离及瞬时表达体系的优化[J]. 中国农业科学, 2021, 54(21): 4514-4524. |
[7] | 聂军军,代建龙,杜明伟,张艳军,田晓莉,李召虎,董合忠. 我国现代植棉理论与技术的新发展——棉花集中成熟栽培[J]. 中国农业科学, 2021, 54(20): 4286-4298. |
[8] | 周萌,韩晓旭,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于参数化和非参数化法的棉花生物量高光谱遥感估算[J]. 中国农业科学, 2021, 54(20): 4299-4311. |
[9] | 赵卫松,郭庆港,苏振贺,王培培,董丽红,胡卿,鹿秀云,张晓云,李社增,马平. 马铃薯健株与黄萎病株根际土壤真菌群落结构及其对碳源利用特征[J]. 中国农业科学, 2021, 54(2): 296-309. |
[10] | 周京龙,冯自力,魏锋,赵丽红,张亚林,周燚,冯鸿杰,朱荷琴. 棉花内生细菌YUPP-10及其分泌蛋白CGTase对棉花枯萎病的防治作用及机理[J]. 中国农业科学, 2021, 54(17): 3691-3701. |
[11] | 文明, 李明华, 蒋家乐, 马学花, 李容望, 赵文青, 崔静, 刘扬, 马富裕. 氮磷钾运筹模式对北疆滴灌棉花生长发育和产量的影响[J]. 中国农业科学, 2021, 54(16): 3473-3487. |
[12] | 郑信诗,尚鹏祥,李景远,丁新伦,吴祖建,张洁. 木尔坦棉花曲叶病毒“C4 ORF”编码蛋白对病毒致病性的影响[J]. 中国农业科学, 2021, 54(10): 2095-2104. |
[13] | 张陇艳,程功敏,魏恒玲,王寒涛,芦建华,马峙英,喻树迅. 陆地棉种子萌发期对低温胁迫的响应及耐冷性鉴定[J]. 中国农业科学, 2021, 54(1): 19-33. |
[14] | 赵卫松,郭庆港,李社增,王培培,鹿秀云,苏振贺,张晓云,马平. 花铃期棉花黄萎病抗病与感病品种对 土壤细菌群落结构的影响[J]. 中国农业科学, 2020, 53(5): 942-954. |
[15] | 柴亚茹,丁一娟,周思钰,杨文静,闫宝琴,远俊虎,钱伟. HIGS-SsCCS转基因拟南芥的菌核病抗性鉴定[J]. 中国农业科学, 2020, 53(4): 761-770. |
|