[1] |
SANOGO S, ZHANG J. Resistance sources, resistance screening techniques and disease management for Fusarium wilt in cotton. Euphytica, 2016, 207(2): 255-271.
doi: 10.1007/s10681-015-1532-y
|
[2] |
ZHANG Z, DIAO H, WANG H, WANG K, ZHAO M. Use of Ganoderma lucidum polysaccharide to control cotton fusarium wilt, and the mechanism involved. Pesticide Biochemistry and Physiology, 2019, 158: 149-155.
doi: 10.1016/j.pestbp.2019.05.003
|
[3] |
LANG J, HU J, RAN W, XU Y, SHEN Q. Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biology and Fertility of Soils, 2012, 48(2): 191-203.
doi: 10.1007/s00374-011-0617-6
|
[4] |
张海军, 李泽方. 绿色木霉GY20对棉花枯萎病菌的抑菌作用. 西北农业学报, 2012, 21(3): 193-197.
|
|
ZHANG H J, LI Z F. Biocontrol mechanism of Trichoderma viride GY20 against Fusarium oxysporum f. sp. vasinfectum F12. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(3): 193-197. (in Chinese)
|
[5] |
李社增, 鹿秀云, 马平, 高胜国, 刘杏忠, 刘干. 防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定. 植物病理学报, 2005, 35(5): 451-455.
|
|
LI S Z, LU X Y, MA P, GAO S G, LIU X Z, LIU G. Evaluation of biocontrol potential of a bacterial strain NCD-2 against cotton Verticillium wilt in field trials. Acta Phytopathologica Sinica, 2005, 35(5): 451-455. (in Chinese)
|
[6] |
LI B, LI Q, XU Z, ZHANG N, SHEN Q, ZHANG R. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Frontiers in Microbiology, 2014, 5: 636.
|
[7] |
PEREG L, MCMILLAN M. Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biology and Biochemistry, 2015, 80: 349-358.
doi: 10.1016/j.soilbio.2014.10.020
|
[8] |
李海薇, 韩万里, 王梦瑶, 罗明, 韩剑, 顾爱星. 棉花枯萎病拮抗短小芽胞杆菌筛选鉴定及生防研究. 中国生物防治学报, 2018, 34(3): 440-448.
|
|
LI H W, HAN W L, WANG M Y, LUO M, HAN J, GU A X. Screening and identification of antagonistic bacteria Bacillus pumilus against cotton Fusarium wilt and biocontrol research. Chinese Journal of Biological Control, 2018, 34(3): 440-448. (in Chinese)
|
[9] |
柳自清, 张博然, 刘叶, 郭楠楠, 顾爱星. 短小芽孢杆菌KX-33做种衣剂对棉花枯萎病的盆栽防效. 新疆农业大学学报, 2020, 43(5): 323-329.
|
|
LIU Z Q, ZHANG B R, LIU Y, GUO N N, GU A X. Effect of Bacillus pumilus KX-33 seed coating agent on Verticillium wilt of cotton. Journal of Xinjiang Agricultural University, 2020, 43(5): 323-329. (in Chinese)
|
[10] |
戴蓬博, 蓝星杰, 张伟卫, 甘良, 王阳, 宗兆锋. 生防菌株SC11的鉴定、定殖及对棉花枯萎病防治效果研究. 植物病理学报, 2016, 46(2): 273-279.
|
|
DAI P B, LAN X J, ZHANG W W, GAN L, WANG Y, ZONG Z F. Identification, colonization and disease suppressive effect of strain SC11 against cotton Fusarium wilt. Acta Phytopathologica Sinica, 2016, 46(2): 273-279. (in Chinese)
|
[11] |
PLEBAN S, CHERNIN L, CHET I. Chitinolytic activity of an endophytic strain of Bacillus cereus. Letters in Applied Microbiology, 1997, 25(4): 284-288.
doi: 10.1046/j.1472-765X.1997.00224.x
|
[12] |
LI J G, JIANG Z Q, XU L P, SUN F F, GUO J H. Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant. BioControl, 2008, 53(6): 931-944.
doi: 10.1007/s10526-007-9144-7
|
[13] |
KISHORE G K, PANDE S. Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Letters in Applied Microbiology, 2007, 44(1): 98-105.
doi: 10.1111/lam.2007.44.issue-1
|
[14] |
HAMMAMI I, SIALA R, JRIDI M, KTARI N, NASRI M, TRIKI M A. Partial purification and characterization of chiIO8, a novel antifungal chitinase produced by Bacillus cereus IO8. Journal of Applied Microbiology, 2013, 115(2): 358-366.
doi: 10.1111/jam.12242
|
[15] |
周京龙, 冯自力, 冯鸿杰, 李云卿, 袁媛, 李志芳, 魏锋, 师勇强, 赵丽红, 孙正祥, 朱荷琴, 周燚. 棉花内生蜡状芽孢杆菌YUPP-10对棉花黄萎病的防治作用及机制. 中国农业科学, 2017, 50(14): 2717-2727.
|
|
ZHOU J L, FENG Z L, FENG H J, LI Y Q, YUAN Y, LI Z F, WEI F, SHI Y Q, ZHAO L H, SUN Z X, ZHU H Q, ZHOU Y. Biocontrol effect and mechanism of cotton endophytic bacterium Bacillus cereus YUPP-10 against Verticillium wilt in Gossypium hirsutum. Scientia Agricultura Sinica, 2017, 50(14): 2717-2727. (in Chinese)
|
[16] |
LI S K, JI Z Q, ZHANG J W, GUO Z Y, WU W J. Synthesis of 1-acyl-3-isopropenylbenzimidazolone derivatives and their activity against Botrytis cinerea. Journal of Agricultural and Food Chemistry, 2010, 58(5): 2668-2672.
doi: 10.1021/jf903855y
|
[17] |
朱荷琴, 冯自力, 李志芳, 赵丽红, 师勇强. 蛭石沙土无底纸钵定量蘸菌液法鉴定棉花品种(系)的抗黄萎病性. 中国棉花, 2010, 37(12): 15-17.
|
|
ZHU H Q, FENG Z L, LI Z F, ZHAO L H, SHI Y Q. Dip quantitative fungal solution method by using vermiculite sand without bottom paper bowl to identify cotton varieties (lines) of resistance to Verticillium wilt. China Cotton, 2010, 37(12): 15-17. (in Chinese)
|
[18] |
CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16(6): 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x
|
[19] |
MARASCO R, ROLLI E, ETTOUMI B, VIGANI G, MAPELLI F, BORIN S, ABOU-HADID A F, EL-BEHAIRY U A, SORLINI C, CHERIF A, ZOCCHI G, DAFFONCHIO D. A drought resistance- promoting microbiome is selected by root system under desert farming. PLoS ONE, 2012, 7(10): e48479.
doi: 10.1371/journal.pone.0048479
|
[20] |
RASHID S, CHARLES T C, GLICK B R. Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology, 2011, 61(5): 217-224.
doi: 10.1016/j.apsoil.2011.09.011
|
[21] |
HARDOIM P R, VAN OVERBEEK L S, VAN ELSAS J D. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 2008, 16(10): 463-471.
doi: 10.1016/j.tim.2008.07.008
|
[22] |
ALI S, CHARLES T C, GLICK B R. Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. Journal of Applied Microbiology, 2012, 113(5): 1139-1144.
doi: 10.1111/jam.2012.113.issue-5
|
[23] |
COUTINHO B G, LICASTRO D, MENDONÇA-PREVIATO L, CÁMARA M, VENTURI V. Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Molecular Plant- Microbe Interactions, 2015, 28(1): 10-21.
doi: 10.1094/MPMI-07-14-0225-R
|
[24] |
KATSURAYA K, OKUYAMA K, HATANAKA K, OSHIMA R, SATO T, MATSUZAKI K. Constitution of konjac glucomannan: Chemical analysis and 13C NMR spectroscopy. Carbohydrate Polymers, 2003, 53(2): 183-189.
doi: 10.1016/S0144-8617(03)00039-0
|
[25] |
FANG W, WU P. Variations of konjac glucomannan (KGM) from Amorphophallus konjac and its refined powder in China. Food Hydrocolloids, 2004, 18(1): 167-170.
doi: 10.1016/S0268-005X(03)00044-4
|
[26] |
LAFARGE C, CAYOT N, HORY C, GONCALVES L, CHASSEMONT C, LE BAIL P. Effect of konjac glucomannan addition on aroma release in gels containing potato starch. Food Research International, 2014, 64: 412-419.
doi: 10.1016/j.foodres.2014.07.008
|
[27] |
PANGBURN S H, TRESCONY P V, HELLER J. Lysozyme degradation of partially deacetylated chitin, its films and hydrogels. Biomaterials, 1982, 3(2): 105-108.
doi: 10.1016/0142-9612(82)90043-6
|
[28] |
CHEN J, PENG H, WANG X, SHAO F, YUAN Z, HAN H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 2014, 6(3): 1879-1889.
doi: 10.1039/C3NR04941H
|
[29] |
NEJAD P, JOHNSON P A. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biological Control, 2000, 18(3): 208-215.
doi: 10.1006/bcon.2000.0837
|
[30] |
ABDALLAH R A B, MOKNI-TLILI S, NEFZI A, JABNOUN- KHIAREDDINE H, DAAMI- REMADI M. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biological Control, 2016, 97(10): 80-88.
doi: 10.1016/j.biocontrol.2016.03.005
|
[31] |
AJILOGBA C F. RAPD delineation of native Bacillus spp. and analyses of their biocontrol effect on tomato Fusarium wilt[D]. Mafikeng Campus of the North-West University, 2013.
|
[32] |
ABDALLAH R A, NE U O, JABNOUN-KHIAREDDINE H, MOKNI-TLILI S, NEFZI A, MEDIMAGH-SAIDANA S, DAAMI- REMADI M. Endophytic Bacillus spp. from wild Solanaceae and their antifungal potential against Fusarium oxysporum f. sp. lycopersici elucidated using whole cells, filtrate cultures and organic extracts. Journal of Plant Pathology and Microbiology, 2015, 6: 11.
|
[33] |
傅莹, 黄益燕, 肖爱萍, 游春平. 蜡状芽孢杆菌菌株255诱导香蕉产生抗性相关酶初步研究. 广东农业科学, 2011, 38(9): 75-77.
|
|
FU Y, HUANG Y Y, XIAO A Q, YOU C P. Preliminary study on the resistant-related enzymes from banana by the induction of Bacillus cereus strain 255. Guangdong Agricultural Sciences, 2011, 38(9): 75-77. (in Chinese)
|
[34] |
ZHOU J, FENG Z, LIU S, WEI F, SHI Y, ZHAO L, HUANG W, ZHOU Y, FENG H, ZHU H. CGTase, a novel antimicrobial protein from Bacillus cereus YUPP-10, suppresses Verticillium dahliae and mediates plant defence responses. Molecular Plant Pathology, 2021, 22(1): 130-144.
doi: 10.1111/mpp.13014
|
[35] |
GUO X, STOTZ H U. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Molecular Plant-Microbe Interactions, 2007, 20(11): 1384-1395.
doi: 10.1094/MPMI-20-11-1384
|
[36] |
GLAZEBROOK J, CHEN W, ESTES B, CHANG H S, NAWRATH C, MÉTRAUX J P, ZHU T, KATAGIRI F. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. The Plant Journal, 2003, 34(2): 217-228.
doi: 10.1046/j.1365-313X.2003.01717.x
|