中国农业科学 ›› 2023, Vol. 56 ›› Issue (1): 156-164.doi: 10.3864/j.issn.0578-1752.2023.01.012
翟晓虎1(),李翎旭2(),陈小竹2,蒋怀德2,贺卫华1,姚大伟2()
收稿日期:
2022-03-26
接受日期:
2022-11-01
出版日期:
2023-01-01
发布日期:
2023-01-17
通讯作者:
姚大伟
作者简介:
翟晓虎,E-mail:基金资助:
ZHAI XiaoHu1(),LI LingXu2(),CHEN XiaoZhu2,JIANG HuaiDe2,HE WeiHua1,YAO DaWei2()
Received:
2022-03-26
Accepted:
2022-11-01
Online:
2023-01-01
Published:
2023-01-17
Contact:
DaWei YAO
摘要:
【目的】建立一种快速、准确的肉中猪源性成分定量检测方法。【方法】首先从GenBank数据库中筛选猪特异性的微卫星DNA,根据微卫星DNA核酸序列设计引物,对常见10种动物基因组DNA进行PCR扩增,通过有无扩增产物判断筛选的微卫星DNA对猪源性成分的特异性。然后根据微卫星DNA核酸序列,设计特异性引物和探针,建立猪源性成分Real-time PCR检测方法,采用双标准曲线分别对猪源性成分和总动物源性成分进行定量,计算猪源性成分的百分含量。【结果】筛选到猪特异性微卫星DNA(Accession EF172428),根据其序列设计的引物SEQ-sus2-F/R只能从猪基因组DNA中扩增出目的条带,其他动物的基因组均无目的条带扩增。建立的Real-time PCR检测方法灵敏度为0.02 ng/25 μL反应体系。该方法能够准确检测出混合DNA样品中猪源性成分和混合肉样品中猪源性成分,百分误差分别约为1.32%和1.06%—7.12%。【结论】本研究利用Real-time PCR技术建立的定量猪源性成分的检测方法可以用来检测猪源性成分在混合样品中的百分含量。
翟晓虎,李翎旭,陈小竹,蒋怀德,贺卫华,姚大伟. 肉中猪源性成分Real-time PCR定量检测技术[J]. 中国农业科学, 2023, 56(1): 156-164.
ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR[J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
表1
引物、探针信息"
引物名称 Primers name | 序列 Sequence (5′-3′) | 片段大小 Sizes (bp) | 基因编号Accession |
---|---|---|---|
SEQ-sus1-F | AACCCTGCCTGCCCTTTGT | 225 | AF375760 |
SEQ-sus1-R | TGGCTCAGCGTCCATCCCT | ||
SEQ-sus2-F | CTTCTTCCTCAGTGGTCGTG | 262 | EF172428 |
SEQ-sus2-R | GCAGCCTTACTTCGTTTCTC | ||
SEQ-sus2-probe-F | CACACAATGGGAATAAATTG | 185 | EF172428 |
SEQ-sus2-probe-R | GTCAGTCATGGTTCTCTA | ||
Sus-Taqman-probe | Cy5-CCTTCAAGCAGTGCAGCCTTAC-BHQ2 | EF172428 | |
SEQ-common296-F | CTGCTAAACAATCCAATAAAC | 155 | AB584373 |
SEQ-common296-R | GAGGTCTCCATTACTAATAGA | ||
Common-Taqman-probe | Texas red-TAACCTCTTGTCTCTTCGGCTGATG-BHQ2 | AB584373 |
表2
猪引物退火温度的优化"
退火温度 Annealing temperature (℃) | 扩增效率 Efficiency (%) | 决定系数 Coefficient of correlation (R2) | 最小Ct值 Ctmin | 非特异性扩增Ct值 Non-specific amplification Ct | 空白对照Ct值 Blank control Ct |
---|---|---|---|---|---|
57.0 | 95.51±3.51 | 0.9987±0.0015a | 21.75±0.73c | 33.65±1.07c | 未检测到Undetected |
58.5 | 94.96±5.39 | 0.9990±0.0007a | 22.40±0.31b | 35.70±1.90b | 未检测到Undetected |
60.0 | 97.73±1.10 | 0.9979±0.0015a | 22.71±0.37b | 35.52±0.71b | 未检测到Undetected |
61.5 | 97.76±1.09 | 0.9909±0.0017b | 24.47±0.80a | 39.17±0.15a | 未检测到Undetected |
表3
猪引物和探针浓度优化"
探针-引物浓度 Probe and primer content (nmol·L-1) | 扩增效率 Efficiency (%) | 决定系数 Coefficient of correlation (R2) | 最小Ct值 Ctmin | 非特异性扩增Ct值 Non-specific amplification Ct | 空白对照Ct值 Blank control Ct |
---|---|---|---|---|---|
150-150 | 91.18±5.55ab | 0.9973±0.0018 | 23.55±0.50a | 35.89±0.64bc | 未检测到Undetected |
150-250 | 95.37±0.63ab | 0.9998±0.0001 | 22.56±0.31bc | 34.77±0.10c | 未检测到Undetected |
150-300 | 96.08±3.81ab | 0.9996±0.0001 | 22.52±0.28bc | 35.28±0.13bc | 未检测到Undetected |
200-150 | 92.92±5.07ab | 0.9970±0.0013 | 23.54±0.42a | 35.03±0.82bc | 未检测到Undetected |
200-250 | 95.04±1.46ab | 0.9989±0.0002 | 22.19±0.07c | 37.85±0.35a | 未检测到Undetected |
200-350 | 97.31±1.80a | 0.9993±0.0006 | 22.33±0.14c | 34.57±0.66c | 未检测到Undetected |
250-150 | 97.71±0.86a | 0.9943±0.0052 | 23.32±0.31a | 36.09±0.35b | 未检测到Undetected |
250-250 | 95.58±2.37a | 0.9985±0.0004 | 22.45±0.12bc | 34.62±0.70c | 未检测到Undetected |
250-350 | 88.20±7.57b | 0.9928±0.0080 | 22.83±0.68b | 35.20±0.63bc | 未检测到Undetected |
表4
通用引物退火温度的优化"
退火温度 Annealing temperature (℃) | 扩增效率 Efficiency (%) | 决定系数 Coefficient of correlation (R2) | 最小Ct值 Ctmin | 空白对照Ct值 Blank control Ct |
---|---|---|---|---|
55.5 | 91.40±1.93ab | 0.9963±0.0012 | 22.55±0.64d | 未检测到Undetected |
57.0 | 93.66±1.37ab | 0.9969±0.0001 | 22.59±0.62d | 未检测到Undetected |
58.5 | 95.92±3.06a | 0.9961±0.0019 | 22.849±0.65c | 未检测到Undetected |
60.0 | 96.77±1.86a | 0.9951±0.0009 | 23.68±0.59b | 未检测到Undetected |
61.5 | 95.45±2.78a | 0.9691±0.0296 | 26.70±0.96a | 未检测到Undetected |
表5
通用引物和探针浓度优化"
探针-引物浓度 Probe and Primer (nmol·L-1) | 扩增效率 Efficiency (%) | 决定系数 Coefficient of correlation (R2) | 最小Ct值 Ctmin | 非特异性扩增Ct值 Non-specific amplification Ct | 空白对照Ct值 Blank control Ct |
---|---|---|---|---|---|
150-150 | 95.8183±3.4270 | 0.9990±0.0001 | 22.07±0.20a | 36.537950 | 未检测到Undetected |
150-250 | 94.6394±0.2007 | 0.9983±0.0001 | 21.64±0.07b | 36.072550 | 未检测到Undetected |
150-300 | 96.1199±4.7783 | 0.9980±0.0017 | 21.60±0.11b | 36.309250 | 未检测到Undetected |
200-150 | 97.3010±0.2045 | 0.9979±0.0004 | 22.12±0.30a | 37.725000 | 未检测到Undetected |
200-250 | 97.0340±1.1993 | 0.9983±0.0007 | 21.70±0.13b | 35.923600 | 未检测到Undetected |
200-350 | 96.7049±3.9347 | 0.9967±0.0020 | 21.63±0.15b | 36.617600 | 未检测到Undetected |
250-150 | 97.1256±2.4211 | 0.9976±0.0011 | 21.97±0.42a | 36.158100 | 未检测到Undetected |
250-250 | 93.8683±6.0015 | 0.9952±0.0054 | 21.65±0.13b | 36.344000 | 未检测到Undetected |
250-350 | 94.6619±3.6286 | 0.9956±0.0059 | 21.56±0.15b | 36.441800 | 未检测到Undetected |
[1] | 史艳宇, 王莹, 石虹, 李天雨, 华蕾. 微滴数字PCR方法检测畜肉食品中鸭源性成分. 食品安全质量检测学报, 2018, 9(3): 583-588. |
SHI Y Y, WANG Y, SHI H, LI T Y, HUA L. Detection of duck-derived materials in meat products by droplet digital PCR. Journal of Food Safety and Quality, 2018, 9(3): 583-588. (in Chinese) | |
[2] |
SUL S, KIM M J, LEE J M, KIM S Y, KIM H Y. Development of a rapid on-site method for the detection of chicken meat in processed ground meat products by using a direct ultrafast PCR system. Journal of Food Protection, 2020, 83(6): 984-990. doi: 10.4315/jfp-19-583.
doi: 10.4315/JFP-19-583 pmid: 32034408 |
[3] |
KIM M J, KIM H Y. A fast multiplex Real-time PCR assay for simultaneous detection of pork, chicken, and beef in commercial processed meat products. LWT-Food Science and Technology, 2019, 114: 108390. doi: 10.1016/j.lwt.2019.108390.
doi: 10.1016/j.lwt.2019.108390 |
[4] |
陈念, 赖小平. 线粒体基因组: 结构特点和基因含量进化. 生物学杂志, 2011, 28(1): 70-73, 17. doi: 10.3969/j.issn.1008-9632.2011.01.070.
doi: 10.3969/j.issn.1008-9632.2011.01.070 |
CHEN N, LAI X P. Mt-genome revolution: Structure and gene content. Journal of Microbiology, 2011, 28(1): 70-73, 17. doi:10.3969/j.issn.1008-9632.2011.01.070. (in Chinese)
doi: 10.3969/j.issn.1008-9632.2011.01.070 |
|
[5] | 陈传君, 金鹭, 林华, 胡滨, 韩国全, 陈世界, 张婧, 安微, 杨苗. 食品中羊肉源性成分微滴数字PCR定量方法的建立. 食品与发酵工业, 2020, 46(6): 229-237. |
CHEN C J, JIN L, LIN H, HU B, HAN G Q, CHEN S J, ZHANG J, AN W, YANG M. Quantification of mutton-derived ingredients in food by droplet digital PCR. Food and Fermentation Industries, 2020, 46(6): 229-237. (in Chinese) | |
[6] |
BALLIN N Z, VOGENSEN F K, KARLSSON A H. Species determination-Can we detect and quantify meat adulteration? Meat Science, 2009, 83(2): 165-174. doi: 10.1016/j.meatsci.2009.06.003.
doi: 10.1016/j.meatsci.2009.06.003 |
[7] |
WANG Z C, WANG Z Y, LI T T, QIAO L, LIU R, ZHAO Y, XU Z Z, CHEN G, YANG S M, CHEN A L. Real-time PCR based on single- copy housekeeping genes for quantitative detection of goat meat adulteration with pork. International Food Science and Technology, 2020, 55(2): 553-558. doi: 10.1111/ijfs.14350.
doi: 10.1111/ijfs.14350 |
[8] | 刘立兵, 陈敏娜, 孙晓霞, 张亦琴, 付琦, 钱云开, 周巍, 郭春海, 王建昌. 微滴式数字聚合酶链式反应对香肠制品中鸡、猪、牛源性成分的定量分析. 肉类研究, 2020, 34(8): 51-56. |
LIU L B, CHEN M N, SUN X X, ZHANG Y Q, FU Q, QIAN Y K, ZHOU W, GUO C H, WANG J C. Quantitative analysis of chicken-, porcine- and bovine-derived ingredients in sausage products by droplet digital polymerase chain reaction. Meat Research, 2020, 34(8): 51-56. (in Chinese) | |
[9] |
TABERLET P, WAITS L P, LUIKART G. Noninvasive genetic sampling: Look before you leap. Trends in Ecology and Evolution, 1999, 14(8): 323-327. doi: 10.1016/S0169-5347(99)01637-7.
doi: 10.1016/S0169-5347(99)01637-7 pmid: 10407432 |
[10] |
SELKOE K A, TOONEN R J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecology Letters, 2006, 9(5): 615-629. doi: 10.1111/j.1461-0248.2006.00889.x.
doi: 10.1111/j.1461-0248.2006.00889.x pmid: 16643306 |
[11] | 萨姆布鲁克 J, 拉塞尔 D W, 黄培堂. 分子克隆实验指南. 三版. 北京: 科学出版社, 2002. |
SAMBROOK J, RUSSELL D W, HUANG P T. Molecular Cloning:A Laboratory Manual. 3rd ed. Beijing: Science Press, 2002. (in Chinese) | |
[12] |
WU Z Z, GONG H F, ZHANG M P, TONG X K, AI H S, XIAO S J, PEREZ-ENCISO M, YANG B, HUANG L S. A worldwide map of swine short tandem repeats and their associations with evolutionary and environmental adaptations. Genetics Selection Evolution, 2021, 53(1): 39. doi: 10.1186/s12711-021-00631-4.
doi: 10.1186/s12711-021-00631-4 |
[13] |
KRALIK P, RICCHI M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Frontiers in Microbiology, 2017, 8: 108. doi: 10.3389/fmicb.2017.00108.
doi: 10.3389/fmicb.2017.00108 pmid: 28210243 |
[14] |
DOOLEY J J, PAINE K E, GARRETT S D, BROWN H M. Detection of meat species using TaqMan real-time PCR assays. Meat Science, 2004, 68(3): 431-438. doi: 10.1016/j.meatsci.2004.04.010.
doi: 10.1016/j.meatsci.2004.04.010 pmid: 22062411 |
[15] |
MAYER W, HOCHEGGER R. Discrimination of two alleles of the melanocortin receptor 1 gene to discern European wild boar (Sus scrofa scrofa) and domestic pig (Sus scrofa domestica) in meat products by real-time PCR. European Food Research and Technology, 2011, 232(4): 687-692. doi: 10.1007/s00217-010-1402-8.
doi: 10.1007/s00217-010-1402-8 |
[16] | 巫坚, 黄晓韵, 王海华, 陈小聪. 实时荧光PCR法检测肉制品中猪源性成分. 食品安全质量检测学报, 2021, 12(9): 3715-3720. |
WU J, HUANG X Y, WANG H H. CHEN X C. Detection of porcine- derived components in meat products by real-time fluorescence PCR. Journal of Food Safety and Quality, 2021, 12(9): 3715-3720. (in Chinese) | |
[17] |
CHEN X Y, LU L X, XIONG X H, XIONG X, LIU Y J. Development of a real-time PCR assay for the identification and quantification of bovine ingredient in processed meat products. Scientific Reports, 2020, 10(1): 2052. doi: 10.1038/s41598-020-59010-6.
doi: 10.1038/s41598-020-59010-6 |
[18] |
LIU G Q, LUO J X, XU W L, LI C D, GUO Y S, GUO L. Improved triplex real-time PCR with endogenous control for synchronous identification of DNA from chicken, duck, and goose meat. Food Science and Nutrition, 2021, 9(6): 3130-3141. doi: 10.1002/fsn3.2272.
doi: 10.1002/fsn3.2272 |
[19] |
LI J, GAO H F, LI Y J, XIAO F, ZHAI S S, WU G, WU Y H. Event-specific PCR methods to quantify the genetically modified DBN9936 maize. Journal of Food Composition and Analysis, 2022, 105: 104236. doi: 10.1016/j.jfca.2021.104236.
doi: 10.1016/j.jfca.2021.104236 |
[20] |
LABRADOR M, GIMÉNEZ-ROTA C, ROTA C. Real-time PCR method combined with a matrix Lysis procedure for the quantification of listeria monocytogenes in meat products. Foods, 2021, 10(4): 735. doi: 10.3390/foods10040735.
doi: 10.3390/foods10040735 |
[21] | 黄文胜, 邓婷婷, 韩建勋, 吴亚君, 陈颖. 转基因定量检测的不确定度研究. 中国生物工程杂志, 2012, 32(1): 49-55. |
HUANG W S, DENG T T, HAN J X, WU Y J, CHEN Y. Estimate the uncertainty on quantification of GMO by the fluorescence real-time PCR method. China Biotechnology, 2012, 32(1): 49-55. (in Chinese) | |
[22] |
REN Y F, LI X, LIU, Y M, YANG L T, CAI Y C, QUAN S, PAN L W, CHEN S S. A novel quantitative real-time PCR method for identification and quantification of mammalian and poultry species in foods. Food Control, 2017, 76: 42-51. doi: 10.1016/j.foodcont.2017.01.003.
doi: 10.1016/j.foodcont.2017.01.003 |
[23] |
BEJERANO G, PHEASANT M, MAKUNIN I, STEPHEN S, KENT W J, MATTICK J S, HAUSSLER D. Ultraconserved elements in the human genome. Science, 2004, 304(5675): 1321-1325. doi: 10.1126/science.1098119.
doi: 10.1126/science.1098119 pmid: 15131266 |
[24] |
WANG W J, WANG X Y, WEI T, ZHANG Q D, ZHOU X, LIU B. A multiplex Real-time PCR approach for identification and quantification of sheep/goat, fox and murine fractions in meats using nuclear DNA sequences. Food Control, 2021, 126: 108035. doi: 10.1016/j.foodcont.2021.108035.
doi: 10.1016/j.foodcont.2021.108035 |
[1] | 王一丹,杨发龙,陈弟诗,向华,任玉鹏. 猪腹泻病毒一步法多重TaqMan荧光定量RT-PCR检测法的建立及应用[J]. 中国农业科学, 2023, 56(1): 179-192. |
[2] | 王吉,张鑫,胡静荣,于智慧,朱迎春. 灭菌猪肉浆中发酵菌株脂质水解和氧化能力分析[J]. 中国农业科学, 2022, 55(9): 1846-1858. |
[3] | 王思彤,陈艳,罗雨嘉,杨缘缘,蒋志洋,蒋鑫怡,钟樊,陈好,徐红星,吴俨,段红霞,唐斌. 三种新型化合物对草地贪夜蛾海藻糖与几丁质代谢及生长发育的影响[J]. 中国农业科学, 2022, 55(8): 1568-1578. |
[4] | 邱一蕾,吴帆,张莉,李红亮. 亚致死剂量吡虫啉对中华蜜蜂神经代谢基因表达的影响[J]. 中国农业科学, 2022, 55(8): 1685-1694. |
[5] | 李文慧,贺依静,姜瑶,赵红宇,彭磊,李佳,芮荣,剧世强. 伏马毒素B1对猪体外成熟卵母细胞凋亡与自噬的影响[J]. 中国农业科学, 2022, 55(6): 1241-1252. |
[6] | 房昊源, 杨亮, 王洪壮, 曹锦承, 任万平, 魏胜娟, 颜培实. 夏季横向交互送风系统对肉牛生理和生产性能的影响[J]. 中国农业科学, 2022, 55(5): 1025-1036. |
[7] | 杨时鳗, 许程志, 许榜丰, 吴运谱, 贾云慧, 乔传玲, 陈化兰. H1N1亚型猪流感病毒HA蛋白225位氨基酸对病毒致病性的影响[J]. 中国农业科学, 2022, 55(4): 816-824. |
[8] | 童世锋,任智彬,林斐,葛雨竹,陶景丽,刘杨. 二花脸公猪不同耐冻性精子的蛋白质组学分析[J]. 中国农业科学, 2022, 55(23): 4743-4752. |
[9] | 陈彧,朱浩哲,陈益春,刘政,丁希,郭赟,丁世杰,周光宏. 猪肌肉干细胞在三维水凝胶中的分化研究[J]. 中国农业科学, 2022, 55(22): 4500-4512. |
[10] | 宋淑珍, 高良霜, 李宏, 宫旭胤, 刘立山, 魏玉兵. 相对饲养水平对绵羊肌肉组织结构及肌纤维组成相关基因的影响[J]. 中国农业科学, 2022, 55(21): 4304-4314. |
[11] | 苏媛媛,张德权,古明辉,张春娟,李少博,郑晓春,陈丽. 不同来源ATP表征冷鲜羊肉新鲜度[J]. 中国农业科学, 2022, 55(19): 3841-3853. |
[12] | 葛岳,张德权,李少博,陈丽,郑晓春,梁策,颜统晶,李金活,王振宇. 基于消费者喜好性评价宰后不同阶段羊肉食用品质差异[J]. 中国农业科学, 2022, 55(18): 3640-3651. |
[13] | 邢明杰,顾宪红,王枭鸿,郝月. IL-15过表达对猪骨骼肌细胞成肌分化的影响[J]. 中国农业科学, 2022, 55(18): 3652-3663. |
[14] | 张春桃,马涛,屠焰,刁其玉. 昼夜节律与肉羊养分消化代谢和瘤胃发酵参数的关联[J]. 中国农业科学, 2022, 55(18): 3664-3674. |
[15] | 杨昌沛,王乃秀,汪锴,黄子晴,林海烂,张莉,张晨,冯露秋,甘玲. 外源性γ-氨基丁酸抵抗仔猪氧化应激的效果及机制[J]. 中国农业科学, 2022, 55(17): 3437-3449. |
|