[1] |
GAMBLIN S J, SKEHEL J J. Influenza hemagglutinin and neuraminidase membrane glycoproteins. The Journal of Biological Chemistry, 2010, 285(37):28403-28409. doi: 10.1074/jbc.R110.129809.
doi: 10.1074/jbc.R110.129809
|
[2] |
WILLE M, HOLMES E C. The ecology and evolution of influenza viruses. Cold Spring Harbor Perspectives in Medicine, 2020, 10(7):a038489. doi: 10.1101/cshperspect.a038489.
doi: 10.1101/cshperspect.a038489
|
[3] |
MA W J. Swine influenza virus: current status and challenge. Virus Research, 2020, 288:198118. doi: 10.1016/j.virusres.2020.198118.
doi: 10.1016/j.virusres.2020.198118
|
[4] |
CHEN Y, ZHANG J, QIAO C L, YANG H L, ZHANG Y, XIN X G, CHEN H L. Co-circulation of pandemic 2009 H1N1, classical swine H1N1 and avian-like swine H1N1 influenza viruses in pigs in China. Infection, Genetics and Evolution, 2013, 13:331-338. doi: 10.1016/j.meegid.2012.09.021.
doi: 10.1016/j.meegid.2012.09.021
|
[5] |
YANG H L, CHEN Y, QIAO C L, HE X J, ZHOU H, SUN Y, YIN H, MENG S S, LIU L P, ZHANG Q Y, KONG H H, GU C Y, LI C J, BU Z G, KAWAOKA Y, CHEN H L. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(2):392-397. doi: 10.1073/pnas.1522643113.
doi: 10.1073/pnas.1522643113
|
[6] |
SUN H L, XIAO Y H, LIU J Y, WANG D Y, LI F T, WANG C X, LI C, ZHU J D, SONG J W, SUN H R, JIANG Z M, LIU L T, ZHANG X, WEI K, HOU D J, PU J, SUN Y P, TONG Q, BI Y H, CHANG K C, LIU S D, GAO G F, LIU J H. Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. PNAS, 2020, 117(29):17204-17210. doi: 10.1073/pnas.1921186117.
doi: 10.1073/pnas.1921186117
|
[7] |
CHEN Y, TROVÃO N S, WANG G J, ZHAO W F, HE P, ZHOU H B, MO Y N, WEI Z Z, OUYANG K, HUANG W J, GARCÍA-SASTRE A, NELSON M I. Emergence and evolution of novel reassortant influenza A viruses in canines in Southern China. mBio, 2018, 9(3):e00909-18. doi: 10.1128/mBio.00909-18.
doi: 10.1128/mBio.00909-18
|
[8] |
LIU J H, LI Z H, CUI Y L, YANG H Y, SHAN H, ZHANG C M. Emergence of an Eurasian avian-like swine influenza A (H1N1) virus from mink in China. Veterinary Microbiology, 2020, 240:108509. doi: 10.1016/j.vetmic.2019.108509.
doi: 10.1016/j.vetmic.2019.108509
|
[9] |
ZHU W F, ZHANG H, XIANG X Y, ZHONG L L, YANG L, GUO J F, XIE Y R, LI F C, DENG Z H, FENG H, HUANG Y W, HU S X, XU X, ZOU X H, LI X D, BAI T, CHEN Y K, LI Z, LI J H, SHU Y L. Reassortant Eurasian avian-like influenza A(H1N1) virus from a severely ill child, Hunan Province, China, 2015. Emerging Infectious Diseases, 2016, 22(11):1930-1936. doi: 10.3201/eid2211.160181.
doi: 10.3201/eid2211.160181
|
[10] |
YANG H L, QIAO C L, TANG X, CHEN Y, XIN X G, CHEN H L. Human infection from avian-like influenza A (H1N1) viruses in pigs, China. Emerging Infectious Diseases, 2012, 18(7):1144-1146. doi: 10.3201/eid1807.120009.
doi: 10.3201/eid1807.120009
|
[11] |
RUSSELL C J. Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology. Current Topics in Microbiology and Immunology, 2014, 385:93-116. doi: 10.1007/82_2014_393.
doi: 10.1007/82_2014_393
|
[12] |
STEINHAUER D A. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology, 1999, 258(1):1-20. doi: 10.1006/viro.1999.9716.
doi: 10.1006/viro.1999.9716
|
[13] |
MATROSOVICH M, STECH J, KLENK H D. Influenza receptors, polymerase and host range. Revue Scientifique et Technique (International Office of Epizootics), 2009, 28(1):203-217. doi: 10.20506/rst.28.1.1870.
doi: 10.20506/rst.28.1.1870
|
[14] |
MATROSOVICH M, TUZIKOV A, BOVIN N, GAMBARYAN A, KLIMOV A, CASTRUCCI M R, DONATELLI I, KAWAOKA Y. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. Journal of Virology, 2000, 74(18):8502-8512. doi: 10.1128/jvi.74.18.8502-8512.2000.
doi: 10.1128/jvi.74.18.8502-8512.2000
|
[15] |
KANNAN S, KOLANDAIVEL P. Computational studies of pandemic 1918 and 2009 H1N1 hemagglutinins bound to avian and human receptor analogs. Journal of Biomolecular Structure and Dynamics, 2016, 34(2):272-289. doi: 10.1080/07391102.2015.1027737.
doi: 10.1080/07391102.2015.1027737
|
[16] |
DAS P, LI J Y, ROYYURU A K, ZHOU R H. Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity. Journal of Computational Chemistry, 2009, 30(11):1654-1663. doi: 10.1002/jcc.21274.
doi: 10.1002/jcc.21274
|
[17] |
STEVENS J, BLIXT O, GLASER L, TAUBENBERGER J K, PALESE P, PAULSON J C, WILSON I A. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. Journal of Molecular Biology, 2006, 355(5):1143-1155. doi: 10.1016/j.jmb.2005.11.002.
doi: 10.1016/j.jmb.2005.11.002
|
[18] |
TUMPEY T M, MAINES T R, VAN HOEVEN N, GLASER L, SOLÓRZANO A, PAPPAS C, COX N J, SWAYNE D E, PALESE P, KATZ J M, GARCÍA-SASTRE A. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science, 2007, 315(5812):655-659. doi: 10.1126/science.1136212.
doi: 10.1126/science.1136212
|
[19] |
WANG Z, YANG H L, CHEN Y, TAO S Y, LIU L L, KONG H H, MA S J, MENG F, SUZUKI Y, QIAO C L, CHEN H L. A single-amino-acid substitution at position 225 in hemagglutinin alters the transmissibility of Eurasian avian-like H1N1 swine influenza virus in Guinea pigs. Journal of Virology, 2017, 91(21):e00800-17. doi: 10.1128/JVI.00800-17.
doi: 10.1128/JVI.00800-17
|
[20] |
XU C Z, XU B F, WU Y P, YANG S M, JIA Y H, LIANG W H, YANG D W, HE L K, ZHU W F, CHEN Y, YANG H L, YU B L, WANG D Y, QIAO C L. A single amino acid at position 431 of the PB2 protein determines the virulence of H1N1 swine influenza viruses in mice. Journal of Virology, 2020, 94(8):e01930-19. doi: 10.1128/JVI.01930-19.
doi: 10.1128/JVI.01930-19
|
[21] |
ZHANG Y, ZHANG Q Y, GAO Y W, HE X J, KONG H H, JIANG Y P, GUAN Y T, XIA X Z, SHU Y L, KAWAOKA Y, BU Z G, CHEN H L. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. Journal of Virology, 2012, 86(18):9666-9674. doi: 10.1128/JVI.00958-12.
doi: 10.1128/JVI.00958-12
|
[22] |
STEEL J, LOWEN A C, MUBAREKA S, PALESE P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathogens, 2009, 5(1):e1000252. doi: 10.1371/journal.ppat.1000252.
doi: 10.1371/journal.ppat.1000252
|
[23] |
LEE J, HENNINGSON J, MA J J, DUFF M, LANG Y K, LI Y H, LI Y H, NAGY A, SUNWOO S, BAWA B, YANG J M, BAI D P, RICHT J A, MA W J. Effects of PB1-F2 on the pathogenicity of H1N1 swine influenza virus in mice and pigs. The Journal of General Virology, 2017, 98(1):31-42. doi: 10.1099/jgv.0.000695.
doi: 10.1099/jgv.0.000695
|
[24] |
SUN Y P, HU Z, ZHANG X X, CHEN M Y, WANG Z, XU G L, BI Y H, TONG Q, WANG M Y, SUN H L, PU J, IQBAL M, LIU J H. An R195K mutation in the PA-X protein increases the virulence and transmission of influenza A virus in mammalian hosts. Journal of Virology, 2020, 94(11):e01817-e01819. doi: 10.1128/JVI.01817-19.
doi: 10.1128/JVI.01817-19
|
[25] |
ABED Y, PIZZORNO A, HAMELIN M E, LEUNG A, JOUBERT P, COUTURE C, KOBASA D, BOIVIN G. The 2009 pandemic H1N1 D222G hemagglutinin mutation alters receptor specificity and increases virulence in mice but not in ferrets. The Journal of Infectious Diseases, 2011, 204(7):1008-1016. doi: 10.1093/infdis/jir483.
doi: 10.1093/infdis/jir483
|
[26] |
OTTE A, SAUTER M, DAXER M A, MCHARDY A C, KLINGEL K, GABRIEL G. Adaptive mutations that occurred during circulation in humans of H1N1 influenza virus in the 2009 pandemic enhance virulence in mice. Journal of Virology, 2015, 89(14):7329-7337. doi: 10.1128/JVI.00665-15.
doi: 10.1128/JVI.00665-15
|
[27] |
JACKSON D, HOSSAIN M J, HICKMAN D, PEREZ D R, LAMB R A. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11):4381-4386. doi: 10.1073/pnas.0800482105.
doi: 10.1073/pnas.0800482105
|
[28] |
RAMOS I, FERNANDEZ-SESMA A. Cell receptors for influenza a viruses and the innate immune response. Frontiers in Microbiology, 2012, 3:117. doi: 10.3389/fmicb.2012.00117.
doi: 10.3389/fmicb.2012.00117
|
[29] |
LIU Q F, QIAO C L, MARJUKI H, BAWA B, MA J Q, GUILLOSSOU S, WEBBY R J, RICHT J A, MA W J. Combination of PB2 271A and SR polymorphism at positions 590/591 is critical for viral replication and virulence of swine influenza virus in cultured cells and in vivo. Journal of Virology, 2012, 86(2):1233-1237. doi: 10.1128/JVI.05699-11.
doi: 10.1128/JVI.05699-11
|
[30] |
SUPHAPHIPHAT P, FRANTI M, HEKELE A, LILJA A, SPENCER T, SETTEMBRE E, PALMER G, CROTTA S, TUCCINO A B, KEINER B, TRUSHEIM H, BALABANIS K, SACKAL M, ROTHFEDER M, MANDL C W, DORMITZER P R, MASON P W. Mutations at positions 186 and 194 in the HA gene of the 2009 H1N1 pandemic influenza virus improve replication in cell culture and eggs. Virology Journal, 2010, 7:157. doi: 10.1186/1743-422X-7-157.
doi: 10.1186/1743-422X-7-157
|