中国农业科学 ›› 2022, Vol. 55 ›› Issue (19): 3841-3853.doi: 10.3864/j.issn.0578-1752.2022.19.013
苏媛媛1(),张德权1,古明辉1,张春娟1,2,李少博1,郑晓春1(),陈丽1()
收稿日期:
2022-02-24
接受日期:
2022-06-06
出版日期:
2022-10-01
发布日期:
2022-10-10
通讯作者:
郑晓春,陈丽
作者简介:
苏媛媛,E-mail: 基金资助:
SU YuanYuan1(),ZHANG DeQuan1,GU MingHui1,ZHANG ChunJuan1,2,LI ShaoBo1,ZHENG XiaoChun1(),CHEN Li1()
Received:
2022-02-24
Accepted:
2022-06-06
Online:
2022-10-01
Published:
2022-10-10
Contact:
XiaoChun ZHENG,Li CHEN
摘要:
【目的】通过系统研究冷鲜羊肉不同来源的三磷酸腺苷(adenosine triphosphate,ATP。包括肉中ATP、微生物ATP、肉表面ATP)在贮藏期间的变化规律,筛选能够表征冷鲜羊肉新鲜度变化的ATP指标,构建菌落总数和挥发性盐基氮预测模型,探究冷鲜羊肉新鲜度的预测新方法。【方法】以小尾寒羊背最长肌为试验材料,在空气密封包装0℃条件下分别贮藏0、1、3、5、7、9、11、13、15、17和21 d,分析冷鲜羊肉贮藏期间新鲜度指标(pH、色泽、挥发性盐基氮、菌落总数)与3种来源ATP(肉中ATP、微生物ATP、肉表面ATP)的变化,利用数据统计评价不同来源ATP的变化规律,并构建新鲜度指标的预测模型。【结果】冷鲜羊肉贮藏期间新鲜度指标菌落总数、挥发性盐基氮均呈现上升趋势,并均在贮藏17 d时超过国家标准限值;肉中ATP呈现不断下降趋势,微生物ATP与肉表面ATP均呈现上升趋势,与新鲜度指标变化趋势保持一致;冷鲜羊肉贮藏期间,肉中ATP、微生物ATP、肉表面ATP含量与菌落总数、挥发性盐基氮的相关系数(R)分别为-0.399、0.910、0.943和-0.357、0.725、0.907。肉表面ATP预测冷鲜羊肉菌落总数的最优模型为Boltzmann拟合模型,其公式为TVC(lg cfu/g)=7.649-4.069/(1+exp(x-5.807)/0.632)(R 2=0.903,P<0.001),肉表面ATP预测冷鲜羊肉挥发性盐基氮的最优模型为Expedc1拟合模型,其公式为TVB-N(mg/100 g)=2.493*exp(x/3.745)+3.057(R 2=0.888,P<0.001)。【结论】本研究明确了冷鲜羊肉表面ATP与菌落总数、挥发性盐基氮存在显著正相关性,确证了肉表面ATP可以作为冷鲜羊肉新鲜度表征指标;并构建了菌落总数和挥发性盐基氮最优预测模型,为冷鲜羊肉新鲜度快速检测提供了新的思路。
苏媛媛,张德权,古明辉,张春娟,李少博,郑晓春,陈丽. 不同来源ATP表征冷鲜羊肉新鲜度[J]. 中国农业科学, 2022, 55(19): 3841-3853.
SU YuanYuan,ZHANG DeQuan,GU MingHui,ZHANG ChunJuan,LI ShaoBo,ZHENG XiaoChun,CHEN Li. Characterization of Chilled Mutton by ATP from Different Sources[J]. Scientia Agricultura Sinica, 2022, 55(19): 3841-3853.
表1
冷鲜羊肉贮藏期间色泽和pH的变化"
贮藏天数 Storage time (d) | 指标 Index | |||
---|---|---|---|---|
L* | a* | b* | pH | |
0 | 36.72±1.99b | 11.09±0.66ef | 9.75±0.98b | 5.54±0.02c |
1 | 42.41±2.02b | 11.25±0.80def | 13.61±1.53a | 5.56±0.03c |
3 | 38.32±0.74b | 14.27±0.44ab | 11.42±1.96ab | 5.66±0.04bc |
5 | 40.89±0.6b | 12.47±0.22bcde | 12.86±0.52a | 5.69±0.15bc |
7 | 41.02±0.82b | 14.53±1.05a | 12.58±0.75a | 5.73±0.07bc |
9 | 41.36±0.76b | 13.60±1.04abc | 12.89±1.27a | 5.85±0.10b |
11 | 41.78±0.96b | 13.20±2.26abcd | 12.06±0.61ab | 5.98±0.17a |
13 | 41.85±0.41b | 12.17±0.44cde | 12.89±1.31a | 5.75±0.17bc |
15 | 45.55±0.01a | 11.57±1.19de | 13.71±1.89a | 6.01±0.13a |
17 | 38.43±2.54b | 9.52±0.50f | 11.98±1.94ab | 6.01±0.26a |
19 | 41.08±0.83b | 10.84±1.21ef | 11.77±0.82ab | 5.69±0.08bc |
21 | 37.68±0.60b | 10.51±1.58ef | 11.83±1.79ab | 6.02±0.14a |
[1] | 中国冷藏肉行业发展现状分析与投资趋势研究报告(2022-2029年). 观研报告网, https://www.sohu.com/a/521800223_121222943, 2022-02-10. |
Development and investment trends of frozen meat industry in China (2022-2029). https://www.sohu.com/a/521800223_121222943, 2022-02-10. | |
[2] | 张晋豪, 王浩东, 邵良婷, 徐幸莲, 王虎虎. 生鲜肉新鲜度快速新型表征技术研究进展. 食品科学, 2022, 43(13): 210-217. |
ZHANG J H, WANG H D, SHAO L T, XU X L, WANG H H. Progress and trends in rapid novel technologies for characterization of fresh meat freshness: A review. Food Science, 2022, 43(13): 210-217. (in Chinese) | |
[3] |
HYUN B, CHA H G, LEE N, YUM S, BAEK S H, SHIN K. Development of an ATP assay for rapid onboard testing to detect living microorganisms in ballast water. Journal of Sea Research, 2018, 133: 73-80. doi: 10.1016/j.seares.2017.03.003.
doi: 10.1016/j.seares.2017.03.003 |
[4] |
TRŠAN M, VEHOVC M, SEME K, SRČIČ S. Evaluation of ATP bioluminescence for monitoring surface hygiene in a hospital pharmacy cleanroom. Journal of Microbiological Methods, 2020, 168: 105785. doi: 10.1016/j.mimet.2019.105785.
doi: 10.1016/j.mimet.2019.105785 |
[5] |
SCIORTINO C V, GILES R A. Validation and comparison of three adenosine triphosphate luminometers for monitoring hospital surface sanitization: A Rosetta Stone for adenosine triphosphate testing. American Journal of Infection Control, 2012, 40(8): e233-e239. doi: 10.1016/j.ajic.2012.04.318.
doi: 10.1016/j.ajic.2012.04.318 |
[6] |
SHAMA G, MALIK D J. The uses and abuses of rapid bioluminescence-based ATP assays. International Journal of Hygiene and Environmental Health, 2013, 216(2): 115-125. doi: 10.1016/j.ijheh.2012.03.009.
doi: 10.1016/j.ijheh.2012.03.009 pmid: 22541898 |
[7] |
AMODIO E, DINO C. Use of ATP bioluminescence for assessing the cleanliness of hospital surfaces: A review of the published literature (1990-2012). Journal of Infection and Public Health, 2014, 7(2): 92-98. doi: 10.1016/j.jiph.2013.09.005.
doi: 10.1016/j.jiph.2013.09.005 pmid: 24231159 |
[8] |
ROADY L. The role of ATP luminometers in infection control. Infection Control and Hospital Epidemiology, 2015, 36(11): 1367. doi: 10.1017/ice.2015.209.
doi: 10.1017/ice.2015.209 pmid: 26387800 |
[9] |
ZHANG K J, PAN R J, ZHANG T Q, XU J, ZHOU X Y, YANG Y L. A novel method: Using an adenosine triphosphate (ATP) luminescence- based assay to rapidly assess the biological stability of drinking water. Applied Microbiology and Biotechnology, 2019, 103(11): 4269-4277. doi: 10.1007/s00253-019-09774-3.
doi: 10.1007/s00253-019-09774-3 |
[10] |
HAMMES F, GOLDSCHMIDT F, VITAL M, WANG Y, EGLI T. Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments. Water Research, 2010, 44(13): 3915-3923. doi: 10.1016/j.watres.2010.04.015.
doi: 10.1016/j.watres.2010.04.015 pmid: 20605621 |
[11] |
BAUTISTA D A. ATP Bioluminescence. Encyclopedia of Food Microbiology. 2nd ed. 2014: 97-104. doi: 10.1016/B978-0-12-384730-0.00013-6.
doi: 10.1016/B978-0-12-384730-0.00013-6 |
[12] |
舒柏华, 孙丹陵, 王胜利, 徐顺清. 肉类食品细菌污染生物发光快速分析技术研究. 中国公共卫生, 2003, 19(4): 483-484. doi: 10.3321/j.issn:1001-0580.2003.04.049.
doi: 10.3321/j.issn:1001-0580.2003.04.049 |
SHU B H, SUN D L, WANG S L, XU S Q. Rapid bioluminescent technique to detect bacteria in meat. Chinese Journal of Public Health, 2003, 19(4): 483-484. doi: 10.3321/j.issn:1001-0580.2003.04.049. (in Chinese)
doi: 10.3321/j.issn:1001-0580.2003.04.049 |
|
[13] |
RATPHITAGSANTI W, PARK E, LEE C S, WU R Y A, LEE J. High-throughput detection of spore contamination in food packages and food powders using tiered approach of ATP bioluminescence and real-time PCR. LWT-Food Science and Technology, 2012, 46(1): 341-348. doi: 10.1016/j.lwt.2011.09.003.
doi: 10.1016/j.lwt.2011.09.003 |
[14] |
WADHAWAN T, MVEVOY J, PRUSS B M, KHAN E. Assessing tetrazolium and ATP assays for rapid in situ viability quantification of bacterial cells entrapped in hydrogel beads. Enzyme and Microbial Technology, 2010, 47(4): 166-173. doi: 10.1016/j.enzmictec.2010.05.003.
doi: 10.1016/j.enzmictec.2010.05.003 |
[15] | 李海月. ATP荧光技术快速检测8种常见食源性致病菌研究[D]. 郑州: 河南工业大学, 2017. |
LI H Y. Study on rapid detection of eight kinds of food-born Pathogen by Luminescence method[D]. Zhengzhou: Henan University of Technology, 2017. (in Chinese) | |
[16] |
BAUTISTA D A, SPRUNG D W, BARBUT S, GRIFFITHS M W. A sampling regime based on an ATP bioluminescence assay to assess the quality of poultry carcasses at critical control points during processing. Food Research International, 1997, 30(10): 803-809. doi: 10.1016/S0963-9969(98)00049-0.
doi: 10.1016/S0963-9969(98)00049-0 |
[17] |
OTO N, OSHITA S, MAKINO Y, KAWAGOE Y, SUGIYAMA J, YOSHIMURA M.Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy. Meat Science, 2013, 93(3): 579-585. doi: 10.1016/j.meatsci.2012.11.010.
doi: 10.1016/j.meatsci.2012.11.010 pmid: 23273467 |
[18] |
SZERMAN N, RAO W L, LI X, YANG Y, VAUDAGNA S R, DE QUAN ZHANG. Effects of the application of dense phase carbon dioxide treatments on technological parameters, physicochemical and textural properties and microbiological quality of lamb sausages. Food Engineering Reviews, 2015, 7(2): 241-249. doi: 10.1007/s12393-014-9092-9.
doi: 10.1007/s12393-014-9092-9 |
[19] |
LI X, ZHANG Y, LI Z, LI M, LIU Y, ZHANG D. The effect of temperature in the range of -0.8 to 4℃ on lamb meat color stability. Meat Science, 2017, 134: 28-33. doi: 10.1016/j.meatsci.2017.07.010.
doi: 10.1016/j.meatsci.2017.07.010 |
[20] | 王柏辉, 韩利伟, 王德宝, 杜瑞, 刘畅, 要铎, 任军, 靳烨. 绒山羊宰后成熟过程中羊肉品质和风味的变化分析. 食品工业科技, 2020(8): 230-235. |
WANG B H, HAN L W, WANG D B, DU R, LIU C, YAO D, REN J, JIN Y. Analysis of change of quality and flavor in cashmere goat meat during postmortem aging. Science and Technology of Food Industry, 2020(8): 230-235. (in Chinese) | |
[21] |
罗晓蓉, 陈晨枫, 丁欲晓, 徐炜新. 基于Origin软件正确评定韧脆性转变温度. 物理测试, 2010, 28(2): 37-39, 43. doi: 10.13228/j.boyuan.issn1001-0777.2010.02.005.
doi: 10.13228/j.boyuan.issn1001-0777.2010.02.005 |
LUO X R, CHEN C F, DING Y X, XU W X. Evaluation of ductile-brittle transition temperature based on origin software. Physics Examination and Testing, 2010, 28(2): 37-39, 43. doi: 10.13228/j.boyuan.issn1001-0777.2010.02.005. (in Chinese)
doi: 10.13228/j.boyuan.issn1001-0777.2010.02.005 |
|
[22] | 柏松, 杨英. 食品微生物检验检测中的新技术研究. 现代食品, 2019(10): 173-175. |
BAI S, YANG Y. Study on new technologies in food microbial inspection and detection. Modern Food, 2019(10): 173-175. (in Chinese) | |
[23] |
SKOTTRUP P D, NICOLAISEN M, JUSTESEN A F.Towards on-site pathogen detection using antibody-based sensors. Biosensors & Bioelectronics, 2008, 24(3): 339-348. doi: 10.1016/j.bios.2008.06.045.
doi: 10.1016/j.bios.2008.06.045 |
[24] | 胡斐斐, 钱书意, 黄峰, 姜薇, 强宇, 江峰, 胡海梅, 李侠, 张春晖. 低压静电场辅助短期冻藏对猪肉品质的影响. 中国农业科学, 2021, 54(9): 1993-2005. |
HU F F, QIAN S Y, HUANG F, JIANG W, QIANG Y, JIANG F, HU H M, LI X, ZHANG C H. Effect of low voltage electrostatic field-assisted short-term frozen storage on quality of pork. Scientia Agricultura Sinica, 2021, 54(9): 1993-2005. (in Chinese) | |
[25] | 杜曼婷, 李培迪, 李欣, 李铮, 陈丽, 田建文, 张德权. 冰温贮藏结合不同包装方式对羊肉品质的影响. 食品工业科技, 2016, 37(14): 324-328, 343. |
DU M T, LI P D, LI X, LI Z, CHEN L, TIAN J W, ZHANG D Q. Effects of controlled freezing point combined with package on mutton quality during storage. Science and Technology of Food Industry, 2016, 37(14): 324-328, 343. (in Chinese) | |
[26] |
HUDSON N J. Mitochondrial treason: A driver of pH decline rate in post-mortem muscle? Animal Production Science, 2012, 52(12): 1107-1110. doi: 10.1071/AN12171.
doi: 10.1071/AN12171 |
[27] |
HUFF LONERGAN E, ZHANG W G, LONERGAN S M. Biochemistry of postmortem muscle-lessons on mechanisms of meat tenderization. Meat Science, 2010, 86(1): 184-195. doi: 10.1016/j.meatsci.2010.05.004.
doi: 10.1016/j.meatsci.2010.05.004 |
[28] |
ALIANI M, FARMER L J, KENNEDY J T, MOSS B W, GORDON A. Post-slaughter changes in ATP metabolites, reducing and phosphorylated sugars in chicken meat. Meat Science, 2013, 94(1): 55-62. doi: 10.1016/j.meatsci.2012.11.032.
doi: 10.1016/j.meatsci.2012.11.032 pmid: 23376434 |
[29] | 任驰. 贮藏温度和时间对宰后羊肉蛋白质磷酸化的影响[D]. 北京: 中国农业科学院, 2019. |
REN C. Effects of storage temperature and time on protein phosphorylation in postmortem ovine muscle[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) | |
[30] |
YOSHIHIRO Y, MORIHIKO S, FUMIO K, MASAO K. Effects of storage temperature on postmortem changes of ATP and its related compounds and freshness indices in oyster tissues. Fisheries Science, 1994, 60(2): 217-223. doi: 10.2331/fishsci.60.217.
doi: 10.2331/fishsci.60.217 |
[31] |
LIU Z N, ZHONG Y H, HU Y, YUAN L, LUO R, CHEN D, WU M, HUANG H, LI Y X. Fluorescence strategy for sensitive detection of adenosine triphosphate in terms of evaluating meat freshness. Food Chemistry, 2019, 270: 573-578. doi: 10.1016/j.foodchem.2018.07.041.
doi: S0308-8146(18)31180-4 pmid: 30174088 |
[32] |
OSHITA S, AL-HAQ M, KAWAGISHI S, MAKINO Y, KAWAGOE Y, YE X J, SHINOZAKI S, HIRUMA N. Monitoring of ATP and viable cells on meat surface by UV-Vis reflectance spectrum analysis. Journal of Food Engineering, 2011, 107(2): 262-267. doi: 10.1016/j.jfoodeng.2011.06.007.
doi: 10.1016/j.jfoodeng.2011.06.007 |
[33] |
SHIRAI H, OSHITA S, MAKINO Y. Detection of fluorescence signals from ATP in the second derivative excitation-emission matrix of a pork meat surface for cleanliness evaluation. Journal of Food Engineering, 2016, 168: 173-179. doi: 10.1016/j.jfoodeng.2015.07.032.
doi: 10.1016/j.jfoodeng.2015.07.032 |
[34] |
OTO N, OSHITA S, KAWAGISHI S, MAKINO Y, KAWAGOE Y, AL-HAQ M, SHINOZAKI S, HIRUMA N. Non-destructive estimation of ATP contents and plate count on pork meat surface by UV-Vis reflectance spectrum analysis. Journal of Food Engineering, 2012, 110(1): 9-17. doi: 10.1016/j.jfoodeng.2011.12.017.
doi: 10.1016/j.jfoodeng.2011.12.017 |
[1] | 相玉婷, 王晓龙, 胡新中, 任长忠, 郭来春, 李璐. 燕麦品种间脂肪酶活性差异及低脂肪酶优质品种的预测[J]. 中国农业科学, 2022, 55(21): 4104-4117. |
[2] | 颜统晶,张德权,李欣,刘欢,方菲,刘珊珊,王素,侯成立. 超快速冷却对冷鲜羊肉风味品质的影响[J]. 中国农业科学, 2022, 55(15): 3029-3041. |
[3] | 陶晡, 齐永志, 屈赟, 曹志艳, 赵绪生, 甄文超. 基于增强回归树的海河平原小麦赤霉病预测模型构建与验证[J]. 中国农业科学, 2021, 54(18): 3860-3870. |
[4] | 柳艳霞,王振宇,郑晓春,朱瑶迪,陈丽,张德权. 基于品质指标预测北京烤鸭的中心温度[J]. 中国农业科学, 2020, 53(8): 1655-1663. |
[5] | 项方林,李鑫格,马吉锋,刘小军,田永超,朱艳,曹卫星,曹强. 基于冠层时序植被指数的冬小麦单产预测[J]. 中国农业科学, 2020, 53(18): 3679-3692. |
[6] | 富丽霞,马涛,刁其玉,成述儒,宋雅喆,孙卓琳. 肉羊精料可代谢蛋白质预测模型的建立[J]. 中国农业科学, 2019, 52(3): 539-549. |
[7] | 何俊,田昕竹,王学东,刘彬,李宁,郑涵,孟楠,陈世宝. 基于根微形态测定土壤Zn对大麦的毒性阈值及其预测模型[J]. 中国农业科学, 2017, 50(7): 1263-1270. |
[8] | 李佳楠,杨薇,彭娜,陈禅友. 菜豆毒性分析及毒性预测模型建立[J]. 中国农业科学, 2015, 48(4): 727-734. |
[9] | 宋文恩,陈世宝. 基于水稻根伸长的不同土壤中镉(Cd)毒性阈值(ECx)及预测模型[J]. 中国农业科学, 2014, 47(17): 3434-3443. |
[10] | 王辉, 孙琦, 刘鹭, 张书文, 段玉权, 吕加平. UHT乳货架期预测模型的建立及检验[J]. 中国农业科学, 2013, 46(3): 586-594. |
[11] | 江海洋,吴聪明,丁双阳,赵思俊,徐飞,李建成,夏曦,刘金凤,沈建忠 . 牛皮下注射爱普菌素注射剂后组织残留预测模型研究[J]. 中国农业科学, 2010, 43(13): 2813-2819 . |
[12] | 黄芬,朱艳,姜东,荆奇,曹卫星 . 基于模型与GIS的小麦籽粒品质空间差异分析[J]. 中国农业科学, 2009, 42(9): 3087-3095 . |
[13] | 徐新福,唐章林,李加纳,柴友荣,王瑞,谌利. 基于加性-显性效应的杂种表现分子标记预测模型[J]. 中国农业科学, 2008, 41(10): 2963-2972 . |
[14] | 杨再强,罗卫红,陈发棣,顾俊杰,李向茂,丁琪峰,赵才标,陆亚凡. 温室标准切花菊叶面积预测模型研究[J]. 中国农业科学, 2007, 40(11): 2569-2574 . |
[15] | 潘洁,曹卫星. 基于气候因子效应的冬小麦籽粒蛋白质含量预测模型[J]. 中国农业科学, 2005, 38(04): 684-691 . |
|