[1] |
刘鑫, 李振, 邓世阳, 顾岳清, 黄媛, 刘杨, 李东锋, 卢元鹏, 韦伟, 陈杰, 张立凡. 二花脸猪种质特性的分子基础研究进展. 畜牧与兽医, 2016, 48(12): 109-113.
|
|
LIU X, LI Z, DENG S Y, GU Y Q, HUANG Y, LIU Y, LI D F, LU Y P, WEI W, CHEN J, ZHANG L F. Research Progress on molecular basis of Erhualian pig germplasm characteristics. Animal Husbandry & Veterinary Medicine, 2016, 48(12): 109-113. (in Chinese)
|
[2] |
吴梦, 刘雪芹, 刘子嘉, 肖普英, 丁玉春, 刘作华, 葛良鹏. 猪精液超低温冷冻保存研究进展. 中国畜牧杂志, 2019, 55(7): 35-40. doi:10.19556/j.0258-7033.2019-07-035.
doi: 10.19556/j.0258-7033.2019-07-035
|
|
WU M, LIU X Q, LIU Z J, XIAO P Y, DING Y C, LIU Z H, GE L P. Research progress on cryopreservation of boar semen. Chinese Journal of Animal Science, 2019, 55(7): 35-40. doi:10.19556/j.0258-7033.2019-07-035. (in Chinese)
doi: 10.19556/j.0258-7033.2019-07-035
|
[3] |
YESTE M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology, 2016, 85(1): 47-64. doi:10.1016/j.theriogenology.2015.09.047.
doi: 10.1016/j.theriogenology.2015.09.047
pmid: 26506124
|
[4] |
WATSON P F. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reproduction, Fertility, and Development, 1995, 7(4): 871-891. doi:10.1071/rd9950871.
doi: 10.1071/rd9950871
pmid: 8711221
|
[5] |
MAŃKOWSKA A, BRYM P, PAUKSZTO Ł, JASTRZĘBSKI J P, FRASER L. Gene polymorphisms in boar spermatozoa and their associations with post-thaw semen quality. International Journal of Molecular Sciences, 2020, 21(5): 1902. doi:10.3390/ijms21051902.
doi: 10.3390/ijms21051902
|
[6] |
FRASER L, BRYM P, PAREEK C S, MOGIELNICKA-BRZOZOWSKA M, PAUKSZTO Ł, JASTRZĘBSKI J P, WASILEWSKA-SAKOWSKA K, MAŃKOWSKA A, SOBIECH P, ŻUKOWSKI K. Transcriptome analysis of boar spermatozoa with different freezability using RNA- Seq. Theriogenology, 2020, 142: 400-413. doi:10.1016/j.theriogenology.2019.11.001.
doi: 10.1016/j.theriogenology.2019.11.001
|
[7] |
PEDROSA A C, ANDRADE TORRES M, VILELA ALKMIN D, PINZON J E P, KITAMURA MARTINS S M M, COELHO DA SILVEIRA J, FURUGEN CESAR DE ANDRADE A. Spermatozoa and seminal plasma small extracellular vesicles miRNAs as biomarkers of boar semen cryotolerance. Theriogenology, 2021, 174: 60-72. doi:10.1016/j.theriogenology.2021.07.022.
doi: 10.1016/j.theriogenology.2021.07.022
pmid: 34419697
|
[8] |
CASAS I, SANCHO S, BALLESTER J, BRIZ M, PINART E, BUSSALLEU E, YESTE M, FÀBREGA A, RODRÍGUEZ-GIL J E, BONET S. The HSP90AA1 sperm content and the prediction of the boar ejaculate freezability. Theriogenology, 2010, 74(6): 940-950. doi:10.1016/j.theriogenology.2010.04.021.
doi: 10.1016/j.theriogenology.2010.04.021
pmid: 20580074
|
[9] |
PRIETO-MARTÍNEZ N, VILAGRAN I, MORATÓ R, RIVERA DEL ÁLAMO M M, RODRÍGUEZ-GIL J E, BONET S, YESTE M. Relationship of aquaporins 3 (AQP3), 7 (AQP7), and 11 (AQP11) with boar sperm resilience to withstand freeze-thawing procedures. Andrology, 2017, 5(6): 1153-1164. doi:10.1111/andr.12410.
doi: 10.1111/andr.12410
|
[10] |
LLAVANERA M, DELGADO-BERMÚDEZ A, FERNANDEZ- FUERTES B, RECUERO S, MATEO Y, BONET S, BARRANCO I, YESTE M. GSTM3, but not IZUMO1, is a cryotolerance marker of boar sperm. Journal of Animal Science and Biotechnology, 2019, 10: 61. doi:10.1186/s40104-019-0370-5.
doi: 10.1186/s40104-019-0370-5
pmid: 31391940
|
[11] |
GUIMARÃES D B, BARROS T B, VAN TILBURG M F, MARTINS J A M, MOURA A A, MORENO F B, MONTEIRO-MOREIRA A C, MOREIRA R A, TONIOLLI R. Sperm membrane proteins associated with the boar semen cryopreservation. Animal Reproduction Science, 2017, 183: 27-38. doi:10.1016/j.anireprosci.2017.06.005.
doi: S0378-4320(16)30761-8
pmid: 28662881
|
[12] |
王欣悦, 石田培, 赵志达, 胡文萍, 尚明玉, 张莉. 基于绵羊胚胎骨骼肌蛋白质组学的PI3K-AKT信号通路分析. 中国农业科学, 2020, 53(14): 2956-2963. doi:10.3864/j.issn.0578-1752.2020.14.018.
doi: 10.3864/j.issn.0578-1752.2020.14.018
|
|
WANG X Y, SHI T P, ZHAO Z D, HU W P, SHANG M Y, ZHANG L. The analysis of PI3K-AKT signal pathway based on the proteomic results of sheep embryonic skeletal muscle. Scientia Agricultura Sinica, 2020, 53(14): 2956-2963. doi:10.3864/j.issn.0578-1752.2020.14.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.14.018
|
[13] |
刘锴栋, 莫亿伟, 冯少娴, 吴婉仪, 黎海利, 钟军弟, 袁长春. 番荔枝花发育不同阶段的差异蛋白质组分析. 中国农业科学, 2018, 51(1): 149-159. doi:10.3864/j.issn.0578-1752.2018.01.014.
doi: 10.3864/j.issn.0578-1752.2018.01.014
|
|
LIU K D, MO Y W, FENG S X, WU W Y, LI H L, ZHONG J D, YUAN C C. Comparative proteomic analysis in different developmental stages of sugar-apple (Annona squamosa L.) flowers. Scientia Agricultura Sinica, 2018, 51(1): 149-159. doi:10.3864/j.issn.0578-1752.2018.01.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.01.014
|
[14] |
REGO J P A, MARTINS J M, WOLF C A, VAN TILBURG M, MORENO F, MONTEIRO-MOREIRA A C, MOREIRA R A, SANTOS D O, MOURA A A. Proteomic analysis of seminal plasma and sperm cells and their associations with semen freezability in Guzerat bulls. Journal of Animal Science, 2016, 94(12): 5308-5320. doi:10.2527/jas.2016-0811.
doi: 10.2527/jas.2016-0811
pmid: 28046165
|
[15] |
VAZQUEZ J M, MARTINEZ E A, MARTINEZ P, GARCIA-ARTIGA C, ROCA J. Hypoosmotic swelling of boar spermatozoa compared to other methods for analysing the sperm membrane. Theriogenology, 1997, 47(4): 913-922. doi:10.1016/S0093-691X(97)00046-0.
doi: 10.1016/S0093-691X(97)00046-0
pmid: 16728040
|
[16] |
SHAN X, YU T, YAN X, WU J L, FAN Y N, GUAN X Y, FANG F G, LIN Y H, ZHANG Y H, LI Y S, LIU Y. Proteomic analysis of healthy and atretic porcine follicular granulosa cells. Journal of Proteomics, 2021, 232: 104027. doi:10.1016/j.jprot.2020.104027.
doi: 10.1016/j.jprot.2020.104027
|
[17] |
MANDAL R, BADYAKAR D, CHAKRABARTY J. Role of membrane lipid fatty acids in sperm cryopreservation. Advances in Andrology, 2014, 2014: 190542. doi:10.1155/2014/190542.
doi: 10.1155/2014/190542
|
[18] |
LLAVANERA M, DELGADO-BERMÚDEZ A, OLIVES S, MATEO-OTERO Y, RECUERO S, BONET S, FERNÁNDEZ- FUERTES B, YESTE M, BARRANCO I. Glutathione S-transferases play a crucial role in mitochondrial function, plasma membrane stability and oxidative regulation of mammalian sperm. Antioxidants (Basel, Switzerland), 2020, 9(2): 100. doi:10.3390/antiox9020100.
doi: 10.3390/antiox9020100
|
[19] |
GOMES F P, PARK R, VIANA A G, FERNANDEZ-COSTA C, TOPPER E, KAYA A, MEMILI E, YATES J R, MOURA A A. Protein signatures of seminal plasma from bulls with contrasting frozen- thawed sperm viability. Scientific Reports, 2020, 10: 14661. doi:10.1038/s41598-020-71015-9.
doi: 10.1038/s41598-020-71015-9
|
[20] |
NAGDAS S K, BUCHANAN T, RAYCHOUDHURY S. Identification of peroxiredoxin-5 in bovine cauda epididymal sperm. Molecular and Cellular Biochemistry, 2014, 387(1/2): 113-121. doi:10.1007/s11010- 013-1876-3.
doi: 10.1007/s11010- 013-1876-3
|
[21] |
WANG P, WANG Y F, WANG H, WANG C W, ZAN L S, HU J H, LI Q W, JIA Y H, MA G J. HSP 90 expression correlation with the freezing resistance of bull sperm. Zygote (Cambridge, England), 2014, 22(2): 239-245. doi:10.1017/S096719941300004X.
doi: 10.1017/S096719941300004X
|
[22] |
VINCE S, ŽAJA I Ž, SAMARDŽIJA M, BALIĆ I M, VILIĆ M, ĐURIČIĆ D, VALPOTIĆ H, MARKOVIĆ F, MILINKOVIĆ-TUR S. Age-related differences of semen quality, seminal plasma, and spermatozoa antioxidative and oxidative stress variables in bulls during cold and warm periods of the year. Animal, 2018, 12(3): 559-568. doi:10.1017/S1751731117001811.
doi: 10.1017/S1751731117001811
pmid: 28735578
|
[23] |
SOARES MORETTI A I, MARTINS LAURINDO F R. Protein disulfide isomerases: Redox connections in and out of the endoplasmic Reticulum. Archives of Biochemistry and Biophysics, 2017, 617: 106-119. doi:10.1016/j.abb.2016.11.007.
doi: 10.1016/j.abb.2016.11.007
|
[24] |
YU J, LI M, JI C L, LI X X, LI H J, LIU G Q, WANG Y T, LIU G Y, WANG T, CHE X N, LEI C Z, DANG R H, ZHAO F W. Comparative proteomic analysis of seminal plasma proteins in relation to freezability of Dezhou donkey semen. Animal Reproduction Science, 2021, 231: 106794. doi:10.1016/j.anireprosci.2021.106794.
doi: 10.1016/j.anireprosci.2021.106794
|
[25] |
WANG W L, TU C F, TAN Y Q. Insight on multiple morphological abnormalities of sperm flagella in male infertility: What is new? Asian Journal of Andrology, 2020, 22(3): 236-245. doi:10.4103/aja.aja_53_19.
doi: 10.4103/aja.aja_53_19
|
[26] |
STIVAL C, DEL C PUGA MOLINA L, PAUDEL B, BUFFONE M G, VISCONTI P E, KRAPF D. Sperm capacitation and acrosome reaction in mammalian sperm. Advances in Anatomy, Embryology, and Cell Biology, 2016, 220: 93-106. doi:10.1007/978-3-319-30567-7_5.
doi: 10.1007/978-3-319-30567-7_5
|
[27] |
KHAN I M, CAO Z B, LIU H Y, KHAN A, RAHMAN S U, KHAN M Z, SATHANAWONGS A, ZHANG Y H. Impact of cryopreservation on spermatozoa freeze-thawed traits and relevance OMICS to assess sperm cryo-tolerance in farm animals. Frontiers in Veterinary Science, 2021, 8: 609180. doi:10.3389/fvets.2021.609180.
doi: 10.3389/fvets.2021.609180
|
[28] |
HUANG Z H, DANSHINA P V, MOHR K, QU W D, GOODSON S G, O’CONNELL T M, O’BRIEN D A. Sperm function, protein phosphorylation, and metabolism differ in mice lacking successive sperm-specific glycolytic enzymes. Biology of Reproduction, 2017, 97(4): 586-597. doi:10.1093/biolre/iox103.
doi: 10.1093/biolre/iox103
pmid: 29025010
|
[29] |
VILAGRAN I, CASTILLO J, BONET S, SANCHO S, YESTE M, ESTANYOL J M, OLIVA R. Acrosin-binding protein (ACRBP) and triosephosphate isomerase (TPI) are good markers to predict boar sperm freezing capacity. Theriogenology, 2013, 80(5): 443-450. doi:10.1016/j.theriogenology.2013.05.006.
doi: 10.1016/j.theriogenology.2013.05.006
pmid: 23768753
|
[30] |
ZHU W H, YANG M, SHANG J N, XU Y L, WANG Y L, TAO Q Q, ZHANG L, DING Y Y, CHEN Y G, ZHAO D D, WANG C L, CHU M X, YIN Z J, ZHANG X D. miR-222 inhibits apoptosis in porcine follicular granulosa cells by targeting the THBS1 gene. Animal Science Journal, 2019, 90(6): 719-727. doi:10.1111/asj.13208.
doi: 10.1111/asj.13208
|
[31] |
D'AMOURS O, FRENETTE G, BORDELEAU L J, ALLARD N, LECLERC P, BLONDIN P, SULLIVAN R. Epididymosomes transfer epididymal sperm binding protein 1 (ELSPBP1) to dead spermatozoa during epididymal transit in bovine. Biology of Reproduction, 2012, 87(4): 94, 1-11. doi:10.1095/biolreprod.112.100990.
doi: 10.1095/biolreprod.112.100990
|
[32] |
HELLMAN N E, GITLIN J D. Ceruloplasmin metabolism and function. Annual Review of Nutrition, 2002, 22: 439-458. doi:10.1146/annurev.nutr.22.012502.114457.
doi: 10.1146/annurev.nutr.22.012502.114457
pmid: 12055353
|
[33] |
LEUNG P S, SERNIA C. The renin-angiotensin system and male reproduction: new functions for old hormones. Journal of Molecular Endocrinology, 2003, 30(3): 263-270. doi:10.1677/jme.0.0300263.
doi: 10.1677/jme.0.0300263
pmid: 12790798
|
[34] |
GIANZO M, SUBIRÁN N. Regulation of male fertility by the renin-angiotensin system. International Journal of Molecular Sciences, 2020, 21(21): 7943. doi:10.3390/ijms21217943.
doi: 10.3390/ijms21217943
|