中国农业科学 ›› 2022, Vol. 55 ›› Issue (8): 1568-1578.doi: 10.3864/j.issn.0578-1752.2022.08.008
王思彤1(),陈艳1,罗雨嘉1,杨缘缘1,蒋志洋2,蒋鑫怡1,钟樊1,陈好1,徐红星3,吴俨4,段红霞2(),唐斌1()
收稿日期:
2021-11-14
接受日期:
2021-12-30
出版日期:
2022-04-16
发布日期:
2022-05-11
联系方式:
王思彤,E-mail: wst20010225@163.com。
基金资助:
WANG SiTong1(),CHEN Yan1,LUO YuJia1,YANG YuanYuan1,JIANG ZhiYang2,JIANG XinYi1,ZHONG Fan1,CHEN Hao1,XU HongXing3,WU Yan4,DUAN HongXia2(),TANG Bin1()
Received:
2021-11-14
Accepted:
2021-12-30
Published:
2022-04-16
Online:
2022-05-11
摘要:
【目的】几丁质是昆虫外骨骼和围食膜的主要成分,其合成始于海藻糖酶(trehalase,TRE),终于几丁质合成酶(chitin synthase,CHS),蜕皮与外表皮重塑过程则需要依靠几丁质酶(chitinase,CHT)完成。本研究通过注射3种新型化合物,检测草地贪夜蛾(Spodoptera frugiperda)体内海藻糖酶和几丁质酶活性、相关基因表达量并观察其生长发育,验证新型化合物对海藻糖酶及几丁质酶的抑制效果,对效果显著的化合物进行筛选,探究其调控草地贪夜蛾生长发育的机理。【方法】利用显微注射法向草地贪夜蛾3龄幼虫分别注射丁烯内酯类化合物ZK-I-21、ZK-I-23和胡椒碱类似物ZK-PI-4。注射后48 h检测其海藻糖酶活性、几丁质酶活性及相关糖含量的变化情况,并利用实时荧光定量PCR(qRT-PCR)在分子水平上测定4个关键基因(SfTRE1、SfTRE2、SfCHS2、SfCHT)的相对表达量;观察注射后草地贪夜蛾幼虫至成虫期间的表型变化,记录发育过程中的死亡率及畸形情况。【结果】与对照组相比,注射ZK-I-21和ZK-PI-4后草地贪夜蛾膜结合型海藻糖酶活性分别为极显著下降(P<0.01)和显著下降(P<0.05)。qRT-PCR检测结果显示,注射ZK-I-21后SfTRE1表达量极显著上升,SfCHT表达量极显著下降;注射ZK-I-23后SfTRE1表达量极显著下降,SfCHT表达量极显著上升;注射ZK-PI-4后SfCHT表达量极显著下降。发育历期观察结果显示,ZK-I-21使草地贪夜蛾6龄幼虫发育历期极显著延长,同时蛹重变轻、蛹长变短;ZK-I-23使5龄和6龄幼虫长度显著缩短;ZK-PI-4使成虫羽化率显著降低。3种抑制剂均可紊乱草地贪夜蛾的海藻糖代谢进而紊乱几丁质代谢,造成草地贪夜蛾蜕皮困难甚至死亡。【结论】ZK-I-21与ZK-PI-4是膜结合型海藻糖酶抑制化合物,ZK-I-23可抑制可溶性海藻糖酶基因的表达,3种化合物均通过影响海藻糖代谢过程进而导致几丁质代谢的紊乱,导致昆虫蜕皮困难、畸形、生长发育受影响。以上结果可为将来利用新型抑制剂调控害虫生长发育从而防控害虫提供理论依据,为绿色、高效杀虫剂的研发提供支持。
王思彤,陈艳,罗雨嘉,杨缘缘,蒋志洋,蒋鑫怡,钟樊,陈好,徐红星,吴俨,段红霞,唐斌. 三种新型化合物对草地贪夜蛾海藻糖与几丁质代谢及生长发育的影响[J]. 中国农业科学, 2022, 55(8): 1568-1578.
WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda[J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
表2
实时荧光定量PCR检测基因引物序列"
基因 Gene | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) | 基因序列号 GenBank number |
---|---|---|---|
SfTRE1 | TCAGATGAAGGTGAACTCGAAGA | GGAATGATGAATCCGTGGGTA | XP_035432686.1 |
SfTRE2 | CTGCTGCTGTCGGAGATGA | TAGGAGGGGAGGCTGTGAT | ACF94698.1 |
SfCHS2 | GAGTTCACAGTGCGGTTGC | GCCAAAATAGCCCACATCC | AAS12599.1 |
SfCHT | AAGCGGACAGCAAAGCG | CCAACTCAGGGTCAATAATAAGAAC | AAS18266.1 |
RPL10 | GACTTGGGTAAGAAGAAG | GATGACATGGAATGGATG |
[1] |
TODD E L, POOLE R W. Keys and illustrations for the armyworm moths of the noctuid genus Spodoptera Guenée from the Western hemisphere. Annals of the Entomological Society of America, 1980, 73(6): 722-738.
doi: 10.1093/aesa/73.6.722 |
[2] | 姜玉英, 刘杰, 谢茂昌, 李亚红, 杨俊杰, 张曼丽, 邱坤. 2019年我国草地贪夜蛾扩散为害规律观测. 植物保护, 2019, 45(6): 10-19. |
JIANG Y Y, LIU J, XIE M C, LI Y H, YANG J J, ZHANG M L, QIU K. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Protection, 2019, 45(6): 10-19. (in Chinese) | |
[3] | 孙晓飞. 草地贪夜蛾的形态特征与防治方法. 现代农业, 2019(12): 46-47. |
SUN X F. Morphological characteristics and control methods of Spodoptera frugiperda. Modern Agriculture, 2019(12): 46-47. (in Chinese) | |
[4] |
MONTEZANO D G, SPECHT A, SOSA-GÓMEZ D R, ROQUE- SPECHT V F, SOUSA-SILVA J C, PAULA-MORAES S V, PETERSON J A, HUNT T E. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 2018, 26(2): 286-300.
doi: 10.4001/003.026.0286 |
[5] | 张智, 林培炯, 陈智勇, 巴吐西, 姜玉英, 穆常青, 郭书臣, 王绍林, 卢润刚, 祁俊锋, 张云慧. 小麦中后期草地贪夜蛾为害特征观察. 植物保护, 2021, 47(5): 297-301. |
ZHANG Z, LIN P J, CHEN Z Y, BATUXI, JIANG Y Y, MU C Q, GUO S C, WANG S L, LU R G, QI J F, ZHANG Y H. Observation on the damage characteristics of Spodoptera frugiperda to wheat in middle and late stages. Plant Protection, 2021, 47(5): 297-301. (in Chinese) | |
[6] | 张建珍. 昆虫几丁质代谢与植物保护. 中国农业科学, 2014, 47(7): 1301-1302. |
ZHANG J Z. Insect chitin metabolism and plant protection. Scientia Agricultura Sinica, 2014, 47(7): 1301-1302. (in Chinese) | |
[7] |
ZHONG H Y, WEI C, ZHANG Y L. Gross morphology and ultrastructure of salivary glands of the mute cicada Karenia caelatata Distant (Hemiptera: Cicadoidea). Micron, 2013, 45: 83-91.
doi: 10.1016/j.micron.2012.10.019 |
[8] |
ZHU K Y, MERZENDORFER H, ZHANG W, ZHANG J, MUTHUKRISHNAN S. Biosynthesis, turnover, and functions of chitin in insects. Annual Review of Entomology, 2016, 61: 177-196.
doi: 10.1146/annurev-ento-010715-023933 |
[9] | 唐斌, 魏苹, 陈洁, 王世贵, 张文庆. 昆虫海藻糖酶的基因特性及功能研究进展. 昆虫学报, 2012, 55(11): 1315-1321. |
TANG B, WEI P, CHEN J, WANG S G, ZHANG W Q. Progress in gene features and functions of insect trehalases. Acta Entomologica Sinica, 2012, 55(11): 1315-1321. (in Chinese) | |
[10] | 刘晓健, 孙亚文, 崔淼, 马恩波, 张建珍. 飞蝗海藻糖酶基因的分子特性及功能. 中国农业科学, 2016, 49(22): 4375-4386. |
LIU X J, SUN Y W, CUI M, MA E B, ZHANG J Z. Molecular characteristics and functional analysis of trehalase genes in Locusta migratoria. Scientia Agricultura Sinica, 2016, 49(22): 4375-4386. (in Chinese) | |
[11] | 张文庆, 陈晓菲, 唐斌, 田宏刚, 陈洁, 姚琼. 昆虫几丁质合成及其调控研究前沿. 应用昆虫学报, 2011, 48(3): 475-479. |
ZHANG W Q, CHEN X F, TANG B, TIAN H G, CHEN J, YAO Q. Insect chitin biosynthesis and its regulation. Chinese Journal of Applied Entomology, 2011, 48(3): 475-479. (in Chinese) | |
[12] | KRAMER K J, DZIADIK-TURNER C, KOGA D. Chitin metabolism in insects//Comprehensive Insect Physiology Biochemistry Pharmacology, 1985, 3: 75-115. |
[13] | KRAMER K J, MUTHUKRISHNAN S. Chitin metabolism in insects//Comprehensive Molecular Insect Science, 2005, 4: 111-144. |
[14] |
AVONCE N, MENDOZA-VARGAS A, MORETT E, ITURRIAGA G. Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology, 2006, 6: 109.
doi: 10.1186/1471-2148-6-109 |
[15] | CHEN J, TANG B, CHEN H, YAO Q, HUANG X, CHEN J, ZHANG D, ZHANG W. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS ONE, 2010, 5(4): e10133. |
[16] |
ARAKANE Y, MUTHUKRISHNAN S. Insect chitinase and chitinase-like proteins. Cellular and Molecular Life Sciences, 2010, 67(2): 201-216.
doi: 10.1007/s00018-009-0161-9 |
[17] | 唐斌, 张露, 熊旭萍, 汪慧娟, 王世贵. 海藻糖代谢及其调控昆虫几丁质合成研究进展. 中国农业科学, 2018, 51(4): 697-707. |
TANG B, ZHANG L, XIONG X P, WANG H J, WANG S G. Advances in trehalose metabolism and its regulation of insect chitin synthesis. Scientia Agricultura Sinica, 2018, 51(4): 697-707. (in Chinese) | |
[18] | 范柯琴, 金利群, 郑裕国. 海藻糖酶的酶学特性及其作为新农药靶标的开发应用. 化学与生物工程, 2009, 26(4): 7-11. |
FAN K Q, JIN L Q, ZHENG Y G. The enzymatic properties of trehalase and its exploitation as a target of new pesticides. Chemistry and Bioengineering, 2009, 26(4): 7-11. (in Chinese) | |
[19] |
WEGENER G, MACHO C, SCHLÖDER P, KAMP G, ANDO O. Long-term effects of the trehalase inhibitor trehazolin on trehalase activity in locust flight muscle. The Journal of Experimental Biology, 2010, 213(22): 3852-3857.
doi: 10.1242/jeb.042028 |
[20] | 王军娥, 刘静. 昆虫海藻糖酶的研究进展. 贵州农业科学, 2009, 37(4): 88-90. |
WANG J E, LIU J. Research progress of insect trehalase. Guizhou Agricultural Sciences, 2009, 37(4): 88-90. (in Chinese) | |
[21] |
IWASA T, HIGASHIDE E, YAMAMOTO H, SHIBATA M. Studies on validamycins, new antibiotics. II. Production and biological properties of validamycins A and B. The Journal of Antibiotics, 1971, 24(2): 107-113.
doi: 10.7164/antibiotics.24.107 |
[22] |
NIWA T, INOUYE S, TSURUOKA T, KOAZE Y, NIIDA T. “Nojirimycin” as a potent inhibitor of glucosidase. Agricultural and Biological Chemistry, 1970, 34: 966-968.
doi: 10.1080/00021369.1970.10859713 |
[23] |
MATASSINI C, PARMEGGIANI C, CARDONA F. New frontiers on human safe insecticides and fungicides: An opinion on trehalase inhibitors. Molecules, 2020, 25(13): 3013.
doi: 10.3390/molecules25133013 |
[24] | 张婧瑜, 韩清, 蒋志洋, 李慧琳, 邓鸣飞, 朱凯, 李明君, 段红霞. 几丁质酶抑制剂及噻唑烷酮类化合物合成与农用活性研究进展. 农药学学报, 2021, 23(3): 421-437. |
ZHANG J Y, HAN Q, JIANG Z Y, LI H L, DENG M F, ZHU K, LI M J, DUAN H X. Chitinase inhibitors and synthesis and agricultural bioactivity of thiazolidinones: A review. Chinese Journal of Pesticide Science, 2021, 23(3): 421-437. (in Chinese) | |
[25] | SAGUEZ J, VINCENT C, GIORDANENGO P. Chitinase inhibitors and chitin mimetics for crop protection. Pest Technology, 2008, 2(2): 81-86. |
[26] |
GAYAKHE V, KAPDI A R, BOROZDINA Y, SCHULZKE C.Crystal structure of 5-(dibenzo-furan-4-yl)-2′-deoxy-uridine. Acta Crystallographica Section E. Crystallographic Communications, 2017, 73(10): 1493-1496.
doi: 10.1107/S2056989017013111 |
[27] |
MIKKELSEN N E, MUNCH-PETERSEN B, EKLUND H. Structural studies of nucleoside analog and feedback inhibitor binding to Drosophila melanogaster multisubstrate deoxyribonucleoside kinase. The FEBS Journal, 2008, 275(9): 2151-2160.
doi: 10.1111/j.1742-4658.2008.06369.x |
[28] | TANG B, YANG M, SHEN Q, XU Y, WANG H, WANG S. Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens. Pesticide Biochemistry and Physiology, 2017, 137: 81-90. |
[29] |
YANG M, ZHAO L, SHEN Q, XIE G, WANG S, TANG B. Knockdown of two trehalose-6-phosphate synthases severely affects chitin metabolism gene expression in the brown planthopper Nilaparvata lugens. Pest Management Science, 2017, 73(1): 206-216.
doi: 10.1002/ps.4287 |
[30] | GURUSAMY D, MOGILICHERLA K, SHUKLA J N, PALLI S R. Lipids help double-stranded RNA in endosomal escape and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Archives of Insect Biochemistry and Physiology, 2020, 104(4): e21678. |
[31] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 |
[32] | 汪慧娟. 褐飞虱糖原合成酶与糖原磷酸化酶基因特性、功能鉴定与调控分析[D]. 杭州: 杭州师范大学, 2018. |
WANG H J. Genetic characteristics, functional identification and regulation analysis of glycogen synthase and glycogen phosphorylase in Nilaparvata lugens[D]. Hangzhou: Hangzhou Normal University, 2018. (in Chinese) | |
[33] | 于彩虹, 卢丹, 林荣华, 王晓军, 姜辉, 赵飞. 海藻糖--昆虫的血糖. 昆虫知识, 2008, 45(5): 832-837. |
YU C H, LU D, LIN R H, WANG X J, JIANG H, ZHAO F. Trehalose-the blood sugar in insects. Chinese Bulletin of Entomology, 2008, 45(5): 832-837. (in Chinese) | |
[34] |
ZHAO L N, YANG M M, SHEN Q D, LIU X J, SHI Z K, WANG S G, TANG B. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference. Scientific Reports, 2016, 6: 27841.
doi: 10.1038/srep27841 |
[35] | 杨萌萌. 海藻糖酶及其抑制剂(validamycin)对褐飞虱海藻糖和几丁质代谢的调控研究[D]. 杭州: 杭州师范大学, 2016. |
YANG M M. Regulating effects of trehalase and its inhibitor (validamycin) on the trehalose and chitin metabolism in Nilaparvata lugens[D]. Hangzhou: Hangzhou Normal University, 2016. (in Chinese) | |
[36] |
LÓPEZ M, HERRERA-CERVERA J A, IRIBARNE C, TEJERA N A, LLUC YANG H C. Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: Nodule carbon metabolism. Journal of Plant Physiology, 2008, 165(6): 641-650.
doi: 10.1016/j.jplph.2007.05.009 |
[37] |
HIRAYAMA C, KONNO K, WASANO N, NAKAMURA M. Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: Enzymatic adaptation of Bombyx mori to mulberry defense. Insect Biochemistry and Molecular Biology, 2007, 37(12): 1348-1358.
doi: 10.1016/j.ibmb.2007.09.001 |
[38] |
MERZENDORFER H, ZIMOCH L. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. The Journal of Experimental Biology, 2003, 206(24): 4393-4412.
doi: 10.1242/jeb.00709 |
[39] | 李瑶, 范晓军. 昆虫几丁质酶及其在害虫防治中的应用. 应用昆虫学报, 2011, 48(5): 1489-1494. |
LI Y, FAN X J. Insect chitinase and its application in insect pest control. Chinese Journal of Applied Entomology, 2011, 48(5): 1489-1494. (in Chinese) | |
[40] | 马龙, 戴武, 张春妮. 氟铃脲对棉铃虫的毒力及几丁质和几丁质酶的影响. 西北农林科技大学学报(自然科学版), 2014, 42(7): 141-147. |
MA L, DAI W, ZHANG C N. Toxicity of hexaflumuron and its effects on chitin and chitinase of cotton bollworm, Helicoverpa armigera. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(7): 141-147. (in Chinese) | |
[41] |
SAGUEZ J, DUBOIS F, VINCENT C, LABERCHE J C, SANGWAN- NORREEL B S, GIORDANENGO P. Differential aphicidal effects of chitinase inhibitors on the polyphagous homopteran Myzus persicae (Sulzer). Pest Management Science, 2006, 62(12): 1150-1154.
doi: 10.1002/ps.1289 |
[42] | 张露, 朱世城, 郑好, 沈祺达, 王世贵, 唐斌. 褐飞虱海藻糖酶基因在表皮几丁质代谢中的调控作用. 中国农业科学, 2017, 50(6): 1047-1056. |
ZHANG L, ZHU S C, ZHENG H, SHEN Q D, WANG S G, TANG B. Regulatory function of trehalase genes on chitin metabolism in the cuticle of Nilaparvata lugens. Scientia Agricultura Sinica, 2017, 50(6): 1047-1056. (in Chinese) | |
[43] |
HUANG J, XU M, LI S, HE J, XU H. Synthesis of some ester derivatives of 4’-demethoxyepipodophyllotoxin/2’-chloro-4’- demethoxyepipodophyllotoxin as insecticidal agents against oriental armyworm, Mythimna separata Walker. Bioorganic and Medicinal Chemistry Letters, 2017, 27(3): 511-517.
doi: 10.1016/j.bmcl.2016.12.026 |
[44] | 於卫东, 潘碧莹, 邱玲玉, 黄镇, 周泰, 叶林, 唐斌, 王世贵. 两个褐飞虱海藻糖转运蛋白基因的结构及调控海藻糖代谢功能. 中国农业科学, 2020, 53(23): 4802-4812. |
YU W D, PAN B Y, QIU L Y, HUANG Z, ZHOU T, YE L, TANG B, WANG S G. The structure characteristics and biological functions on regulating trehalose metabolism of two NlTret1s in Nilaparvata lugens. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812. (in Chinese) | |
[45] | 张道伟, 康奎, 余亚娅, 匡富萍, 潘碧莹, 陈静, 唐斌. 白背飞虱酚氧化酶原PPO基因特性及其免疫应答. 中国农业科学, 2020, 53(15): 3108-3119. |
ZHANG D W, KANG K, YU Y Y, KUANG F P, PAN B Y, CHEN J, TANG B. Characteristics and immune response of prophenoloxidase genes in Sogatella furcifera. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119. (in Chinese) | |
[46] |
CHEN X F, TIAN H G, ZOU L Z, TANG B, HU J, ZHANG W Q. Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference. Bulletin of Entomological Research, 2008, 98(6): 613-619.
doi: 10.1017/S0007485308005932 |
[47] |
CHEN J, ZHANG D, YAO Q, ZHANG J, DONG X, TIAN H, CHEN J, ZHANG W. Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2010, 19(6): 777-786.
doi: 10.1111/j.1365-2583.2010.01038.x |
[1] | 王帅宇,张子腾,谢爱婷,董杰,杨建国,张爱环. 我国草地贪夜蛾种群杀虫剂靶标基因突变分析[J]. 中国农业科学, 2022, 55(20): 3948-3959. |
[2] | 邬伟,徐慧丽,王正亮,俞晓平. 褐飞虱丝氨酸蛋白酶抑制剂基因Nlserpin2的克隆及其功能分析[J]. 中国农业科学, 2022, 55(12): 2338-2346. |
[3] | 吴秋琳,姜玉英,刘媛,刘杰,马景,胡高,杨明进,吴孔明. 草地贪夜蛾在中国西北地区的迁飞路径[J]. 中国农业科学, 2022, 55(10): 1949-1960. |
[4] | 李雪茹,师希雄,王建忠,张攀高,田铸,韩玲. 一氧化氮合成酶抑制剂对宰后成熟过程中牦牛肉品质的影响[J]. 中国农业科学, 2020, 53(8): 1617-1626. |
[5] | 高兴祥,李健,张悦丽,李美,房锋. 山东省小麦田大穗看麦娘抗性水平、靶标抗性机理及田间防除效果测定[J]. 中国农业科学, 2020, 53(17): 3518-3526. |
[6] | 唐斌,张露,熊旭萍,汪慧娟,王世贵. 海藻糖代谢及其调控昆虫几丁质合成研究进展[J]. 中国农业科学, 2018, 51(4): 697-707. |
[7] | 何雨娟,鞠迪,王悦,杨雪清,王小奇. 水稻蛋白酶抑制剂基因OsLTPL164和OsLTPL151的组成型及诱导型表达模式[J]. 中国农业科学, 2018, 51(12): 2311-2321. |
[8] | 张婷婷,柳伟伟,高璐,李任建,付穗业,刘晓健,李大琪,刘卫敏,董卿,张建珍. 飞蝗几丁质酶5-1抗体制备及表达特性分析[J]. 中国农业科学, 2018, 51(12): 2418-2428. |
[9] | 张露,朱世城,郑好,沈祺达,王世贵,唐斌. 褐飞虱海藻糖酶基因在表皮几丁质代谢中的调控作用[J]. 中国农业科学, 2017, 50(6): 1047-1056. |
[10] | 徐玉秀,郭李萍,谢立勇,云安萍,李迎春,张 璇,赵 迅, 刁田田. 中国主要旱地农田N2O背景排放量及排放系数特点[J]. 中国农业科学, 2016, 49(9): 1729-1743. |
[11] | 李 东,汤贝贝,王颖洁,纪艳芹,王 飞,路镇宇,王 曼,张亚妮,李碧春. 蛋白质代谢通路对鸡雄性生殖细胞分化的调控[J]. 中国农业科学, 2016, 49(24): 4814-4823. |
[12] | 刘晓健,孙亚文,崔 淼,马恩波,张建珍. 飞蝗海藻糖酶基因的分子特性及功能[J]. 中国农业科学, 2016, 49(22): 4375-4386. |
[13] | 李健陵,李玉娥,周守华,苏荣瑞,万运帆,王 斌,蔡威威,郭 晨,秦晓波,高清竹,刘 硕. 节水灌溉、树脂包膜尿素和脲酶/硝化抑制剂对双季稻温室气体减排的协同作用[J]. 中国农业科学, 2016, 49(20): 3958-3967. |
[14] | 秦加敏,罗术东,廖秀丽,黄家兴,和绍禹,吴杰. 小峰熊蜂可溶型海藻糖酶基因的克隆及表达分析[J]. 中国农业科学, 2015, 48(2): 370-380. |
[15] | 李建伟,李懿,周小英,黎治浪,陈世达,田莎,侯勇,夏庆友. 家蚕半胱氨酸蛋白酶抑制剂BmCPI40鉴定及时空表达特征[J]. 中国农业科学, 2015, 48(13): 2645-2655. |
|