中国农业科学 ›› 2022, Vol. 55 ›› Issue (8): 1685-1694.doi: 10.3864/j.issn.0578-1752.2022.08.018
• 畜牧·兽医·资源昆虫 • 上一篇
收稿日期:
2021-11-02
接受日期:
2021-11-15
出版日期:
2022-04-16
发布日期:
2022-05-11
联系方式:
邱一蕾,E-mail: qiuyil96@163.com。
基金资助:
QIU YiLei(),WU Fan,ZHANG Li,LI HongLiang()
Received:
2021-11-02
Accepted:
2021-11-15
Published:
2022-04-16
Online:
2022-05-11
摘要:
【背景】新烟碱类杀虫剂的作用靶标是昆虫神经系统中的乙酰胆碱受体,由于其良好的内吸性及对人畜低毒性,使其在农业生产上获得了广泛应用,然而这也使得其在植物体内仍然具有较低的残留,而这种亚致死剂量残留仍可对访花昆虫如蜜蜂的行为和神经系统造成不利影响。【目的】明确亚致死剂量新烟碱类杀虫剂吡虫啉对中华蜜蜂(Apis cerana cerana,简称中蜂)神经生理和代谢系统的影响。【方法】首先以两个亚致死浓度梯度剂量5和10 μg·L-1吡虫啉处理工蜂10 d(3个生物学重复),提取总RNA后,以RNA-seq方法对所得文库进行高通量测序,利用生物信息学技术对序列进行从头组装、注释,并对亚致死剂量吡虫啉处理后的差异表达基因进行聚类和富集等分析,最后利用实时荧光定量PCR(RT-qPCR)技术对部分与中蜂神经和代谢系统相关的差异表达基因进行验证。【结果】从两个吡虫啉浓度梯度和对照组数据中共获得9个测序文库,测序有效数据比例超过94.45%,从获得的37 364个unigenes中鉴定出571个差异表达基因。经GO和KEGG富集分析发现这些差异表达基因主要与蛋白质翻译、氧化还原、氧化磷酸化和核糖体等多个通路有关,表明亚致死剂量的吡虫啉对中蜂多个生理过程和代谢通路造成影响。挑选了与昆虫神经信号传递和代谢功能有关的上调或下调差异表达基因,如神经肽F、神经肽SIFamide受体、3-磷酸肌醇依赖性蛋白激酶、激酶(PRKA)锚蛋白1、碳酸酐酶、超氧化物歧化酶、NADH脱氢酶亚基、表皮蛋白和气味结合蛋白17共9个差异表达基因进行了qPCR验证,其表达规律与转录组结果完全一致。【结论】亚致死剂量的吡虫啉能对中蜂神经信号转导、细胞呼吸、免疫反应、内环境稳态的维持和嗅觉感受等多方面造成影响。
邱一蕾,吴帆,张莉,李红亮. 亚致死剂量吡虫啉对中华蜜蜂神经代谢基因表达的影响[J]. 中国农业科学, 2022, 55(8): 1685-1694.
QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana[J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
表1
实时荧光定量PCR引物"
基因 Gene | 编码蛋白 Coding protein | 引物名称 Primer name | 引物序列 Primer sequence (5′→3′) |
---|---|---|---|
NPF | 神经肽F Neuropeptide F | NPFq-F | CATTGTTGGCTTCGTTGTTGGT |
NPFq-R | GCATTGCGTTGCATCAGAAGTC | ||
SIFaR | 神经肽SIFamide受体 Neuropeptide SIFamide receptor | SIFaRq-F | CGGCAAGATCAGGTACTACGAGAC |
SIFaRq-R | CGACGAGTTGTTGTTGTTGTTGTTG | ||
PDK1 | 3-磷酸肌醇依赖性蛋白激酶 Phosphoinositide 3-dependent kinases | PDK1q-F | ACGACGAGGACACCACCACTAC |
PDK1q-R | TGCTTCTCCAATCGGTTCCTGATCT | ||
AKAP1 | 激酶(PRKA)锚蛋白1 A-kinase anchoring protein 1 | AKAP1q-F | GAGCAGACAGAGTTGATCCAGGTG |
AKAP1q-R | TCGTCAGTTTGTATGCCAGAATCGT | ||
CA3 | 碳酸酐酶 Carbonic anhydrase 3 | CA3q-F | GCCATTGGAACAACGACGGTGAG |
CA3q-R | TCGTATGTATCGGTCGCCAGAGG | ||
SOD2 | 超氧化物歧化酶 Superoxide dismutase 2 | SOD2q-F | ATACCGTTGCCATTCAAGGTTCTG |
SOD2q-R | CACATCATTCCAATTCACGACATCA | ||
ND42 | NADH脱氢酶亚基 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10 | ND42q-F | GCCACCACCAACACATGATGAA |
ND42q-R | ACGACATGATTCTGGTAATTGAGGA | ||
CP12 | 昆虫表皮蛋白 Cuticle protein 12 | CP12q-F | CCTCGATGTTACTGGTAGCTTCTCC |
CP12q-R | CGAAACAAGATTGATGGTGGGATGA | ||
OBP17 | 气味结合蛋白17 Odorant-binding protein 17 | OBP17q-F | CGTTGATGATGGCAAGATC |
OBP17q-R | TCAGAGATAGGTGAACATTGG | ||
β-actin | 肌动蛋白(内参) Actin (reference) | β-actinq-F | TCCTGCTATGTATGTCGC |
β-actinq-R | AGTTGCCATTTCCTGTTC |
图2
差异表达基因GO富集性柱状图 1:翻译Translation;2:氧化还原过程 Oxidation-reduction process;3:生物学过程 Biological process;4:疼痛的感官知觉Sensory perception of pain;5:RNA聚合酶II启动子的转录负调控Negative regulation of transcription from RNA polymerase II promoter;6:成虫盘衍生的翅形态发生 Imaginal disc-derived wing morphogenesis;7:先天免疫反应 Innate immune response;8:转录负调控,以DNA为模板Negative regulation of transcription, DNA-templated;9:转录调控,以DNA为模板Regulation of transcription, DNA-templated;10:运动节律Locomotor rhythm;11:信号转导Signal transduction;12:通过 eIF2α磷酸化调节翻译起始Regulation of translational initiation by eIF2 alpha phosphorylation;13:蛋白质重折叠Protein refolding;14:轴突引导Axon guidance;15:ATP合成耦合质子转运ATP synthesis coupled proton transport;16:肌节组织Sarcomere organization;17:胞质翻译Cytoplasmic translation;18:凋亡过程的负调控Negative regulation of apoptotic process;19:自噬的调节Regulation of autophagy;20:蛋白质脂化 Protein lipidation;21:G-蛋白偶联受体信号通路G-protein coupled receptor signaling pathway;22:对热的反应Response to heat;23:B细胞活化的正调节Positive regulation of B cell activation;24:神经系统发育Nervous system development;25:吞噬,识别Phagocytosis, recognition;26:细胞核Nucleus;27:膜的组成成分Integral component of membrane;28:线粒体Mitochondrion;29:膜Membrane;30:细胞质Cytoplasm;31:胞外区Extracellular region;32:质膜Plasma membrane;33:胞浆大核糖体亚基Cytosolic large ribosomal subunit;34:细胞组分Cellular component;35:脂质颗粒Lipid particle;36:细胞外外泌体Extracellular exosome;37:胞质溶胶Cytosol;38:质膜的组成部分Integral component of plasma membrane;39:线粒体内膜Mitochondrial inner membrane;40:胞质小核糖体亚基Cytosolic small ribosomal subunit;41:核糖体的结构成分Structural constituent of ribosome;42:金属离子结合Metal ion binding;43:Poly (A) RNA结合Poly (A) RNA binding;44:分子功能 Molecular function;45:氧化还原酶活性Oxidoreductase activity;46:蛋白质同二聚化活性Protein homodimerization activity;47:血红素结合Heme binding;48:DNA结合DNA binding;49:蛋白质结合Protein binding;50:ATP结合ATP binding"
[1] |
LO N, GLOAG R S, ANDERSON D L, OLDROYD B P. A molecular phylogeny of the genus Apis suggests that the giant honey bee of the Philippines, A. breviligula Maa, and the plains honey bee of southern India, A. indica Fabricius, are valid species. Systematic Entomology, 2010, 35(2): 226-233.
doi: 10.1111/j.1365-3113.2009.00504.x |
[2] |
MILLAR N S, DENHOLM I. Nicotinic acetylcholine receptors: Targets for commercially important insecticides. Invertebrate Neuroscience, 2007, 7(1): 53-66.
doi: 10.1007/s10158-006-0040-0 |
[3] |
RADLOFF S E, HEPBURN C, HEPBURN H R, FUCHS S, HADISOESILO S, TAN K, ENGEL M S, KUZNETSOV V. Population structure and classification of Apis cerana. Apidologie, 2010, 41(6): 589-601.
doi: 10.1051/apido/2010008 |
[4] | 蔺哲广, 孟飞, 郑火青, 周婷, 胡福良. 新烟碱类杀虫剂对蜜蜂健康的影响. 昆虫学报, 2014, 57(5): 607-615. |
LIN Z G, MENG F, ZHENG H Q, ZHOU T, HU F L. Effects of neonicotinoid insecticides on honeybee health. Acta Entomologica Sinica, 2014, 57(5): 607-615. (in Chinese) | |
[5] |
SUCHAIL S, GUEZ D, BELZUNCES L P. Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environmental Toxicology and Chemistry, 2000, 19(7): 1901-1905.
doi: 10.1002/etc.5620190726 |
[6] | BONMATIN J M, MOINEAU I, CHARVET R, COLIN M E, FLECHE C, BENGSCH E R. Behaviour of imidacloprid in fields. Toxicity for honey bees//LICHTFOUSE E, SCHWARZBAUER J, ROBERT D. Environmental Chemistry. Green Chemistry and Pollutants in Ecosystems. Springer Berlin Heidelberg, 2005: 483-494. |
[7] |
NISHIMURA K, KANDA Y, OKAZAWA A, UENO T. Relationship between insecticidal and neurophysiological activities of imidacloprid and related compounds. Pesticide Biochemistry and Physiology, 1994, 50(1): 51-59.
doi: 10.1006/pest.1994.1057 |
[8] | KRUPKE C, HUNT G, EITZER B, ANDINO G, GIVEN K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE, 2012, 7(1): e29268. |
[9] |
CRESSWELL J. A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology, 2011, 20(1): 149-157.
doi: 10.1007/s10646-010-0566-0 |
[10] |
BRYDEN J, GILL R J, MITTON R A, RAINE N E, JANSEN V A. Chronic sublethal stress causes bee colony failure. Ecology Letters, 2013, 16(12): 1463-1469.
doi: 10.1111/ele.12188 |
[11] | STONER K A, EITZER B D. Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS ONE, 2012, 7(6): e39114. |
[12] | STONER K A, EITZER B D. Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut. PLoS ONE, 2013, 8(10): e77550. |
[13] |
MULLIN C A, FRAZIER M, FRAZIER J L, ASHCRAFT S, SIMONDS R, VANENGELSDORP D, PETTIS J S. High levels of miticides and agrochemicals in north American apiaries: Implications for honey bee health. PLoS ONE, 2010, 5(3): e9754.
doi: 10.1371/journal.pone.0009754 |
[14] |
NICODEMO D, MAIOLI M A, MEDEIROS H C D, GUELFI M, BALIEIRA K V B, DE JONG D, MINGATTO F E. Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environmental Toxicology and Chemistry, 2014, 33(9): 2070-2075.
doi: 10.1002/etc.2655 |
[15] | 周婷, 宋怀磊, 王强, 代平礼, 吴艳艳, 孙继虎. 吡虫啉对意大利蜜蜂脑乙酰胆碱受体分布的影响. 昆虫学报, 2013, 56(11): 1258-1266. |
ZHOU T, SONG H L, WANG Q, DAI P L, WU Y Y, SUN J H. Effects of imidacloprid on the distribution of nicotine acetylcholiine receptors in the brain of adult honeybee (Apis mellifera ligustica). Acta Entomologica Sinica, 2013, 56(11): 1258-1266. (in Chinese) | |
[16] | SCHNEIDER C W, TAUTZ J, GRÜNEWALD B, FUCHS S. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS ONE, 2012, 7(1): e30023. |
[17] | WILLIAMSON S M, WRIGHT G A. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. The Journal of Experimental Biology, 2013, 216(10): 1799-1807. |
[18] | TAN K, CHEN W, DONG S, LIU X, WANG Y, NIEH J C. Imidacloprid alters foraging and decreases bee avoidance of predators. PLoS ONE, 2014, 9(7): e102725. |
[19] | WU-SMART J, SPIVAK M. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Scientific Reports, 2016, 6: 32108. |
[20] | 代平礼, 周婷, 王强, 吴艳艳, 耿文龙, 宋怀磊. 吡虫啉对意大利蜜蜂学习行为的影响. 农药, 2013, 52(7): 512-514. |
DAI P L, ZHOU T, WANG Q, WU Y Y, GENG W L, SONG H L. Effects of imidacloprid on learning performance of Apis mellifera ligustica. Agrochemicals, 2013, 52(7): 512-514. (in Chinese) | |
[21] | YANG E C, CHANG H C, WU W Y, CHEN Y W. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS ONE, 2012, 7(11): e49472. |
[22] | ALBURAKI M, BOUTIN S, MERCIER P L, LOUBLIER Y, CHAGNON M, DEROME N. Neonicotinoid-coated Zea mays seeds indirectly affect honeybee performance and pathogen susceptibility in field trials. PLoS ONE, 2015, 10(5): e0125790. |
[23] |
CHAUZAT M P, CARPENTIER P, MARTEL A C, BOUGEARD S, COUGOULE N, PORTA P, LACHAIZE J, MADEC F, AUBERT M, FAUCON J P. Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. Environmental Entomology, 2009, 38(3): 514-523.
doi: 10.1603/022.038.0302 |
[24] |
CHRISTEN V, BACHOFER S, FENT K. Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees (Apis mellifera). Environmental Pollution, 2017, 220: 1264-1270.
doi: 10.1016/j.envpol.2016.10.105 |
[25] | FENT K, SCHMID M, HETTICH T, SCHMID S. The neonicotinoid thiacloprid causes transcriptional alteration of genes associated with mitochondria at environmental concentrations in honey bees. Environmental Pollution, 2020, 266(1): 115297. |
[26] | 黄一村, 时敏, 陈学新. 昆虫神经肽F的研究进展. 应用昆虫学报, 2015, 52(6): 1315-1325. |
HUANG Y C, SHI M, CHEN X X. Advances in research on insect neuropeptide F. Chinese Journal of Applied Entomology, 2015, 52(6): 1315-1325. (in Chinese) | |
[27] |
LINGO P, ZHAO Z, SHEN P. Co-regulation of cold-resistant food acquisition by insulin- and neuropeptide Y-like systems in Drosophila melanogaster. Neuroscience, 2007, 148(2): 371-374.
doi: 10.1016/j.neuroscience.2007.06.010 |
[28] |
KRASHES M, DASGUPTA S, VREEDE A, WHITE B, ARMSTRONG J, WADDELL S. A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell, 2009, 139(2): 416-427.
doi: 10.1016/j.cell.2009.08.035 |
[29] |
HERMANN C, YOSHII T, DUSIK V, HELFRICH-FOERSTER C. Neuropeptide F immunoreactive clock neurons modify evening locomotor activity and free-running period in Drosophila melanogaster. The Journal of Comparative Neurology, 2012, 520(5): 970-987.
doi: 10.1002/cne.22742 |
[30] | LEE G, BAHN J H, PARK J H.Sex- and clock-controlled expression of the neuropeptide F gene in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12580-12585. |
[31] |
XU J, LI M, SHEN P. A G-protein-coupled neuropeptide Y-like receptor suppresses behavioral and sensory response to multiple stressful stimuli in Drosophila. The Journal of Neuroscience, 2010, 30(7): 2504-2512.
doi: 10.1523/JNEUROSCI.3262-09.2010 |
[32] |
AYUB M, HERMIZ M, LANGE A B, ORCHARD I. SIFamide influences feeding in the chagas disease vector, Rhodnius prolixus. Frontiers in Neuroscience, 2020, 14: 134.
doi: 10.3389/fnins.2020.00134 |
[33] |
SELLAMI A, VEENSTRA J A. SIFamide acts on fruitless neurons to modulate sexual behavior in Drosophila melanogaster. Peptides, 2015, 74: 50-56.
doi: 10.1016/j.peptides.2015.10.003 |
[34] |
PARK S, SONN J Y, OH Y, LIM C, CHOE J. SIFamide and SIFamide receptor define a novel neuropeptide signaling to promote sleep in Drosophila. Molecules and Cells, 2014, 37(4): 295-301.
doi: 10.14348/molcells.2014.2371 |
[35] |
MARTELLI C, PECH U, KOBBENBRING S, PAULS D, BAHL B, SOMMER M V, POORYASIN A, BARTH J, ARIAS C W P, VASSILIOU C,et al. SIFamide translates hunger signals into appetitive and feeding behavior in Drosophila. Cell Reports, 2017, 20(2): 464-478.
doi: 10.1016/j.celrep.2017.06.043 |
[36] |
FELICIELLO A, GOTTESMAN M, AVVEDIMENTO E. The biological functions of A-Kinase anchor proteins. Journal of Molecular Biology, 2001, 308(2): 99-114.
doi: 10.1006/jmbi.2001.4585 |
[37] |
RINALDI L, SEPE M, DONNE R D, CONTE K, ARCELLA A, BORZACCHIELLO D, AMENTE S, DE VITA F, PORPORA M, GARBI C,et al. Mitochondrial AKAP 1 supports mTOR pathway and tumor growth. Cell Death and Disease, 2017, 8(6): e2842.
doi: 10.1038/cddis.2017.241 |
[38] |
SCHIATTARELLA G G, CATTANEO F, CARRIZZO A, PAOLILLO R, BOCCELLA N, AMBROSIO M, DAMATO A, PIRONTI G, FRANZONE A, RUSSO G,et al.Akap1 regulates vascular function and endothelial cells behavior. Hypertension, 2018, 71(3): 507-517.
doi: 10.1161/HYPERTENSIONAHA.117.10185 |
[39] |
OKUN J G, LUMMEN P, BRANDT U. Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH: ubiquinone oxidoreductase). The Journal of Biological Chemistry, 1999, 274(5): 2625-2630.
doi: 10.1074/jbc.274.5.2625 |
[40] |
VANHAESEBROECK B, ALESSI D R. The PI3K-PDK1 connection: More than just a road to PKB. The Biochemical Journal, 2000, 346(3): 561-576.
doi: 10.1042/bj3460561 |
[41] | SUN Z, YAO Y, YOU M, LIU J, GUO W, QI Z, WANG Z, WANG F, YUAN W, YU S. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. eLife, 2021, 10: e61406. |
[42] |
WANG H L, ZHU Z M, WANG H, YANG S L, ZHAO S H, LI K. Molecular characterization and association analysis of porcine CA3. Cytogenetic and Genome Research, 2006, 115(2): 129-133.
doi: 10.1159/000095232 |
[43] |
SOWDEN J, SMITH H, MORRISON K, EDWARDS Y.Sequence comparisons and functional studies of the proximal promoter of the carbonic anhydrase 3 (CA3) gene. Gene, 1998, 214(1/2): 157-165.
doi: 10.1016/S0378-1119(98)00201-7 |
[44] |
BAUTISTA M A M, BHANDARY B, WIJERATNE A J, MICHEL A P, HOY C W, MITTAPALLI O. Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella. Pest Management Science, 2015, 71(3): 423-432.
doi: 10.1002/ps.3822 |
[45] | 殷玲, 吉挺, 李冠华, 牛德芳. 中华蜜蜂OBP17基因CDS序列及其表达与抗螨性状的相关性. 江苏农业科学, 2015, 43(11): 45-48. |
YIN L, JI T, LI G H, NIU D F. The CDS sequence of OBP17 gene of Apis cerana cerana and its correlation of resistance to Varroa destructor. Jiangsu Agricultural Sciences, 2015, 43(11): 45-48. (in Chinese) | |
[46] | 吴帆. 中华蜜蜂气味结合蛋白配基结合特征和OBP12与吡虫啉结合机理研究[D]. 杭州: 中国计量大学, 2016. |
WU F. Study binding characterization of Chinese honeybee’s (Apis cerana cerana) odorant binding proteins with ligands and binding mechanism of OBP 12 with imidacloprid (Hymenoptera: Apidae)[D]. Hangzhou: China Jiliang University, 2016. (in Chinese) |
[1] | 李允静, 肖芳, 武玉花, 李俊, 高鸿飞, 翟杉杉, 梁晋刚, 吴刚. 抗逆大豆IND-ØØ41Ø-5转化体特异性定量PCR检测方法的建立及其标准化[J]. 中国农业科学, 2023, 56(13): 2443-2460. |
[2] | 李雅菲, 师江澜, 吴天琪, 王少霞, 李雨诺, 屈春燕, 刘聪慧, 宁鹏, 田霄鸿. 锌与吡虫啉配合喷施对小麦籽粒富锌效果及蛋白质组分的影响[J]. 中国农业科学, 2022, 55(3): 514-528. |
[3] | 赵慧婷,彭竹,姜玉锁,赵淑果,黄丽,杜亚丽,郭丽娜. 中华蜜蜂气味结合蛋白AcerOBP7的表达及结合特性[J]. 中国农业科学, 2022, 55(3): 613-624. |
[4] | 张晓萍,撒世娟,伍涵宇,乔丽媛,郑蕊,姚新灵. 马铃薯叶片气孔的开张与关闭同步伴随果胶的降解与合成[J]. 中国农业科学, 2022, 55(17): 3278-3288. |
[5] | 朱春艳,宋佳伟,白天亮,王娜,马帅国,普正菲,董艳,吕建东,李杰,田蓉蓉,罗成科,张银霞,马天利,李培富,田蕾. NaCl胁迫对不同耐盐性粳稻种质幼苗叶绿素荧光特性的影响[J]. 中国农业科学, 2022, 55(13): 2509-2525. |
[6] | 张莉,张楠,江虎强,吴帆,李红亮. 中华蜜蜂NPC2基因家族克隆及表达模式分析[J]. 中国农业科学, 2022, 55(12): 2461-2471. |
[7] | 李晓菁,张思雨,刘迪,袁晓伟,李兴盛,石延霞,谢学文,李磊,范腾飞,李宝聚,柴阿丽. 芸薹根肿菌活细胞PMAxx-qPCR快速定量检测方法的建立与应用[J]. 中国农业科学, 2022, 55(10): 1938-1948. |
[8] | 冯睿蓉,付中民,杜宇,张文德,范小雪,王海朋,万洁琦,周紫彧,康育欣,陈大福,郭睿,史培颖. 中华蜜蜂幼虫肠道中微小RNA的鉴定及分析[J]. 中国农业科学, 2022, 55(1): 208-218. |
[9] | 许晨,王文静,曹珊,李如雪,张贝贝,孙爱清,张春庆. 花后DA-6处理调控小麦种子活力的机理[J]. 中国农业科学, 2021, 54(9): 1821-1834. |
[10] | 李天聪,朱行,魏宁,龙凤,武建颖,张燕,董金皋,申珅,郝志敏. 玉米大斑病菌SC35同源基因表达规律与互作分析[J]. 中国农业科学, 2021, 54(4): 733-743. |
[11] | 朱芳芳,董亚辉,任真真,王志勇,苏慧慧,库丽霞,陈彦惠. 过表达ZmIBH1-1提高玉米苗期抗旱性[J]. 中国农业科学, 2021, 54(21): 4500-4513. |
[12] | 赵立群,邱艳红,张晓飞,刘慧,杨静静,张建,张海军,徐秀兰,温常龙. TaqMan探针法实时荧光定量PCR检测西瓜潜隐病毒[J]. 中国农业科学, 2021, 54(20): 4337-4347. |
[13] | 刘锴,何闪闪,张彩霞,张利义,卞书迅,袁高鹏,李武兴,康立群,丛佩华,韩晓蕾. 苹果叶片不定芽再生过程的差异表达基因鉴定与分析[J]. 中国农业科学, 2021, 54(16): 3488-3501. |
[14] | 张稳,孟淑君,王琪月,万炯,马拴红,林源,丁冬,汤继华. 玉米pTAC2影响苗期叶片叶绿素合成的转录组分析[J]. 中国农业科学, 2020, 53(5): 874-889. |
[15] | 徐志军,赵胜,徐磊,胡小文,安东升,刘洋. 基于RNA-seq数据的栽培种花生SSR位点鉴定和标记开发[J]. 中国农业科学, 2020, 53(4): 695-706. |
|