中国农业科学 ›› 2022, Vol. 55 ›› Issue (22): 4500-4512.doi: 10.3864/j.issn.0578-1752.2022.22.014
陈彧(),朱浩哲,陈益春,刘政,丁希,郭赟,丁世杰(),周光宏()
收稿日期:
2022-03-03
接受日期:
2022-06-16
出版日期:
2022-11-16
发布日期:
2022-12-14
通讯作者:
丁世杰,周光宏
作者简介:
陈彧,E-mail:基金资助:
CHEN Yu(),ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,GUO Yun,DING ShiJie(),ZHOU GuangHong()
Received:
2022-03-03
Accepted:
2022-06-16
Online:
2022-11-16
Published:
2022-12-14
Contact:
ShiJie DING,GuangHong ZHOU
摘要:
【目的】 探究猪肌肉干细胞在三维水凝胶中的分化效果,为体外诱导肌肉干细胞分化成为肌肉组织提供方法指导。【方法】 将一定数目的猪肌肉干细胞分别在二维和三维条件下诱导分化(二维条件指在培养皿中培养细胞,三维条件指在水凝胶中培养细胞),分别收取增殖阶段、预分化阶段、分化初期、分化成熟、分化末期的二维培养细胞的RNA和蛋白样品,以及分化7和14 d的三维培养细胞的RNA和蛋白样品。利用RT-qPCR技术检测细胞在两种条件下分化至不同阶段时成肌相关基因MYOG、CAV-3、MyHC-slow、MyHC-2a的表达水平;利用Western Blot技术检测细胞在两种条件下分化至不同阶段时MYOG、MyHC蛋白的表达水平;利用免疫荧光染色技术观察猪肌肉干细胞在二维和三维条件下融合形成的肌管;使用氨基酸自动分析仪检测分化14 d培养肌肉组织的氨基酸含量及组成。【结果】 二维培养的猪肌肉干细胞在分化第3天时开始发生肌融合,在分化第7天形成成熟肌管,随后进入分化末期,肌管开始脱落。三维培养的猪肌肉干细胞在分化第7天时还未完全伸展,细胞的MYOG和CAV-3表达水平低;分化第14天时水凝胶内已形成多核肌管,MYOG和CAV-3表达达到二维分化水平。三维分化有利于终末分化基因MyHC-slow和MyHC-2a的表达,分化14 d时MyHC-slow的表达量是二维分化7 d的12倍,MyHC-2a的表达量是二维分化7 d的4倍,但是MyHC蛋白的表达量仅为二维分化7 d时的1/6。氨基酸分析结果表明体外培养肌肉组织中17种水解氨基酸含量均低于猪肉,且必需氨基酸在总氨基酸的占比也低于猪肉,但是呈味氨基酸的占比相较猪肉更高。【结论】 猪肌肉干细胞可以在三维胶原水凝胶中分化形成肌管,且三维条件有利于成肌分化相关基因表达,但要实现MyHC蛋白的高表达还需进一步研究,按此方法体外培养的肌肉组织有较高的呈味氨基酸含量,可能会有较好的风味。
陈彧,朱浩哲,陈益春,刘政,丁希,郭赟,丁世杰,周光宏. 猪肌肉干细胞在三维水凝胶中的分化研究[J]. 中国农业科学, 2022, 55(22): 4500-4512.
CHEN Yu,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,GUO Yun,DING ShiJie,ZHOU GuangHong. Differentiation of Porcine Muscle Stem Cells in Three-Dimensional Hydrogels[J]. Scientia Agricultura Sinica, 2022, 55(22): 4500-4512.
表1
RT-qPCR引物信息表"
基因 Gene | 引物序列 Primers sequence | |
MYOG | 上游 Forward | AACCCCACTTCTATGACGGG |
下游 Reverse | TTATCTTCCAGGGGCACTCG | |
MyHC-slow | 上游 Forward | CCGTGCTCCGTCTTCTTTCC |
下游 Reverse | CGCTCCTTCTCTGACTTGCG | |
MyHC-2a | 上游 Forward | AGGACCAAGTACGAGACGGA |
下游 Reverse | AGCTTCCACGTGTTCCTCAG | |
CAV-3 | 上游 Forward | GCCCAGATCGTCAAGGACAT |
下游 Reverse | CAGGCGGTAGCACCAATACT | |
GAPDH | 上游 Forward | GTCGGAGTGAACGGATTTGGC |
下游 Reverse | CTTGCCGTGGGTGGAATCAT |
表2
猪肉和培养肌肉组织的氨基酸含量"
名称 Name | 猪肉 Pork | 培养肌肉组织 Cultured muscle tissue |
必需氨基酸 EAA | ||
苏氨酸Thr | 9.53 | 1.95 |
缬氨酸Val | 11.42 | 1.64 |
蛋氨酸Met | 2.34 | 0.04 |
异亮氨酸Ile | 10.18 | 1.14 |
亮氨酸Leu | 16.75 | 2.58 |
苯丙氨酸Phe* | 9.42 | 1.68 |
赖氨酸Lys | 13.41 | 1.46 |
非必需氨基酸 NEAA | ||
天冬氨酸Asp* | 15.52 | 1.72 |
丝氨酸Ser | 8.12 | 3.35 |
谷氨酸Glu* | 33.47 | 9.46 |
甘氨酸Gly* | 8.96 | 6.17 |
丙氨酸Ala* | 10.85 | 3.90 |
半胱氨酸Cys | 2.86 | 0.20 |
酪氨酸Tyr* | 9.15 | 0.92 |
组氨酸His | 9.39 | 0.82 |
精氨酸Arg | 14.96 | 4.17 |
脯氨酸Pro | 10.47 | 3.65 |
必需氨基酸 EAA | 73.05 | 10.49 |
非必需氨基酸 NEAA | 123.75 | 34.35 |
呈味氨基酸 FAA | 97.37 | 23.85 |
总氨基酸 TAA | 196.80 | 44.84 |
FAA/TAA | 44.39% | 53.19% |
EAA/TAA | 37.12% | 23.39% |
*为呈味氨基酸 *Refers to flavoring amino acids |
[1] | 周光宏, 丁世杰, 徐幸莲. 培养肉的研究进展与挑战. 中国食品学报, 2020, 20(5): 1-11. |
ZHOU G H, DING S J, XU X L. Progress and challenges in cultured meat. Journal of Chinese Institute of Food Science and Technology, 2020, 20(5): 1-11. (in Chinese) | |
[2] |
STOKER M, O'NEILL C, BERRYMAN S, WAXMAN V. Anchorage and growth regulation in normal and virus-transformed cells. International Journal of Cancer, 1968, 3(5): 683-693. doi: 10.1002/ijc.2910030517.
doi: 10.1002/ijc.2910030517. pmid: 5749478 |
[3] | DATAR I, BETTI M. Possibilities for an in vitro meat production system. Innovative Food Science & Emerging Technologies, 2010, 11(1): 13-22. |
[4] |
POWELL C A, SMILEY B L, MILLS J, VANDENBURGH H H. Mechanical stimulation improves tissue-engineered human skeletal muscle. American Journal of Physiology Cell Physiology, 2002, 283(5): C1557-C1565. doi: 10.1152/ajpcell.00595.2001.
doi: 10.1152/ajpcell.00595.2001. |
[5] |
VANDENBURGH H H, KARLISCH P, FARR L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cellular & Developmental Biology, 1988, 24(3): 166-174. doi: 10.1007/BF02623542.
doi: 10.1007/BF02623542. |
[6] |
OKANO T, MATSUDA T. Tissue engineered skeletal muscle: Preparation of highly dense, highly oriented hybrid muscular tissues. Cell Transplant, 1998, 7(1): 71-82. doi: 10.1177/096368979800700110.
doi: 10.1177/096368979800700110. pmid: 9489765 |
[7] |
FURUHASHI M, MORIMOTO Y, SHIMA A, NAKAMURA F, ISHIKAWA H, TAKEUCHI S. Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak. NPJ Science of Food, 2021, 5(1): 6. doi: 10.1038/s41538-021-00090-7.
doi: 10.1038/s41538-021-00090-7 pmid: 33654079 |
[8] |
MACQUEEN L A, ALVER C G, CHANTRE C O, AHN S, CERA L, GONZALEZ G M, O'CONNOR B B, DRENNAN D J, PETERS M M, MOTTA S E, ZIMMERMAN J F, PARKER K K. Muscle tissue engineering in fibrous gelatin: implications for meat analogs. NPJ Science of Food, 2019, 3: 20. doi: 10.1038/s41538-019-0054-8.
doi: 10.1038/s41538-019-0054-8 pmid: 31646181 |
[9] |
BEN-ARYE T, SHANDALOV Y, BEN-SHAUL S, LANDAU S, ZAGURY Y, IANOCIVI I, LAVON N, LEVENBERG S. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food, 2020, 1(4): 210-220.
doi: 10.1038/s43016-020-0046-5 |
[10] |
GERSHLAK J R, HERNANDEZ S, FONTANA G, PERREAULT L R, HANSEN K J, LARSON S A, BINDER B Y, DOLIVO D M, YANG T, DOMINKO T, ROLLE M W, WEATHERS P J, MEDINA-BOLIVAR F, CRAMER C L, MURPHY W L, GAUDETTE G R. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials, 2017, 125: 13-22. doi: 10.1016/j.biomaterials.2017.02.011.
doi: S0142-9612(17)30085-6 pmid: 28222326 |
[11] | MODULEVSKY D J, LEFEBVRE C, HAASE K, AI-REKABI Z, PELLING A E. Apple derived cellulose scaffolds for 3D mammalian cell culture. PLoS ONE, 2014, 9(5): e97835. |
[12] |
JONES J D, REBELLO A S, GAUDETTE G R. Decellularized spinach: An edible scaffold for laboratory-grown meat. Food Bioscience, 2021, 41: 100986.
doi: 10.1016/j.fbio.2021.100986 |
[13] |
FONG A P, YAO Z, ZHONG J W, JOHNSON N M, FARR G H, MAVES L, TAPSCOTT S J. Conversion of MyoD to a neurogenic factor: Binding site specificity determines lineage. Cell Reports, 2015, 10(12): 1937-1946. doi: 10.1016/j.celrep.2015.02.055.
doi: 10.1016/j.celrep.2015.02.055 pmid: 25801030 |
[14] | 苏艳红, 袁乾坤. Caveolin-3对骨骼肌,心肌伤病的调控机制. 中国学校体育: 高等教育, 2014(8): 6. |
SU Y H, YUAN Q K. Regulation mechanism of Caveolin-3 on skeletal muscle and myocardial Injury. China School Physical Education (Higher Education), 2014(8): 6. (in Chinese) | |
[15] |
MAURO A. Satellite cell of skeletal muscle fibers. The Journal of Biophysical and Biochemical Cytology, 1961, 9: 493-495. doi: 10.1083/jcb.9.2.493.
doi: 10.1083/jcb.9.2.493. pmid: 13768451 |
[16] |
LEPPER C, PARTRIDGE T A, FAN C M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development, 2011, 138(17): 3639-3646. doi: 10.1242/ dev.067595.
doi: 10.1242/dev.067595 pmid: 21828092 |
[17] |
SOLEIMANI V D, PUNCH V G, KAWABE Y, JONES A E, PALIDWOR G A, PORTER C J, CROSS J W, CARVAJAL J J, KOCKX C E, VAN IJCKEN W F, PERKINS T J, RIGBY P W, GROSVELD F, RUDNICKI M A. Transcriptional dominance of Pax7 in adult myogenesis is due to high-affinity recognition of homeodomain motifs. Developmental Cell, 2012, 22(6): 1208-1220. doi: 10.1016/j.devcel.2012.03.014.
doi: 10.1016/j.devcel.2012.03.014 pmid: 22609161 |
[18] |
DING S, WANG F, LIU Y, LI S, ZHOU G, HU P. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discovery, 2017, 3: 17003. doi: 10.1038/cddiscovery. 2017.3.
doi: 10.1038/cddiscovery.2017.3 pmid: 28417015 |
[19] |
ZAMMIT P S, GOLDING J P, NAGATA Y, HUDON V, PARTRIDGE T A, BEAUCHAMP J R. Muscle satellite cells adopt divergent fates: A mechanism for self-renewal? The Journal of Cell Biology, 2004, 166(3): 347-357.
doi: 10.1083/jcb.200312007 |
[20] |
ZAMMIT P S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Seminars in Cell & Developmental Biology, 2017, 72: 19-32. doi: 10.1016/j.semcdb.2017.11.011.
doi: 10.1016/j.semcdb.2017.11.011. |
[21] |
LE GRAND F, RUDNICKI M A. Skeletal muscle satellite cells and adult myogenesis. Current Opinion in Cell Biology, 2007, 19(6): 628-633.
doi: 10.1016/j.ceb.2007.09.012 pmid: 17996437 |
[22] |
BENTZINGER C F, WANG Y X, RUDNICKI M A. Building muscle: molecular regulation of myogenesis. Cold Spring Harbor Perspectives in Biology, 2012, 4(2): a008342. doi: 10.1101/cshperspect. a008342.
doi: 10.1101/cshperspect. a008342. |
[23] |
PARTON R G, WAY M, ZORZI N, STANG E. Caveolin-3 associates with developing T-tubules during muscle differentiation. The Journal of Cell Biology, 1997, 136(1): 137-154. doi: 10.1083/jcb. 136.1.137.
doi: 10.1083/jcb. 136.1.137. |
[24] |
SCHMIDT M, SCHÜLER S C, HÜTTNER S S, EYSS B, MALTZAHN J. Adult stem cells at work: regenerating skeletal muscle. Cellular and Molecular Life Sciences, 2019, 76(13): 2559-2570. doi: 10.1007/s00018-019-03093-6.
doi: 10.1007/s00018-019-03093-6 pmid: 30976839 |
[25] |
VERNEREY F J, LALITHA SRIDHAR S, MURALIDHARAN A, BRYANT S J. Mechanics of 3D cell-hydrogel interactions: experiments, models, and mechanisms. Chemical Reviews, 2021, 121(18): 11085-11148. doi: 10.1021/acs.chemrev.1c00046.
doi: 10.1021/acs.chemrev.1c00046 pmid: 34473466 |
[26] |
SCOTT R A, ROBINSON K G, KIICK K L, AKINS R E. Human adventitial fibroblast phenotype depends on the progression of changes in substrate stiffness. Advanced Healthcare Materials, 2020, 9(8): e1901593. doi: 10.1002/adhm.201901593.
doi: 10.1002/adhm.201901593. |
[27] | TAN J L, TIEN J, PIRONE D M, GRAY D S, BHADRIRAJU K, CHEN C S. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proceedings of the National Academy of Sciences 2003, 100(4): 1484-1489. |
[28] |
KOBAYASHI T, KIM H, LIU X, SUGIURA H, KOHYAMA T, FANG Q, WEN F Q, ABE S, WANG X, ATKINSON J J, SHIPLEY J M, SENIOR R M, RENNARD S I. Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels. American Journal of Physiology Lung Cellular and Molecular Physiology, 2014, 306(11): L1006-L1015. doi: 10.1152/ajplung.00015. 2014.
doi: 10.1152/ajplung.00015. 2014. |
[29] |
HOGREBE N J, GOOCH K J. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel. Journal of Biomedical Materials Research Part A, 2016, 104(9): 2356-2368. doi: 10.1002/jbm.a.35755.
doi: 10.1002/jbm.a.35755 pmid: 27163888 |
[30] |
MAHADIK B P, BHARADWAJ N A, EWOLDT R H, HARLEY B A. Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Biomaterials, 2017, 125: 54-64. doi: 10.1016/j.biomaterials.2017.02.013.
doi: S0142-9612(17)30087-X pmid: 28231508 |
[31] |
KOLESKY D B, HOMAN K A, SKYLAR-SCOTT M A, LEWIS J A. Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 2016, 113(12): 3179-3184. doi: 10.1073/pnas.1521342113.
doi: 10.1073/pnas.1521342113. |
[32] |
SCHIAFFINO S, REGGIANI C. Fiber types in mammalian skeletal muscles. Physiological Reviews, 2011, 91(4): 1447-1531. doi: 10.1152/ physrev.00031.2010.
doi: 10.1152/physrev.00031.2010 pmid: 22013216 |
[33] | EGGERT J M, DEPREUX F F, SCHINCKEL A P, GRANT A L, GERRARD D E. Myosin heavy chain isoforms account for variation in pork quality. Meat Science, 2002, 61(2): 117-126. doi: 10.1016/ s0309- 1740(01)00154-1. |
[34] |
FUJIE T, SHI X, OSTROVIDOV S, LIANG X B, NAKAJIMA K, CHEN Y, WU H K, KHADEMHOSSEINI A. Spatial coordination of cell orientation directed by nanoribbon sheets. Biomaterials, 2015, 53: 86-94. doi: 10.1016/j.biomaterials.2015.02.028.
doi: 10.1016/j.biomaterials.2015.02.028 pmid: 25890709 |
[35] |
LIU G Y, AGARWAL R, KO K R, RUTHVEN M, SARHAN H T, FRAMPTON J P. Templated assembly of collagen fibers directs cell growth in 2D and 3D. Scientific Reports, 2017, 7(1): 9628. doi: 10.1038/s41598-017-10182-8.
doi: 10.1038/s41598-017-10182-8 pmid: 28852121 |
[36] |
GROSSI A, YADAV K, LAWSON M A. Mechanical stimulation increases proliferation, differentiation and protein expression in culture: stimulation effects are substrate dependent. Journal of Biomechanics, 2007, 40(15): 3354-3362. doi: 10.1016/j.jbiomech. 2007.05.007.
doi: 10.1016/j.jbiomech. 2007.05.007. pmid: 17582421 |
[37] | 任海涛, 钟志勇, 郑佳琳, 饶子亮, 邝少松, 王刚, 唐小江. 鼠尾胶原蛋白提取、分离、纯化方法的建立及鉴定. 中国比较医学杂志, 2012, 22(11): 50-53. |
REN H T, ZHONG Z Y, ZHENG J L, RAO Z L, KUANG S S, WANG G, TANG X J. The establishment and appraisal of the methods for the extraction, separation and purification of rat tail collagen. Chinese Journal of Comparative Medicine, 2012, 22(11): 50-53. (in Chinese) |
[1] | 杨昕冉,马鑫浩,杜嘉伟,昝林森. m6A甲基化酶相关基因在牛骨骼肌生成中的表达[J]. 中国农业科学, 2023, 56(1): 165-178. |
[2] | 束婧婷,单艳菊,姬改革,章明,屠云洁,刘一帆,巨晓军,盛中伟,唐燕飞,李华,邹剑敏. 广西麻鸡m6A甲基转移酶基因表达与肌纤维类型及成肌分化的关系[J]. 中国农业科学, 2022, 55(3): 589-601. |
[3] | 黄勋和,翁茁先,李威娜,王庆,何丹林,罗威,张细权,杜炳旺. 中国地方品种黄鸡线粒体DNA D-loop遗传多样性研究[J]. 中国农业科学, 2022, 55(22): 4526-4538. |
[4] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
[5] | 万连杰,何满,李俊杰,田洋,张绩,郑永强,吕强,谢让金,马岩岩,邓烈,易时来. 有机肥替代部分化肥对椪柑生长、品质及土壤特性的影响[J]. 中国农业科学, 2022, 55(15): 2988-3001. |
[6] | 聂兴华, 郑瑞杰, 赵永廉, 曹庆芹, 秦岭, 邢宇. 利用荧光SSR分子标记评估中国栗属植物遗传多样性[J]. 中国农业科学, 2021, 54(8): 1739-1750. |
[7] | 胡荣蓉,丁世杰,郭赟,朱浩哲,陈益春,刘政,丁希,唐长波,周光宏. Trolox对猪肌肉干细胞增殖及分化的影响[J]. 中国农业科学, 2021, 54(24): 5290-5301. |
[8] | 杜嘉伟,杜鑫泽,杨昕冉,宋贵兵,赵慧,昝林森,王洪宝. 干扰TP53INP2抑制牛成肌细胞分化[J]. 中国农业科学, 2021, 54(21): 4685-4693. |
[9] | 陈媛,蔡禾,李利,王林杰,仲涛,张红平. 山羊TNNT3基因可变剪切及其对骨骼肌细胞分化的作用[J]. 中国农业科学, 2021, 54(20): 4466-4477. |
[10] | 杜青,陈平,刘姗姗,罗凯,郑本川,杨欢,何舜,杨文钰,雍太文. 玉米-大豆间套作下田间小气候对大豆花形态建成进程的影响[J]. 中国农业科学, 2021, 54(13): 2746-2758. |
[11] | 石国良,武强,杨念婉,黄聪,刘万学,钱万强,万方浩. 苹果蠹蛾几丁质脱乙酰基酶2的基因克隆、表达模式和分子特性[J]. 中国农业科学, 2021, 54(10): 2105-2117. |
[12] | 赵继玉,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种生长发育特性与产量形成的关系[J]. 中国农业科学, 2021, 54(1): 46-57. |
[13] | 秦本源,杨阳,张燕伟,刘敏,张万锋,王海珍,吴怡琦,张雪莲,蔡春波,高鹏飞,郭晓红,李步高,曹果清. 猪骨骼肌卫星细胞分离培养、鉴定及其生物学特性[J]. 中国农业科学, 2020, 53(8): 1664-1676. |
[14] | 来裕婷,朱菲菲,王轶敏,郭宏,张林林,李新,郭益文,丁向彬. PSMB5蛋白对牛骨骼肌卫星细胞增殖与成肌分化的影响[J]. 中国农业科学, 2020, 53(20): 4287-4296. |
[15] | 杨允菲,辛晓平,李建东. 基于表型与遗传分化的羊草在中国草原扩散途径的探讨[J]. 中国农业科学, 2020, 53(13): 2541-2549. |
|