中国农业科学 ›› 2022, Vol. 55 ›› Issue (18): 3652-3663.doi: 10.3864/j.issn.0578-1752.2022.18.014
收稿日期:
2021-08-02
接受日期:
2022-04-02
出版日期:
2022-09-16
发布日期:
2022-09-22
通讯作者:
郝月
作者简介:
邢明杰,E-mail: 基金资助:
MingJie XING(),XianHong GU,XiaoHong WANG,Yue HAO()
Received:
2021-08-02
Accepted:
2022-04-02
Online:
2022-09-16
Published:
2022-09-22
Contact:
HAO Yue
摘要:
【目的】研究肌肉因子IL-15(interleukin 15)对猪骨骼肌成肌细胞增殖与凋亡的影响,为进一步研究IL-15在动物肌肉品质调控和骨骼肌疾病治疗提供依据。【方法】构建IL-15过表达慢病毒载体GV-492-IL-15,体外无菌分离培养猪骨骼肌卫星细胞,诱导分化,并通过免疫荧光染色进行成肌细胞验证。将成肌细胞转染IL-15过表达重组慢病毒载体,试验分别设置空白对照组(Control)、转染阴性对照病毒组(IL-15-)和转染GV-492-IL-15(IL-15+)慢病毒试验组(n=3)。培养72 h后,收集细胞和培养上清液。分别采用实时定量PCR(qRT-PCR)和Western Blot技术分析目的基因和蛋白的表达情况,采用ELISA试剂盒分析培养液中IL-15含量,采用CCK-8试剂盒分析成肌细胞活力,采用流式细胞术分析细胞周期和细胞凋亡,采用Western Blot技术检测与细胞凋亡密切相关的caspase-3蛋白表达水平的变化。【结果】(1)经鉴定后的质粒转染293T细胞,细胞内可观察到明显的绿色荧光,经Western Blot检测,可以观察到20 kD附近处有特征条带;(2)分离培养的猪骨骼肌卫星细胞呈梭形或纺锤形,诱导后可分化为呈管状的成肌细胞。将分化后的成肌细胞,进行α-SMA单克隆抗体免疫荧光染色,视野中90%的细胞呈阳性反应,胞浆染成红色,表明细胞为骨骼肌成肌细胞。(3)转染GV-492-IL-15慢病毒后,与对照细胞组相比,成肌细胞内IL-15 mRNA和蛋白相对表达量均极显著升高(P<0.001),但培养液中IL-15蛋白水平变化不大(P>0.05)。CCK-8结果显示,过表达IL-15可增强细胞的增殖能力(P<0.05)。与对照组相比,转染GV-492-IL-15慢病毒的细胞早期凋亡率差异不显著(P>0.05),但细胞晚期凋亡率显著下降(P<0.05)。与对照组相比,转染慢病毒组细胞中caspase-3蛋白有下降的趋势,但差异不显著(P>0.05)。此外,转染IL-15过表达慢病毒可使G1期细胞比例显著下降,S期和G2/M期细胞比例显著升高(P<0.05)。【结论】在正常生理条件下,IL-15是定位在细胞内并发挥作用的,IL-15过表达对猪骨骼肌成肌细胞早期凋亡没有显著影响,但可以抑制其晚期凋亡,并促进细胞增殖。这一研究将为IL-15正向调控猪骨骼肌肌肉品质和治疗相关肌肉疾病提供技术和理论依据。
邢明杰,顾宪红,王枭鸿,郝月. IL-15过表达对猪骨骼肌细胞成肌分化的影响[J]. 中国农业科学, 2022, 55(18): 3652-3663.
MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells[J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[1] |
BALTIC M Z, BOSKOVIC M. When man met meat: meat in human nutrition from ancient times till today. Procedia Food Science, 2015, 5: 6-9. doi: 10.1016/j.profoo.2015.09.002.
doi: 10.1016/j.profoo.2015.09.002 |
[2] |
LUO H M, LV W, TONG Q, JIN J J, XU Z Y, ZUO B. Functional non-coding RNA during embryonic myogenesis and postnatal muscle development and disease. Frontiers in Cell and Developmental Biology, 2021, 9: 628339. doi: 10.3389/fcell.2021.628339.
doi: 10.3389/fcell.2021.628339 |
[3] |
PARK J, LEE J, SONG K D, KIM S J, KIM D C, LEE S C, SON Y J, CHOI H W, SHIM K. Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growth-related genes. Animal Bioscience, 2021, 34(8): 1392-1402. doi: 10.5713/ab.20.0585.
doi: 10.5713/ab.20.0585 |
[4] | 许月园, 齐晓龙, 候晔, 赵云霞, 栾宇, 周焕焕, 赵书红, 李新云. 蓝塘猪和长白猪骨骼肌差异表达cis-NATs基因鉴定. 中国农业科学, 2018, 51(9): 1795-1805. |
XU Y Y, QI X L, HOU Y, ZHAO Y X, LUAN Y, ZHOU H H, ZHAO S H, LI X Y. Comparison study of differential expression genes and cis-NATs of skeletal muscle between lantang and Landrace pig. Scientia Agricultura Sinica, 2018, 51(9): 1795-1805. (in Chinese) | |
[5] |
MASON-D’CROZ D, BOGARD J R, HERRERO M, ROBINSON S, SULSER T B, WIEBE K, WILLENBOCKEL D, GODFRAY H C J. Modelling the global economic consequences of a major African swine fever outbreak in China. Nature Food, 2020, 1(4): 221-228. doi: 10.1038/s43016-020-0057-2.
doi: 10.1038/s43016-020-0057-2 |
[6] |
ZHANG H F, WANG J, MARTIN W. Factors affecting households' meat purchase and future meat consumption changes in China: a demand system approach. Journal of Ethnic Foods, 2018, 5(1): 24-32. doi: 10.1016/j.jef.2017.12.004.
doi: 10.1016/j.jef.2017.12.004 |
[7] |
PRATESI A. Skeletal muscle: an endocrine organ. Clinical Cases in Mineral and Bone Metabolism, 2013: 10(1): 11-14. doi: 10.11138/ccmbm/2013.10.1.011.
doi: 10.11138/ccmbm/2013.10.1.011 |
[8] |
DOMIN R, DADEJ D, PYTKA M, ZYBEK-KOCIK A, RUCHAŁA M, GUZIK P. Effect of various exercise regimens on selected exercise-induced cytokines in healthy people. International Journal of Environmental Research and Public Health, 2021, 18(3): 1261. doi: 10.3390/ijerph18031261.
doi: 10.3390/ijerph18031261 |
[9] |
LI G B, ZHANG L, WANG D E, AIQUDSY L, JIANG J X, XU H Y, SHANG P. Muscle-bone crosstalk and potential therapies for sarco-osteoporosis. Journal of Cellular Biochemistry, 2019, 120(9): 14262-14273. doi: 10.1002/jcb.28946.
doi: 10.1002/jcb.28946 |
[10] |
FEHNIGER T A, CALIGIURI M A. Interleukin 15: biology and relevance to human disease. Blood, 2001, 97(1): 14-32. doi: 10.1182/blood.v97.1.14.
doi: 10.1182/blood.v97.1.14 |
[11] |
WALDMANN T A. The biology of IL-15: implications for cancer therapy and the treatment of autoimmune disorders. Journal of Investigative Dermatology Symposium Proceedings, 2013, 16(1): S28-S30. doi: 10.1038/jidsymp.2013.8.
doi: 10.1038/jidsymp.2013.8 |
[12] | 孟庆玲, 乔军, 才学鹏, 田广孚, 闫鸿斌, 骆学农. 斯氏艾美耳球虫MIC-5与兔IL-15基因在真核细胞中的共表达. 中国农业科学, 2011, 44(19): 4096-4101. |
MENG Q L, QIAO J, CAI X P, TIAN G F, YAN H B, LUO X N. Co-expression of MIC-5 gene of Eimeria stiedai and rabbit IL-15 in eucaryotic cell line. Scientia Agricultura Sinica, 2011, 44(19): 4096-4101. (in Chinese) | |
[13] |
李利霞, 王皓, 张守彦. 白细胞介素15在糖尿病性心血管疾病中的研究现状与展望. 中国动脉硬化杂志, 2020, 28(12): 1100-1104. doi: 10.3969/j.issn.1007-3949.2020.12.016.
doi: 10.3969/j.issn.1007-3949.2020.12.016 |
LI L X, WANG H, ZHANG S Y. Research status and prospect of interleukin-15 in diabetic cardiovascular disease. Chinese Journal of Arteriosclerosis, 2020, 28(12): 1100-1104. doi: 10.3969/j.issn.1007-3949.2020.12.016. (in Chinese)
doi: 10.3969/j.issn.1007-3949.2020.12.016 |
|
[14] | BUSQUETS S, FIGUERAS M T, MEIJSING S, CARBÓ N, QUINN L S, ALMENDRO V, ARGILÉS J M, LÓPEZ-SORIANO F J. Interleukin-15 decreases proteolysis in skeletal muscle: a direct effect. International Journal of Molecular Medicine, 2005, 16(3): 471-476. |
[15] |
QUINN L S, ANDERSON B G, DRIVDAHL R H, ALVAREZ B, ARGILÉS J M. Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Experimental Cell Research, 2002, 280(1): 55-63. doi: 10.1006/excr.2002.5624.
doi: 10.1006/excr.2002.5624 |
[16] |
KROLOPP J E, THORNTON S M, ABBOTT M J. IL-15 activates the Jak3/STAT3 signaling pathway to mediate glucose uptake in skeletal muscle cells. Frontiers in Physiology, 2016, 7: 626. doi: 10.3389/fphys.2016.00626.
doi: 10.3389/fphys.2016.00626 |
[17] |
NADEAU L, AGUER C. Interleukin-15 as a myokine: mechanistic insight into its effect on skeletal muscle metabolism. Applied Physiology, Nutrition, and Metabolism, 2019, 44(3): 229-238. doi: 10.1139/apnm-2018-0022.
doi: 10.1139/apnm-2018-0022 |
[18] |
QUINN L S, ANDERSON B G, CONNER J D, WOLDEN-HANSON T. IL-15 overexpression promotes endurance, oxidative energy metabolism, and muscle PPARδ, SIRT1, PGC-1α, and PGC-1β expression in male mice. Endocrinology, 2013, 154(1): 232-245. doi: 10.1210/en.2012-1773.
doi: 10.1210/en.2012-1773 |
[19] |
QUINN L S, ANDERSON B G, CONNER J D, WOLDEN-HANSON T, MARCELL T J. IL-15 is required for postexercise induction of the pro-oxidative mediators PPARδ and SIRT1 in male mice. Endocrinology, 2014, 155(1): 143-155. doi: 10.1210/en.2013-1645.
doi: 10.1210/en.2013-1645 |
[20] |
FURMANCZYK P S, QUINN L S. Interleukin-15 increases myosin accretion in human skeletal myogenic cultures. Cell Biology International, 2003, 27(10): 845-851. doi: 10.1016/s1065-6995(03)00172-0.
doi: 10.1016/s1065-6995(03)00172-0 |
[21] |
QUINN L S, HAUGK K L, GRABSTEIN K H. Interleukin-15: a novel anabolic cytokine for skeletal muscle. Endocrinology, 1995, 136(8): 3669-3672. doi: 10.1210/endo.136.8.7628408.
doi: 10.1210/endo.136.8.7628408 |
[22] |
O’LEARY M F, WALLACE G R, BENNETT A J, TSINTZAS K, JONES S W. IL-15 promotes human myogenesis and mitigates the detrimental effects of TNFα on myotube development. Scientific Reports, 2017, 7: 12997. doi: 10.1038/s41598-017-13479-w.
doi: 10.1038/s41598-017-13479-w |
[23] |
KANG X, YANG M Y, SHI Y X, XIE M M, ZHU M, ZHENG X L, ZHANG C K, GE Z L, BIAN X T, LV J T, WANG Y J, ZHOU B H, TANG K L. Interleukin-15 facilitates muscle regeneration through modulation of fibro/adipogenic progenitors. Cell Communication and Signaling: CCS, 2018, 16(1): 42. doi: 10.1186/s12964-018-0251-0.
doi: 10.1186/s12964-018-0251-0 |
[24] |
QUINN L S. Interleukin-15: a muscle-derived cytokine regulating fat-to-lean body composition1, 2. Journal of Animal Science, 2008, 86(suppl_14): E75-E83. doi: 10.2527/jas.2007-0458.
doi: 10.2527/jas.2007-0458 |
[25] |
LI Y H, LI F N, LIN B B, KONG X F, TANG Y L, YIN Y L. Myokine IL-15 regulates the crosstalk of co-cultured porcine skeletal muscle satellite cells and preadipocytes. Molecular Biology Reports, 2014, 41(11): 7543-7553. doi: 10.1007/s11033-014-3646-z.
doi: 10.1007/s11033-014-3646-z |
[26] |
HE D, JIANG Z, TIAN Y, HAN H, XIA M, WEI W, ZHANG L, CHEN J. Genetic variants in IL15 promoter affect transcription activity and intramuscular fat deposition in longissimus dorsi muscle of pigs. Animal Genetics, 2018, 49(1): 19-28. doi: 10.1111/age.12611.
doi: 10.1111/age.12611 |
[27] |
HAO Y, FENG Y J, LI J L, GU X H. Role of MAPKs in HSP70's protection against heat stress-induced injury in rat small intestine. BioMed Research International, 2018: 1571406. doi: 10.1155/2018/1571406.
doi: 10.1155/2018/1571406 |
[28] |
梁亚冰, 张琪, 常嵘, 童德文, 许信刚. 猪传染性胃肠炎病毒非结构蛋白3a 和3b 融合表达及对细胞周期的影响. 中国农业科学, 2015, 48(2): 352-361. doi: 10.3864/j.issn.0578-1752.2015.02.15.
doi: 10.3864/j.issn.0578-1752.2015.02.15 |
LIANG Y B, ZHANG Q, CHANG R, TONG D W, XU X G. Fusion expression of non-structural proteins 3a and 3b of porcine transmissible gastroenteritis virus and influence on cell cycle. Scientia Agricultura Sinica, 2015, 48(2): 352-361. doi: 10.3864/j.issn.0578-1752.2015.02.15. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.02.15 |
|
[29] |
WLODKOWIC D, SKOMMER J, DARZYNKIEWICZ Z. Flow cytometry-based apoptosis detection. Methods in Molecular Biology (Clifton, N J), 2009, 559: 19-32. doi: 10.1007/978-1-60327-017-5_2.
doi: 10.1007/978-1-60327-017-5_2 |
[30] |
PEDERSEN B K. Muscles and their myokines. The Journal of Experimental Biology, 2011, 214(Pt 2): 337-346. doi: 10.1242/jeb.048074.
doi: 10.1242/jeb.048074 |
[31] |
PEDERSEN B K, STEENSBERG A, FISCHER C, KELLER C, KELLER P, PLOMGAARD P, FEBBRAIO M, SALTIN B. Searching for the exercise factor: is IL-6 a candidate?. Journal of Muscle Research and Cell Motility, 2003, 24(2/3): 113-119. doi: 10.1023/a:1026070911202.
doi: 10.1023/a:1026070911202 |
[32] |
SCISCIOLA L, FONTANELLA R A, SURINA, CATALDO V, PAOLISSO G, BARBIERI M. Sarcopenia and cognitive function: role of myokines in muscle brain cross-talk. Life (Basel, Switzerland), 2021, 11(2): 173. doi: 10.3390/life11020173.
doi: 10.3390/life11020173 |
[33] |
KWON J H, MOON K M, MIN K W. Exercise-induced myokines can explain the importance of physical activity in the elderly: an overview. Healthcare (Basel, Switzerland), 2020, 8(4): 378. doi: 10.3390/healthcare8040378.
doi: 10.3390/healthcare8040378 |
[34] |
SOUSA R, IMPROTA-CARIA A C, SOUZA B. Exercise-linked irisin: consequences on mental and cardiovascular health in type 2 diabetes. International Journal of Molecular Sciences, 2021, 22(4): 2199. doi: 10.3390/ijms22042199.
doi: 10.3390/ijms22042199 |
[35] |
HAN K P, ZHU X Y, LIU B, JENG E, KONG L, YOVANDICH J L, VYAS V V, MARCUS W D, CHAVAILLAZ P A, ROMERO C A, RHODE P R, WONG H C. IL-15: IL-15 receptor alpha superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine, 2011, 56(3): 804-810. doi: 10.1016/j.cyto.2011.09.028.
doi: 10.1016/j.cyto.2011.09.028 |
[36] |
PERRY C, RAYAT A C M E. Lentiviral vector bioprocessing. Viruses, 2021, 13(2): 268. doi: 10.3390/v13020268.
doi: 10.3390/v13020268 |
[37] | MEAZZA R, VERDIANI S, BIASSONI R, COPPOLECCHIA M, GAGGERO A, ORENGO A M, COLOMBO M P, AZZARONE B, FERRINI S. Identification of a novel interleukin-15 (IL-15) transcript isoform generated by alternative splicing in human small cell lung cancer cell lines. Oncogene, 1996, 12(10): 2187-2192. |
[38] |
OUYANG S D, HSUCHOU H, KASTIN A J, PAN W H. TNF stimulates nuclear export and secretion of IL-15 by acting on CRM1 and ARF6. PLoS ONE, 2013, 8(8): e69356. doi: 10.1371/journal.pone.0069356.
doi: 10.1371/journal.pone.0069356 |
[39] |
ARGILÉS J M, LÓPEZ-SORIANO F J, BUSQUETS S. Therapeutic potential of interleukin-15: a myokine involved in muscle wasting and adiposity. Drug Discovery Today, 2009, 14(3/4): 208-213. doi: 10.1016/j.drudis.2008.10.010.
doi: 10.1016/j.drudis.2008.10.010 |
[40] |
FIGUERAS M, BUSQUETS S, CARBÓ N, BARREIRO E, ALMENDRO V, ARGILÉS J M, LÓPEZ-SORIANO F J. Interleukin- 15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour-bearing rats. FEBS Letters, 2004, 569(1/2/3): 201-206. doi: 10.1016/j.febslet.2004.05.066.
doi: 10.1016/j.febslet.2004.05.066 |
[41] |
PISTILLI E E, ALWAY S E. Systemic elevation of interleukin-15 in vivo promotes apoptosis in skeletal muscles of young adult and aged rats. Biochemical and Biophysical Research Communications, 2008, 373(1): 20-24. doi: 10.1016/j.bbrc.2008.05.188.
doi: 10.1016/j.bbrc.2008.05.188 |
[42] |
TIE H M, SUN R X, YU D W, YANG F, JIANG Q X, XU Y S, XIA W S. The apoptosis of grass carp (Ctenopharyngodon idella) muscle during postmortem condition regulated by the cytokines via TOR and NF-κB signaling pathways. Food Chemistry, 2021, 369: 130911. doi: 10.1016/j.foodchem.2021.130911.
doi: 10.1016/j.foodchem.2021.130911 |
[43] |
GRABSTEIN K H, EISENMAN J, SHANEBECK K, RAUCH C, SRINIVASAN S, FUNG V, BEERS C, RICHARDSON J, SCHOENBORN M A, AHDIEH M. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science, 1994, 264(5161): 965-968. doi: 10.1126/science.8178155.
doi: 10.1126/science.8178155 |
[44] |
YE J P. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes. Frontiers of Medicine, 2015, 9(2): 139-145. doi: 10.1007/s11684-015-0377-z.
doi: 10.1007/s11684-015-0377-z |
[45] | 康夏. 肌肉因子调控成纤维/成脂前体细胞影响肌肉慢性损伤修复的机制研究[D]. 重庆: 中国人民解放军陆军军医大学, 2019. |
KANG X. Myokines regulate the muscle regeneration after chronic injury by modulating fibro/adipogenic progenitors[D]. Chongqing: Army Medical University, 2019. (in Chinese) | |
[46] |
PISTILLI E E, QUINN L S. From anabolic to oxidative: reconsidering the roles of IL-15 and IL-15Rα in skeletal muscle. Exercise and Sport Sciences Reviews, 2013, 41(2): 100-106. doi: 10.1097/JES.0b013e318275d230.
doi: 10.1097/JES.0b013e318275d230 |
[47] |
TAGAYA Y, BAMFORD R N, DEFILIPPIS A P, WALDMANN T A. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity, 1996, 4(4): 329-336. doi: 10.1016/s1074-7613(00)80246-0.
doi: 10.1016/s1074-7613(00)80246-0 |
[1] | 翟晓虎,李翎旭,陈小竹,蒋怀德,贺卫华,姚大伟. 肉中猪源性成分Real-time PCR定量检测技术[J]. 中国农业科学, 2023, 56(1): 156-164. |
[2] | 王一丹,杨发龙,陈弟诗,向华,任玉鹏. 猪腹泻病毒一步法多重TaqMan荧光定量RT-PCR检测法的建立及应用[J]. 中国农业科学, 2023, 56(1): 179-192. |
[3] | 王吉,张鑫,胡静荣,于智慧,朱迎春. 灭菌猪肉浆中发酵菌株脂质水解和氧化能力分析[J]. 中国农业科学, 2022, 55(9): 1846-1858. |
[4] | 刘玉芳,陈玉林,周祖阳,储明星. miR-221-3p靶向BCL2L11调控小尾寒羊卵泡颗粒细胞凋亡[J]. 中国农业科学, 2022, 55(9): 1868-1876. |
[5] | 李文慧,贺依静,姜瑶,赵红宇,彭磊,李佳,芮荣,剧世强. 伏马毒素B1对猪体外成熟卵母细胞凋亡与自噬的影响[J]. 中国农业科学, 2022, 55(6): 1241-1252. |
[6] | 杨时鳗, 许程志, 许榜丰, 吴运谱, 贾云慧, 乔传玲, 陈化兰. H1N1亚型猪流感病毒HA蛋白225位氨基酸对病毒致病性的影响[J]. 中国农业科学, 2022, 55(4): 816-824. |
[7] | 童世锋,任智彬,林斐,葛雨竹,陶景丽,刘杨. 二花脸公猪不同耐冻性精子的蛋白质组学分析[J]. 中国农业科学, 2022, 55(23): 4743-4752. |
[8] | 陈彧,朱浩哲,陈益春,刘政,丁希,郭赟,丁世杰,周光宏. 猪肌肉干细胞在三维水凝胶中的分化研究[J]. 中国农业科学, 2022, 55(22): 4500-4512. |
[9] | 杨昌沛,王乃秀,汪锴,黄子晴,林海烂,张莉,张晨,冯露秋,甘玲. 外源性γ-氨基丁酸抵抗仔猪氧化应激的效果及机制[J]. 中国农业科学, 2022, 55(17): 3437-3449. |
[10] | 邓富丽,申丹,钟儒清,张顺芬,李滔,孙曙东,陈亮,张宏福. 体外法优化玉米—杂粕型饲粮的非淀粉多糖酶谱及其对育肥猪肠道微生物的影响[J]. 中国农业科学, 2022, 55(16): 3242-3255. |
[11] | 张冯禧,肖琦,朱家平,尹力鸿,赵霞玲,严明帅,徐晋花,温立斌,牛家强,何孔旺. 非洲猪瘟病毒P30蛋白单克隆抗体制备、鉴定及阻断ELISA方法的建立[J]. 中国农业科学, 2022, 55(16): 3256-3266. |
[12] | 周隽,林清,邵宝全,任端阳,李加琪,张哲,张豪. 猪群体一步法基因组选择应用效果评估[J]. 中国农业科学, 2022, 55(15): 3042-3049. |
[13] | 李丽莹,何颖婷,钟玉宜,周小枫,张豪,袁晓龙,李加琪,陈赞谋. CTNNB1对猪卵巢颗粒细胞的调控[J]. 中国农业科学, 2022, 55(15): 3050-3061. |
[14] | 魏天,王成宇,王凤杰,李忠鹏,张芳毓,张守峰,扈荣良,吕礼良,王永志. 非洲猪瘟病毒p30蛋白单克隆抗体制备及线性抗原表位定位[J]. 中国农业科学, 2022, 55(15): 3062-3070. |
[15] | 蓝群,谢颖瑜,曹嘉程,薛丽娥,陈德军,饶勇勇,林瑞意,方绍明,肖天放. 咖啡酸苯乙酯通过AMPK/FOXO3a信号通路缓解猪精液常温保存氧化应激的作用机制[J]. 中国农业科学, 2022, 55(14): 2850-2861. |
|