中国农业科学 ›› 2022, Vol. 55 ›› Issue (23): 4614-4625.doi: 10.3864/j.issn.0578-1752.2022.23.004
尹彦雨(),邢雨桐,吴天凡,王李妍,赵子胥,胡天然,陈源,陈媛,陈德华*(),张祥*()
收稿日期:
2022-01-04
接受日期:
2022-04-19
出版日期:
2022-12-01
发布日期:
2022-12-06
联系方式:
尹彦雨,E-mail:2026231662@qq.com。
基金资助:
YIN YanYu(),XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua*(),ZHANG Xiang*()
Received:
2022-01-04
Accepted:
2022-04-19
Published:
2022-12-01
Online:
2022-12-06
摘要: 目的 明确Bt棉叶片Cry1Ac毒蛋白含量对昼夜变温下高温干旱胁迫响应及其生理机制,为生产中Bt棉抗虫性的安全稳定利用提供参考。方法 2019—2020年在扬州大学农学院,以常规种泗抗1号(SK-1)和杂交种泗抗3号(SK-3)为材料,以温度和土壤水分含量为因子,温度分别设为34℃(白天,7:00—19:00)/28℃(夜间,19:00—7:00)(A1)、38℃/28℃(A2);土壤水分含量分别为田间土壤最大持水量的50%(B1)和60%(B2),并以32℃/28℃、田间土壤最大持水量的75%为对照(CK)。各处理分别持续4、7、10 d(DAS)。结果 不同处理导致叶片中Cry1Ac毒蛋白含量降低,且随着胁迫时间的延长,下降幅度增加。处理间相比,A1B2处理下降幅度最少,7 DAS后开始显著低于CK;A1B1处理下降幅度其次,4 DAS后显著低于CK;A2B1、A2B2处理在4 DAS显著下降。可溶性蛋白(SP)含量、硝酸还原酶(NR)、谷氨酸丙酮酸转氨酶(GPT)、谷氨酸草酰乙酸转氨酶(GOT)、谷氨酰胺合成酶(GS)、游离氨基酸(aa)和谷氨酸合成酶(GOGAT)等活性变化趋势与毒蛋白一致,且呈极显著正相关,而Bt基因表达量、单宁含量、蛋白酶、肽酶活性则呈上升趋势。逐步回归和通径分析筛选出NR、GPT、GS等3个关键指标可反映Bt棉Cry1Ac毒蛋白含量高低,且三者对Cry1Ac毒蛋白含量有较大的正效应。结论 昼夜变温下高温和干旱互作导致Bt棉Cry1Ac毒蛋白含量降低,且随持续期延长下降幅度逐渐增大。其中34℃/28℃和田间土壤最大持水量60%胁迫7—10 d内与对照无显著差异。但与昼夜持续高温相比,昼夜变温的高温胁迫下Cry1Ac毒蛋白含量下降幅度减小和时期明显推迟。NR、GPT、GS是决定Cry1Ac毒蛋白含量高低的关键指标。
尹彦雨, 邢雨桐, 吴天凡, 王李妍, 赵子胥, 胡天然, 陈源, 陈媛, 陈德华, 张祥. 昼夜变温下高温与干旱胁迫对Bt棉毒蛋白含量的影响及其生理机制[J]. 中国农业科学, 2022, 55(23): 4614-4625.
YIN YanYu, XING YuTong, WU TianFan, WANG LiYan, ZHAO ZiXu, HU TianRan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton[J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
表1
昼夜变温下高温与干旱互作对叶片中Cry1Ac毒蛋白含量的影响"
年份 Year | 品种 Cultivar | 处理 Treatment | 胁迫后天数Days after stress (DAS) | ||
---|---|---|---|---|---|
4 d | 7 d | 10 d | |||
2019 | SK-1 | CK | 894.29±5.56a | 670.72±2.62a | 558.93±16.4a |
A1B1 | 422.30±1.60abc | 345.67±82.45bc | 227.52±42.32b | ||
A1B2 | 598.00±4.66ab | 438.14±3.77b | 434.73±34.66a | ||
A2B1 | 111.75±1.45c | 83.81±1.45d | 60.16±9.53c | ||
A2B2 | 274.57±2.66bc | 219.62±9.61cd | 181.69±2.82bc | ||
2020 | SK-1 | CK | 835.63±14.62ab | 826.02±5.32a | 810.17±0.34b |
A1B1 | 424.98±40.69def | 343.43±52.67de | 294.50±1.93f | ||
A1B2 | 654.28±26.05abcd | 387.93±4.16cde | 366.11±2.79e | ||
A2B1 | 104.20±2.40g | 93.39±2.04g | 33.62±2.06i | ||
A2B2 | 255.69±2.02fg | 214.81±1.70f | 114.88±0.66h | ||
SK-3 | CK | 873.93±16.69a | 859.89±17.97a | 892.94±3.23a | |
A1B1 | 606.27±60.58bcde | 502.56±58.28bc | 464.49±1.64d | ||
A1B2 | 705.66±25.49abc | 605.46±58.32b | 523.92±4.19c | ||
A2B1 | 370.71±3.29ef | 313.82±2.61ef | 282.39±1.88g | ||
A2B2 | 481.85±1.99cdef | 457.19±1.64cd | 368.96±7.99e |
表2
昼夜变温下高温与干旱互作对叶片单宁含量的影响"
品种 Cultivar | 处理 Treatment | 胁迫后天数Days after stress (DAS) | ||
---|---|---|---|---|
4 d | 7 d | 10 d | ||
SK-1 | CK | 3.15±0.20c | 3.81±0.25d | 4.04±0.01ef |
A1B1 | 3.84±0.09bc | 4.84±0.61c | 5.38±0.14c | |
A1B2 | 3.17±0.02c | 3.95±0.04d | 4.96±0.04cd | |
A2B1 | 5.50±1.03a | 6.17±0.19a | 8.01±1.18a | |
A2B2 | 4.49±0.50b | 5.45±0.24b | 6.73±0.61b | |
SK-3 | CK | 0.73±0.13g | 0.77±0.07g | 1.15±0.06h |
A1B1 | 1.76±0.22de | 1.94±0.05f | 3.87±0.07f | |
A1B2 | 1.02±0.11fg | 1.53±0.01f | 1.77±0.04h | |
A2B1 | 2.25±0.31d | 2.51±0.36e | 4.61±0.30de | |
A2B2 | 1.51±0.47ef | 1.82±0.22f | 2.80±0.07g |
表3
昼夜变温下高温与干旱互作对叶片中SP和aa含量的影响"
年份 Year | 品种 Cultivar | 处理 Treatment | SP含量 SP content | aa含量 aa content | ||||
---|---|---|---|---|---|---|---|---|
4 DAS | 7 DAS | 10 DAS | 4 DAS | 7 DAS | 10 DAS | |||
2019 | SK-1 | CK | 2.60±0.20a | 2.02±0.05a | 1.14±0.05a | 1.50±0.10a | 1.05±0.04a | 0.91±0.02a |
A1B1 | 1.42±0.00bc | 0.97±0.04c | 0.67±0.03c | 0.98±0.07b | 0.82±0.05bc | 0.64±0.04c | ||
A1B2 | 2.21±0.11ab | 1.68±0.23b | 0.97±0.02b | 1.15±0.20b | 0.90±0.08ab | 0.70±0.00b | ||
A2B1 | 0.72±0.01c | 0.36±0.05e | 0.34±0.02e | 0.67±0.02c | 0.54±0.01d | 0.53±0.03d | ||
A2B2 | 1.34±0.08bc | 0.62±0.01d | 0.55±0.06d | 0.95±0.01b | 0.69±0.16cd | 0.54±0.03d | ||
2020 | SK-1 | CK | 5.36±0.19b | 4.42±0.10b | 2.5±0.19b | 1.81±0.47a | 1.37±0.06a | 1.06±0.04a |
A1B1 | 4.70±0.13cd | 3.35±0.03e | 1.17±0.02f | 1.22±0.11b | 1.03±0.10c | 0.81±0.02c | ||
A1B2 | 5.03±0.14bc | 3.76±0.07d | 1.74±0.08d | 1.42±0.08ab | 1.18±0.08b | 0.92±0.02b | ||
A2B1 | 3.57±0.22f | 2.23±0.08h | 0.63±0.02h | 0.69±0.04c | 0.68±0.01d | 0.62±0.04e | ||
A2B2 | 4.20±0.17e | 2.99±0.30f | 0.95±0.04g | 1.12±0.04bc | 0.92±0.10c | 0.72±0.01d | ||
SK-3 | CK | 5.81±0.53a | 4.73±0.06a | 3.08±0.02a | 2.19±0.02a | 1.85±0.02a | 1.50±0.05a | |
A1B1 | 4.83±0.05c | 3.36±0.03e | 1.34±0.01e | 1.88±0.10b | 1.34±0.06b | 1.01±0.02c | ||
A1B2 | 5.27±0.28b | 3.98±0.08c | 2.11±0.03c | 2.06±0.16ab | 1.39±0.04b | 1.10±0.02b | ||
A2B1 | 3.65±0.01f | 2.44±0.02g | 0.91±0.04g | 1.59±0.04c | 0.98±0.18c | 0.80±0.03e | ||
A2B2 | 4.33±0.03de | 3.17±0.03ef | 1.15±0.03f | 1.66±0.12c | 1.10±0.07c | 0.89±0.04d |
表4
昼夜变温下高温与干旱互作对叶片中GPT和GOT活性的影响"
年份 Year | 品种 Cultivar | 处理 Treatment | GPT活性 GPT Activity | GOT活性 GOT Activity | ||||
---|---|---|---|---|---|---|---|---|
4DAS | 7DAS | 10DAS | 4DAS | 7DAS | 10DAS | |||
2019 | SK-1 | CK | 22.31±3.57a | 21.29±0.14a | 18.65±0.11a | 31.02±5.34a | 27.57±2.13a | 26.19±0.70a |
A1B1 | 18.88±0.15bc | 16.82±0.80c | 10.48±0.25c | 25.93±0.21b | 23.83±024b | 19.95±0.57c | ||
A1B2 | 20.57±2.87ab | 18.91±0.25b | 14.01±0.22b | 27.05±2.64ab | 26.47±0.63ab | 24.57±0.64b | ||
A2B1 | 16.56±0.36d | 10.24±0.35e | 5.42±0.20e | 22.33±0.34b | 18.45±0.23d | 13.03±0.36e | ||
A2B2 | 17.41±0.15cd | 12.52±0.23d | 8.69±0.16d | 25.31±0.21b | 20.91±0.10c | 17.09±0.25d | ||
2020 | SK-1 | CK | 24.05±3.48c | 22.81±1.73c | 20.64±0.63b | 36.55±2.32c | 35.14±0.36c | 29.84±0.89c |
A1B1 | 18.65±2.48f | 14.81±0.80e | 11.10±0.35g | 31.71±2.25d | 26.20±0.52e | 20.19±0.10f | ||
A1B2 | 22.70±1.06cd | 18.51±0.86d | 12.89±0.82f | 34.84±1.55c | 30.95±1.54d | 25.82±0.40e | ||
A2B1 | 13.01±0.21h | 7.42±0.15g | 4.25±0.18j | 24.13±0.82f | 19.90±0.41f | 14.21±0.04g | ||
A2B2 | 16.19±0.30g | 10.73±0.19f | 9.60±0.73i | 27.03±0.37e | 21.45±0.14f | 18.53±0.36f | ||
SK-3 | CK | 30.79±0.37a | 29.70±0.38a | 26.23±0.28a | 45.76±1.54a | 41.33±1.30a | 40.71±0.43a | |
A1B1 | 28.67±0.17b | 22.24±1.09c | 16.59±0.68d | 39.80±2.54b | 36.01±1.61c | 28.06±1.07d | ||
A1B2 | 29.92±1.46ab | 24.57±0.84b | 19.57±0.63c | 43.99±1.38a | 38.69±0.93b | 35.98±0.67b | ||
A2B1 | 20.85±0.08e | 15.76±0.54e | 10.37±0.36h | 31.88±1.38d | 26.41±1.25e | 19.67±1.67f | ||
A2B2 | 22.47±0.29d | 18.12±0.58d | 15.04±1.18e | 34.48±2.14cd | 31.81±1.47d | 26.28±1.78e |
表5
昼夜变温下高温与干旱互作对叶片GS和GOGAT活性的影响"
年份 Year | 品种 Cultivar | 处理 Treatment | GS活性 GS activity (U·g-1 FW·min-1) | GOGAT活性 GOGAT activity (μmol·g-1 FW·min-1) | ||||
---|---|---|---|---|---|---|---|---|
4DAS | 7DAS | 10DAS | 4DAS | 7DAS | 10DAS | |||
2019 | SK-1 | CK | 7.35±0.30a | 6.61±0.28a | 5.95±0.31a | 3.36±0.43a | 3.19±0.02a | 3.03±0.04a |
A1B1 | 4.96±0.10ab | 3.42±0.06bc | 3.31±0.45c | 2.33±0.00abc | 2.01±0.09bc | 1.93±0.03b | ||
A1B2 | 5.28±0.11ab | 4.73±0.09b | 3.86±0.04b | 2.55±0.15ab | 2.27±0.14ab | 2.01±0.26b | ||
A2B1 | 3.63±0.09b | 2.32±0.24c | 1.58±0.39e | 1.33±0.11c | 1.26±0.04c | 0.90±0.04c | ||
A2B2 | 4.63±0.08b | 2.88±0.11c | 2.17±0.32d | 2.00±0.12bc | 1.94±0.04bc | 1.74±0.19bc | ||
2020 | SK-1 | CK | 8.68±0.25c | 7.17±0.11bc | 6.21±0.07b | 3.41±0.19d | 3.16±0.02c | 2.80±0.24d |
A1B1 | 8.21±0.06d | 5.09±0.30de | 4.27±0.19e | 3.12±0.17e | 2.22±0.10f | 1.55±0.01f | ||
A1B2 | 8.47±0.20cd | 6.59±0.40c | 5.66±0.32c | 3.30±0.10de | 2.95±0.24d | 2.50±0.15e | ||
A2B1 | 5.46±0.32f | 3.71±0.17g | 1.43±0.29h | 1.80±0.15g | 1.65±0.07h | 0.98±0.02h | ||
A2B2 | 6.89±0.10e | 4.33±0.29f | 2.5±0.35g | 2.25±0.05f | 1.97±0.08g | 1.32±0.03g | ||
SK-3 | CK | 10.29±0.21a | 9.32±0.44a | 7.31±0.25a | 4.91±0.09a | 4.49±0.17a | 4.53±0.11a | |
A1B1 | 9.84±0.09b | 7.58±0.68b | 5.18±0.07d | 4.15±0.08b | 3.97±0.17b | 3.24±0.02c | ||
A1B2 | 9.88±0.09ab | 8.74±0.38a | 6.49±0.32b | 4.76±0.11a | 4.34±0.03a | 3.55±0.05b | ||
A2B1 | 6.87±0.36e | 4.87±0.12ef | 2.48±0.18g | 3.22±0.07de | 2.44±0.09e | 1.65±0.10f | ||
A2B2 | 8.37±0.39cd | 5.70±0.10d | 3.31±0.15f | 3.65±0.02c | 3.11±0.03cd | 2.36±0.09e |
表6
昼夜变温下高温与干旱互作对叶片NR活性的影响"
年份 Year | 品种 Cultivar | 处理 Treatment | 胁迫后天数Days after stress (DAS) | ||
---|---|---|---|---|---|
4 d | 7 d | 10 d | |||
2019 | SK-1 | CK | 58.99±6.12a | 51.42±5.94a | 43.95±1.39a |
A1B1 | 39.74±0.27bc | 31.05±0.44bc | 22.82±0.12c | ||
A1B2 | 45.56±7.25b | 39.58±9.02b | 26.22±2.70b | ||
A2B1 | 30.41±2.32c | 24.61±0.48c | 19.78±2.06e | ||
A2B2 | 36.00±0.34c | 26.93±1.08c | 20.17±0.04d | ||
2020 | SK-1 | CK | 65.47±0.79b | 58.61±0.53c | 49.16±0.32b |
A1B1 | 38.91±0.60d | 30.31±0.32f | 24.38±0.43de | ||
A1B2 | 61.91±11.76b | 41.64±0.37d | 31.93±0.70cd | ||
A2B1 | 23.29±0.44f | 20.84±0.16h | 14.18±0.08f | ||
A2B2 | 32.45±0.69de | 25.56±0.35g | 29.42±1.36de | ||
SK-3 | CK | 74.15±8.60a | 65.26±0.49a | 58.78±0.62a | |
A1B1 | 47.34±0.86c | 37.98±0.71ef | 32.42±2.82cd | ||
A1B2 | 68.35±0.18ab | 60.83±0.24b | 41.40±0.59bc | ||
A2B1 | 28.23±2.94ef | 19.79±0.25i | 19.22±1.17ef | ||
A2B2 | 37.79±1.74d | 30.47±0.22f | 25.56±1.31de |
表7
昼夜变温下高温与干旱互作对叶片蛋白酶和肽酶活性的影响"
年份 Year | 品种 Cultivar | 处理 Treatment | 蛋白酶活性 Protease activity (μg·g-1 FW·min-1) | 肽酶活性 Peptidase activity (U·g-1 FW·h-1) | ||||
---|---|---|---|---|---|---|---|---|
4DAS | 7DAS | 10DAS | 4DAS | 7DAS | 10DAS | |||
2019 | SK-1 | CK | 75.33±2.52c | 77.33±2.08d | 84.75±5.91e | 24.62±4.59d | 28.09±3.07d | 30.55±2.58d |
A1B1 | 98.70±3.09b | 106.30±0.79c | 125.23±2.64c | 31.38±1.56bc | 40.02±0.87c | 42.54±2.96c | ||
A1B2 | 95.11±1.84b | 102.77±1.22c | 110.86±5.21d | 28.34±0.86cd | 30.50±0.53d | 33.58±1.36d | ||
A2B1 | 103.92±4.55a | 128.04±1.54a | 170.00±3.00a | 36.99±2.18a | 57.73±1.95a | 62.02±3.81a | ||
A2B2 | 104.40±3.77a | 123.70±3.77b | 137.94±6.48b | 35.16±0.38ab | 51.93±4.13bc | 53.51±0.83b | ||
2020 | SK-1 | CK | 99.18±10.35f | 115.80±0.12j | 128.82±1.29g | 26.87±1.26f | 31.97±2.14g | 34.34±0.41j |
A1B1 | 127.90±2.25bcd | 140.95±1.86f | 187.63±2.18d | 33.12±0.18d | 42.41±2.03e | 56.11±0.39f | ||
A1B2 | 111.72±10.87e | 129.59±1.23h | 164.03±3.51f | 27.97±2.05f | 34.78±2.35fg | 47.22±0.05h | ||
A2B1 | 144.17±2.05a | 161.83±1.23b | 242.90±1.32b | 38.26±0.23b | 65.21±0.69b | 78.69±0.45b | ||
A2B2 | 128.62±0.52bc | 151.57±0.32d | 213.31±3.05c | 35.27±0.88c | 57.50±0.3c | 65.34±1.29d | ||
SK-3 | CK | 101.52±1.46f | 120.74±0.05i | 134.49±1.07g | 30.56±0.83e | 36.19±2.23f | 38.46±0.65i | |
A1B1 | 125.04±1.74cd | 142.67±1.05e | 176.90±2.45e | 35.69±0.67c | 46.51±2.33d | 63.61±0.07e | ||
A1B2 | 119.80±3.11de | 134.69±1.05g | 165.01±2.32f | 31.14±2.01e | 37.82±2.93f | 50.66±0.40g | ||
A2B1 | 143.35±3.10a | 165.09±0.35a | 250.28±9.54a | 41.26±0.56a | 70.72±0.18a | 80.03±0.69a | ||
A2B2 | 134.80±1.43b | 154.68±0.14c | 212.89±3.64c | 38.48±0.53b | 62.39±0.17b | 69.17±0.56c |
[1] | 夏兰芹, 郭三堆. 高温对转基因抗虫棉中Bt杀虫基因表达的影响. 中国农业科学, 2004, 37(11): 1733-1737. |
XIA L Q, GUO S D. The expression of Bt toxin gene under different thermal treatments. Scientia Agricultura Sinica, 2004, 37(11): 1733-1737. (in Chinese) | |
[2] |
CHEN D H, YE G Y, YANG C Q, CHEN Y. The effect of high temperature on the insecticidal properties of Bt cotton. Environmental and Experimental Botany, 2005, 53(3): 333-342.
doi: 10.1016/j.envexpbot.2004.04.004 |
[3] |
BENEDICT J H, SACHS E S, ALTMAN D W, DEATON W R, KOHEL R J, RING D R, BERBERICH S A. Field performance of cottons expressing transgenic Cry1A insecticidal proteins for resistance to Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Economic Entomology, 1996, 89(1): 230-238.
doi: 10.1093/jee/89.1.230 |
[4] |
MARTINS C M, BEYENE G, HOFS J L, KRUGER K, VYVER C V D, SCHLUTER U, KUNERT K J. Effect of water-deficit stress on cotton plants expressing the Bacillus thuringiensis toxin. Annals of Applied Biology, 2008, 152(2): 255-262.
doi: 10.1111/j.1744-7348.2007.00214.x |
[5] | 张祥, 王剑, 彭盛, 芮秋治, 李丽楠, 陈媛, 陈源, 陈德华. 温度和土壤水分与Bt棉铃壳中杀虫蛋白表达关系及其氮代谢生理机制. 中国农业科学, 2018, 51(7): 1261-1271. |
ZHANG X, WANG J, PENG S, RUI Q Z, LI L N, CHEN Y, CHEN Y, CHEN D H. Relationship between temperature, soil moisture, and insecticidal protein content in Bt cotton boll shell and the mechanism of nitrogen metabolism. Scientia Agricultura Sinica, 2018, 51(7): 1261-1271. (in Chinese) | |
[6] | STAM M, MOL J N M, KOOTER J M. The silence of genes in transgenic plants. Annals of Botany, 1997, 79(1): 3-12 |
[7] |
ALLAH B, SAIMA S, TAYYAB H. A molecular approach to combat spatio-temporal variation in insecticidal gene (Cry1Ac) expression in cotton. Euphytica, 2012, 183(1): 65-74
doi: 10.1007/s10681-011-0497-8 |
[8] |
SHINJI I, TAKESHI S, MADOKA N, YASUHISA K. Influence of tannic acid on the insecticidal activity of a Bacillus thuringiensis serovar aizawai formulation against Spodoptera litura fabricius (Lepidoptera: Noctuidae). Biological Control, 2021, 157(1): 104558
doi: 10.1016/j.biocontrol.2021.104558 |
[9] |
CHEN Y, LIU Z Y, TAMBEL L, ZHANG X, CHEN Y, CHEN D H. Reduced square Bacillus thuringiensis insecticidal protein content of transgenic cotton under N deficit. Journal of Integrative Agriculture, 2021, 20(1):100-108.
doi: 10.1016/S2095-3119(20)63190-2 |
[10] |
WANG J, CHEN Y, YAO M H, LI Y, WEN Y J, CHEN Y, ZHANG X, CHEN D H. The effects of high temperature level on square Bt protein concentration of Bt cotton. Journal of Integrative Agriculture, 2015, 14(10): 1971-1979.
doi: 10.1016/S2095-3119(15)61049-8 |
[11] | 陈松, 吴敬音, 何小兰, 黄骏麒, 周宝良, 张荣铣. 转基因抗虫棉组织中Bt毒蛋白表达量的ELISA测定. 江苏农业学报, 1997(3): 27-29. |
CHEN S, WU J Y, HE X L, HUANG J Q, ZHOU B L, ZHANG R X. Quantification using ELISA of Bacillus thuringiensis insecticidal protein expressed in the tissue of transgenic insect-resistant cotton. Jiangsu Journal of Agriculture Science, 1997(3): 27-29. (in Chinese) | |
[12] | ZHANG X, WANG J, PENG S, LI Y, ZHANG L Y, CHEN Y, CHEN D H. Effects of soil water deficit on insecticidal protein expression in boll shells of transgenic Bt cotton and the mechanism. Frontiers in Plant Science, 2017, 8: 1-11. |
[13] | 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000: 127-130. |
ZOU Q. Experimental Instruct of Plant Physiology. Beijing: China Agriculture Press, 2000: 127-130. (in Chinese) | |
[14] | 邵金良, 黎其万, 董宝生, 刘宏程, 束继红. 茚三酮比色法测定茶叶中游离氨基酸总量. 中国食品添加剂, 2008(2):162-165. |
SHAO J L, LI Q W, DONG B S, LIU H C, SHU J H. Determination of total free-amino acid in tea by Nihydrin colorimetry. China Food Additives, 2008(2): 162-165. (in Chinese) | |
[15] | HOWARD T. Regulation of alanine aminotransferase in leaves of Lolium temulentum during senescence. Zeitschrift fü Pflanzenphysiologie, 1975, 74(3): 208-218. |
[16] | 赵鹏, 何建国, 熊淑萍, 马新明. 氮素形态对专用小麦旗叶酶活性及籽粒蛋白质和产量的影响. 中国农业大学学报, 2010, 15(3): 29-34. |
ZHAO P, HE J G, XIONG S P, MA X M. Studies on the effects of different nitrogen forms on enzyme activity in flag leaves in wheat and protein and yield of grain for specialized end-uses. Journal of China Agricultural University, 2010, 15(3): 29-34. (in Chinese) | |
[17] | 李文才, 林振武, 汤玉玮. 硝酸还原酶的研究——Ⅶ.棉花不同品种的硝酸还原酶活力. 作物学报, 1986, 12(2): 95-100. |
LI W C, LIN Z W, TANG Y W. Studies on nitrate reductase VII. Nitrate reductase activities in different cotton cultivars. Acta Agronomica Sinica, 1986, 12(2): 95-100. (in Chinese) | |
[18] |
HU W, ZHAO W Q, YANG J S, OOSTERHUIS D M, LOKA D A, ZHOU Z G. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. Plant Physiology and Biochemistry, 2016, 101: 113-123.
doi: 10.1016/j.plaphy.2016.01.019 |
[19] | 杨宇晖, 张青文, 刘小侠. 棉花营养物质和单宁含量与其对绿盲蝽抗性的关系. 中国农业科学, 2013, 46(22): 4688-4697. |
YANG Y H, ZHANG Q W, LIU X X. The relationship between the contents of nutrients and tannins in different cotton varieties and their resistance to Apolygus lucorum. Scientia Agricultura Sinica, 2013, 46(22): 4688-4697. (in Chinese) | |
[20] |
ZHANG X, RUI Q Z, LIANG P P, WEI C H, DENG G Q, CHEN Y, DONG Z D, CHEN D H. Dynamics of Bt cotton Cry1Ac protein content under an alternating high temperature regime and effects on nitrogen metabolism. Journal of Integrative Agriculture, 2018, 17(9): 1991-1998.
doi: 10.1016/S2095-3119(17)61878-1 |
[21] |
刘震宇, 王桂霞, 李丽楠, 蔡泽洲, 梁潘潘, 吴莘玲, 张祥, 陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制. 作物学报, 2020, 46(3): 440-447.
doi: 10.3724/SP.J.1006.2020.94080 |
LIU Z Y, WANG G X, LI L N, CAI Z Z, LIANG P P, WU X L, ZHANG X, CHEN D H. Recovery characteristics of Bt insecticidal protein and relative physiology mechanisms after high temperature stress termination in square of Bt cotton. Acta Agronomica Sinica, 2020, 46(3): 440-447. (in Chinese)
doi: 10.3724/SP.J.1006.2020.94080 |
|
[22] | CHEN S L, LI P, TAN S L, PU X J, ZHOU Y, HU K M, HUANG W, LIU L. Combined proteomic and physiological analysis of chloroplasts reveals drought and recovery response mechanisms in Nicotiana benthamiana. Plants-Basel, 2021, 10(6): 1127. |
[23] |
LIU Z Y, ELTAYIB H M A A, WU H, ZHOU M Y, ZHANG X, CHEN Y, CHEN D H. Bt insecticidal efficacy variation and agronomic regulation in Bt cotton. Journal of Cotton Research, 2019, 2(1): 1-6.
doi: 10.1186/s42397-018-0018-6 |
[24] | MAIKE S, JOSEPH N M M, JAN M K. The silence of genes in transgenic plants. Annals of Botany, 1997, 79(1): 3-12. |
[25] | 陆宴辉, 杨益众, 余月书. 棉花单宁的研究简介. 中国棉花, 2004(5): 21-22. |
LU Y H, YANG Y Z, YU Y S. Review of the cotton tannin. China Cotton, 2004(5): 21-22. (in Chinese) | |
[26] | 陈德华, 杨长琴, 陈源, 聂安全, 吴云康. 高温胁迫对Bt棉叶片杀虫蛋白表达量和氮代谢影响的研究. 棉花学报, 2003, 15(5): 288-292. |
CHEN D H, YANG C Q, CHEN Y, NIE A Q, WU Y K. The effects of the high temperature stress on the leaf Bt protein content and nitrogen metabolism of Bt cotton. Cotton Science, 2003, 15(5): 288-292. (in Chinese) | |
[27] |
YANG J, LIN L, ZHANG L L, WANG K, LI X X, CAI M L, ZHAN M, LI C F, WANG J P, CAO C G. Comparison of transgenic Bt rice and their non-Bt counterpart in yield and physiological response to drought stress. Field Crops Research, 2018, 217: 45-52.
doi: 10.1016/j.fcr.2017.12.007 |
[28] |
OLSEN K M, DALY J C, FINNEGAN E J, MAHON R J. Changes in Cry1Ac Bt transgenic cotton in response to two environmental factors: Temperature and insect damage. Journal of Economic Entomology, 2005, 98(4): 1382-1390.
doi: 10.1603/0022-0493-98.4.1382 pmid: 16156594 |
[29] |
STULEN I, KOCH B T, KOSTER A. An endogenous inhibitor of nitrate reductase in radish cotyledons. Acta Botanica Neerlandica, 1971, 20(4): 389-396.
doi: 10.1111/j.1438-8677.1971.tb00724.x |
[30] |
SAIF A, ABDUL H, MA X L, TUNG S A, CHATTHA M S, SHAH A N, LUO D, AHMAD S, LIU J H, YANG G Z. Equal potassium- nitrogen ratio regulated the nitrogen metabolism and yield of high-density late-planted cotton (Gossypium hirsutum L.) in Yangtze River valley of China. Industrial Crops and Products, 2019, 129: 231-241.
doi: 10.1016/j.indcrop.2018.12.009 |
[31] |
ELTAYIB H M A, YUAN L, HEN L, CHEN Y, LEILA I M, HU D P, ZHANG X, CHEN D H. Amino acid composition and level affect Bt protein concentration in Bt cotton. Plant Growth Regulation, 2017, 82(3): 439-446.
doi: 10.1007/s10725-017-0270-7 |
[1] | 邢羽桐, 滕永康, 吴天凡, 刘媛媛, 陈源, 陈媛, 陈德华, 张祥. 高温干旱下缩节胺通过调节碳和氨基酸代谢提高Bt棉杀虫蛋白含量的生理机制[J]. 中国农业科学, 2023, 56(8): 1471-1483. |
[2] | 汪月宁, 代红军, 贺琰, 魏强, 郭学良, 刘妍, 殷梦婷, 王振平. 基于转录组分析油菜素内酯对高温胁迫下酿酒葡萄花色苷合成及果实品质的调控机制[J]. 中国农业科学, 2023, 56(6): 1139-1153. |
[3] | 吴世豪, 黄天然, 黄明. HS-SPME-GC-MS技术结合电子鼻分析热处理对南京盐水鸭高温蒸煮味的影响[J]. 中国农业科学, 2023, 56(17): 3435-3451. |
[4] | 穆心愿, 吕姗姗, 卢良涛, 刘天学, 李树岩, 薛昌颖, 王宏伟, 赵霞, 夏来坤, 唐保军. 授粉期高温胁迫下雄穗大小对玉米干物质积累及产量的影响[J]. 中国农业科学, 2023, 56(15): 2880-2894. |
[5] | 付真真, 祝光欣, 刘志娟, 郭世博, 李娥, 杨晓光. 气候变化背景下中国玉米产区开花期高温时空分布特征[J]. 中国农业科学, 2023, 56(14): 2686-2700. |
[6] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[7] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[8] | 隋心意,赵小刚,陈鹏宇,李亚灵,温祥珍. 生菜LsPHYB可变剪接体的克隆与高温诱导表达模式[J]. 中国农业科学, 2022, 55(9): 1822-1830. |
[9] | 余琦隆,韩莹琰,郝敬虹,秦晓晓,刘超杰,范双喜. 外源亚精胺对高温胁迫下生菜氮代谢的影响[J]. 中国农业科学, 2022, 55(7): 1399-1410. |
[10] | 董桑婕,姜小春,王羚羽,林锐,齐振宇,喻景权,周艳虹. 远红光补光对辣椒幼苗生长和非生物胁迫抗性的影响[J]. 中国农业科学, 2022, 55(6): 1189-1198. |
[11] | 李宁,柳坤,刘彤彤,史雨刚,王曙光,杨进文,孙黛珍. 小麦响应干旱胁迫环状RNA的鉴定[J]. 中国农业科学, 2022, 55(23): 4583-4599. |
[12] | 刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444. |
[13] | 李刚,白阳,贾子颖,马正阳,张祥池,李春艳,李诚. 两种磷素水平下小麦苗期对干旱胁迫的离子组和代谢组响应[J]. 中国农业科学, 2022, 55(2): 280-294. |
[14] | 张川,刘栋,王洪章,任昊,赵斌,张吉旺,任佰朝,刘存辉,刘鹏. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响[J]. 中国农业科学, 2022, 55(19): 3710-3722. |
[15] | 李小凡, 邵靖宜, 于维祯, 刘鹏, 赵斌, 张吉旺, 任佰朝. 高温干旱复合胁迫对夏玉米产量及光合特性的影响[J]. 中国农业科学, 2022, 55(18): 3516-3529. |
|