中国农业科学 ›› 2022, Vol. 55 ›› Issue (22): 4433-4444.doi: 10.3864/j.issn.0578-1752.2022.22.009
刘浩1(),庞婕1,李欢欢1,强小嫚1,张莹莹1,宋嘉雯1,2
收稿日期:
2021-09-22
接受日期:
2022-10-29
出版日期:
2022-11-16
发布日期:
2022-12-14
作者简介:
刘浩,Tel:0373-3393384;E-mail:基金资助:
LIU Hao1(),PANG Jie1,LI HuanHuan1,QIANG XiaoMan1,ZHANG YingYing1,SONG JiaWen1,2
Received:
2021-09-22
Accepted:
2022-10-29
Online:
2022-11-16
Published:
2022-12-14
摘要:
【目的】 外源硒和土壤水分状况都会影响作物生长和品质特性,探明叶面喷施硒与土壤水分状况对产量和品质的耦合调控效应,为富硒番茄栽培的科学用水管理提供理论依据。【方法】 试验以亚硒酸钠(Na2SeO3)为硒源,采用盆栽试验,设置了3种叶面喷施硒浓度(S0:清水对照;S5:5 mg·L-1;S10:10 mg·L-1),每种硒喷施浓度下设置2种不同灌溉控制水平,灌水控制下限分别为田间持水量的50%(W1:干旱胁迫)和75%(W2:充分供水),研究不同土壤水分状况下叶面喷施不同浓度硒对番茄植株硒含量、生长发育指标、产量和品质的影响。【结果】 不同土壤水分状况对土壤、叶片和果实硒含量均无显著影响(P>0.05)。叶面喷施不同浓度硒对土壤硒含量也未产生显著影响,但植株叶片和果实硒含量均随外源硒喷施浓度的增大而增加,且差异达到极显著水平(P<0.01),叶面喷施硒的果实硒含量比对照增加了2—4倍。干旱胁迫显著降低了株高和茎粗,叶面喷施硒可适度缓解干旱胁迫对株高的抑制作用,但对茎粗无显著影响。干旱胁迫较充分供水处理的产量平均减少了39.5%,干旱胁迫条件下喷施硒虽可适度增加坐果数,但单果质量有降低的趋势,因而对产量没有显著影响。与充分供水相比,干旱胁迫使果实可溶性糖(SSC)、有机酸(OA)、维生素C(Vc)和可溶性固形物含量(TSS)分别显著提高了28.7%、24.3%、18.7%和24.0%。叶面喷施硒可促进SSC积累,但不同浓度间没有显著差异;与清水对照相比,除S5W2处理的OA略有减少外,其他叶面喷施硒处理均显著增加了OA,故而S5W2处理获得最佳糖酸比(SAR),S0W2处理的糖酸比表现最差。在充分供水条件下,不同叶面喷施硒浓度的TSS没有显著性差异;在干旱胁迫条件下,TSS随硒喷施浓度的增大呈先增大后减小的变化规律。说明叶面喷施硒浓度由5 mg·L-1增加到10 mg·L-1不能进一步提升果实品质。【结论】 叶面喷施硒与土壤水分状况对番茄品质的耦合作用效果明显,干旱胁迫条件下叶面喷施5 mg·L-1的Na2SeO3可大幅提升果实可溶性糖和可溶性固形物含量,使果实营养品质得到明显改善;充分供水条件下叶面喷施5 mg·L-1的Na2SeO3在不降低产量的同时,改善了果实风味品质,可实现稳产提质效果。
刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444.
LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato[J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
表2
叶面喷施硒与土壤水分耦合对番茄产量及其构成要素的影响"
处理Treatment | 单株坐果数Fruit number (No./plant) | 平均单果质量Fruit weight (g) | 单株产量Yield (kg/plant) |
S10W2 | 14.4±1.3ab | 143.2±9.0a | 2.06±0.07b |
S10W1 | 14.7±0.9ab | 90.2±2.6b | 1.32±0.10c |
S5W2 | 14.9±0.5ab | 153.1±14.7a | 2.28±0.20ab |
S5W1 | 14.1±0.7ab | 97.8±4.0b | 1.38±0.02c |
S0W2 | 15.3±0.7a | 156.2±8.7a | 2.40±0.25a |
S0W1 | 13.7±0.7b | 100.9±2.7b | 1.38±0.04c |
S | ns | ns | ns |
W | ** | ** | ** |
S×W | * | ns | ns |
[1] |
汤超华, 赵青余, 张凯, 李爽, 秦玉昌, 张军民. 富硒农产品研究开发助力我国营养型农业发展. 中国农业科学, 2019, 52(18): 3122-3133. doi:10.3864/j.issn.0578-1752.2019.18.005.
doi: 10.3864/j.issn.0578-1752.2019.18.005. |
TANG C H, ZHAO Q Y, ZHANG K, LI S, QIN Y C, ZHANG J M. Promoting the development of nutritionally-guided agriculture in research and development of selenium-enriched agri-products in China. Scientia Agricultura Sinica, 2019, 52(18): 3122-3133. doi:10.3864/j.issn.0578-1752.2019.18.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.18.005. |
|
[2] |
RAYMAN M P. Selenium in cancer prevention: a review of the evidence and mechanism of action. The Proceedings of the Nutrition Society, 2005, 64(4): 527-542. doi:10.1079/pns2005467.
doi: 10.1079/pns2005467. |
[3] |
SHANKER K, MISHRA S, SRIVASTAVA S, SRIVASTAVA R, DAAS S, PRAKASH S, SRIVASTAVA M M. Effect of selenite and selenate on plant uptake and translocation of mercury by tomato (Lycopersicum esculentum). Plant and Soil, 1996, 183(2): 233-238. doi:10.1007/BF00011438.
doi: 10.1007/BF00011438. |
[4] |
JARZYŃSKA G, FALANDYSZ J. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)—Consequences to human health. Environment International, 2011, 37(5): 882-888. doi:10.1016/j.envint.2011.02.017.
doi: 10.1016/j.envint.2011.02.017. |
[5] |
穆婷婷, 杜慧玲, 张福耀, 景小兰, 郭琦, 李志华, 刘璋, 田岗. 外源硒对谷子生理特性、硒含量及其产量和品质的影响. 中国农业科学, 2017, 50(1): 51-63. doi:10.3864/j.issn.0578-1752.2017.01.005.
doi: 10.3864/j.issn.0578-1752.2017.01.005. |
MU T T, DU H L, ZHANG F Y, JING X L, GUO Q, LI Z H, LIU Z, TIAN G. Effects of exogenous selenium on the physiological activity, grain selenium content, yield and quality of foxtail millet. Scientia Agricultura Sinica, 2017, 50(1): 51-63. doi:10.3864/j.issn.0578-1752.2017.01.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.01.005. |
|
[6] |
ZHU Z, CHEN Y L, ZHANG X J, LI M. Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits. Scientia Horticulturae, 2016, 198: 304-310. doi:10.1016/j.scienta.2015.12.002.
doi: 10.1016/j.scienta.2015.12.002. |
[7] |
NARVÁEZ-ORTIZ W, BECVORT-AZCURRA A, FUENTES-LARA L, BENAVIDES-MENDOZA A, VALENZUELA-GARCÍA J, GONZÁLEZ-FUENTES J. Mineral composition and antioxidant status of tomato with application of selenium. Agronomy, 2018, 8(9): 185. doi:10.3390/agronomy8090185.
doi: 10.3390/agronomy8090185. |
[8] |
MOHTASHAMI R, MOVAHHEDI DEHNAVI M, BALOUCHI H, FARAJI H. Improving yield, oil content and water productivity of dryland canola by supplementary irrigation and selenium spraying. Agricultural Water Management, 2020, 232: 106046. doi:10.1016/j.agwat.2020.106046.
doi: 10.1016/j.agwat.2020.106046. |
[9] |
LI H F, MCGRATH S P, ZHAO F J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. The New Phytologist, 2008, 178(1): 92-102. doi:10.1111/j.1469-8137.2007.02343.x.
doi: 10.1111/j.1469-8137.2007.02343.x. |
[10] |
LIU H, DUAN A W, LI F S, SUN J S, WANG Y C, SUN C T. Drip irrigation scheduling for tomato grown in solar greenhouse based on pan evaporation in North China plain. Journal of Integrative Agriculture, 2013, 12(3):520-531. doi:10.1016/S2095-3119(13) 60253-1.
doi: 10.1016/S2095-3119(13)60253-1 |
[11] |
LIU H, LI H H, NING H F, ZHANG X X, LI S, PANG J, WANG G S, SUN J S. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agricultural Water Management, 2019, 226: 105787. doi:10.1016/j.agwat.2019.105787.
doi: 10.1016/j.agwat.2019.105787. |
[12] |
LI H H, LIU H, GONG X W, LI S, PANG J, CHEN Z F, SUN J S. Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato. Agricultural Water Management, 2021, 245: 106570. doi:10.1016/j.agwat.2020.106570.
doi: 10.1016/j.agwat.2020.106570. |
[13] |
WANG F, KANG S Z, DU T S, LI F S, QIU R J. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management, 2011, 98(8): 1228-1238. doi:10.1016/j.agwat.2011.03.004.
doi: 10.1016/j.agwat.2011.03.004. |
[14] |
RIPOLL J, URBAN L, BRUNEL B, BERTIN N. Water deficit effects on tomato quality depend on fruit developmental stage and genotype. Journal of Plant Physiology, 2016, 190: 26-35. doi:10.1016/j.jplph.2015.10.006.
doi: 10.1016/j.jplph.2015.10.006 pmid: 26629612 |
[15] |
MITCHELL J P, SHENNAN C, GRATTAN S R, MAY D M. Tomato fruit yields and quality under water deficit and salinity. Journal of the American Society for Horticultural Science, 1991, 116(2): 215-221. doi:10.21273/jashs.116.2.215.
doi: 10.21273/jashs.116.2.215. |
[16] |
LAHOZ I, PÉREZ-DE-CASTRO A, VALCÁRCEL M, MACUA J I, BELTRÁN J, ROSELLÓ S, CEBOLLA-CORNEJO J. Effect of water deficit on the agronomical performance and quality of processing tomato. Scientia Horticulturae, 2016, 200: 55-65. doi:10.1016/j.scienta.2015.12.051.
doi: 10.1016/j.scienta.2015.12.051. |
[17] | ANDREJIOVÁ A, HEGEDŰSOVÁ A, MEZEYOVÁ I. Effect of genotype and selenium biofortification on content of important bioactive substances in tomato (Lycopersicon esculentum mill.) fruits. Agriculture & Food, 2016, 4(1): 8-18. |
[18] |
RADY M M, BELAL H E E, GADALLAH F M, SEMIDA W M. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 2020, 266: 109290. doi:10.1016/j.scienta.2020.109290.
doi: 10.1016/j.scienta.2020.109290. |
[19] |
CHU J Z, YAO X Q, ZHANG Z N. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biological Trace Element Research, 2010, 136(3): 355-363. doi:10.1007/s12011-009-8542-3.
doi: 10.1007/s12011-009-8542-3 pmid: 19830391 |
[20] |
DJANAGUIRAMAN M, PRASAD P V V, SEPPANEN M. Selenium protects Sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 2010, 48(12): 999-1007. doi:10.1016/j.plaphy.2010.09.009.
doi: 10.1016/j.plaphy.2010.09.009. |
[21] |
HASANUZZAMAN M, FUJITA M. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research, 2011, 143(3): 1758-1776. doi:10.1007/s12011-011-8998-9.
doi: 10.1007/s12011-011-8998-9 pmid: 21347652 |
[22] |
PEZZAROSSA B, ROSELLINI I, BORGHESI E, TONUTTI P, MALORGIO F. Effects of Se-enrichment on yield, fruit composition and ripening of tomato (Solanum lycopersicum) plants grown in hydroponics. Scientia Horticulturae, 2014, 165: 106-110. doi:10.1016/j.scienta.2013.10.029.
doi: 10.1016/j.scienta.2013.10.029. |
[23] | 刘浩, 段爱旺, 孙景生, 梁媛媛. 温室滴灌条件下土壤水分亏缺对番茄产量及其形成过程的影响. 应用生态学报, 2009, 20(11): 2699-2704. |
LIU H, DUAN A W, SUN J S, LIANG Y Y. Effects of soil moisture regime on greenhouse tomato yield and its formation under drip irrigation. Chinese Journal of Applied Ecology, 2009, 20(11): 2699-2704. (in Chinese) | |
[24] | 中华人民共和国农业部. 土壤质量重金属测定王水回流消解原子吸收法: NY/T 1613—2008. 北京: 中国标准出版社, 2008. |
Ministry of Agriculture of the People’s Republic of China. Soil quality-Analysis of soil heavy metals-atomic absorption spectrometry with aqua regia digestion: NY/T 1613—2008. Beijing: Standards Press of China, 2008. (in Chinese) | |
[25] | 中华人民共和国国家卫生和计划生育委员会. 食品中多元素的测定: GB 5009. 268—2016. 北京: 中国标准出版社, 2016. |
National Health and Family Planning Commission of the People's Republic of China. Determination of multiple elements in food: GB 5009. 268—2016. Beijing: Standards Press of China, 2016. (in Chinese) | |
[26] |
蔡立梅, 王硕, 温汉辉, 罗杰, 蒋慧豪, 何明皇, 穆桂珍, 王秋爽, 王涵植. 土壤硒富集空间分布特征及影响因素研究. 农业工程学报, 2019, 35(10): 83-90. doi:10.11975/j.issn.1002-6819.2019.10.011.
doi: 10.11975/j.issn.1002-6819.2019.10.011. |
CAI L M, WANG S, WEN H H, LUO J, JIANG H H, HE M H, MU G Z, WANG Q S, WANG H Z. Enrichment spatial distribution characteristics of soil selenium and its influencing factors. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 83-90. doi:10.11975/j.issn.1002-6819.2019.10.011. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2019.10.011. |
|
[27] |
DIMA S O, NEAMȚU C, DESLIU-AVRAM M, GHIUREA M, CAPRA L, RADU E, STOICA R, FARAON V A, ZAMFIROPOL- CRISTEA V, CONSTANTINESCU-ARUXANDEI D, OANCEA F. Plant biostimulant effects of baker's yeast vinasse and selenium on tomatoes through foliar fertilization. Agronomy, 2020, 10(1): 133. doi:10.3390/agronomy10010133.
doi: 10.3390/agronomy10010133. |
[28] | 中华人民共和国国家卫生和计划生育委员会. 中国居民膳食营养素参考摄入量第3部分:微量元素(WS/T 578.3—2017). 北京: 中国标准出版社, 2017. |
National Health and Family Planning Commission of the People's Republic of China. Reference Intake of Dietary Nutrients for Chinese Residents, part 3, trace elements (WS/T 578.3—2017) Beijing: Standards Press of China, 2017. (in Chinese) | |
[29] | 杨会芳, 梁新安, 常介田, 秦娜. 叶面喷施硒肥对不同蔬菜硒富集及产量的影响. 北方园艺, 2014(11): 158-161. |
YANG H F, LIANG X A, CHANG J T, QIN N. Effects of foliar spraying of selenium fertilizer on selenium enrichment of different vegetables and yield. Northern Horticulture, 2014(11): 158-161. (in Chinese) | |
[30] | 张洁, 李天来, 徐晶. 昼间亚高温对日光温室番茄生长发育、产量及品质的影响. 应用生态学报, 2005, 16(6): 1051-1055. |
ZHANG J, LI T L, XU J. Effects of daytime sub-high temperature on greenhouse tomato growth, development, yield and quality. Chinese Journal of Applied Ecology, 2005, 16(6): 1051-1055. (in Chinese) | |
[31] |
赵玉萍, 邹志荣, 白鹏威, 任雷, 李鹏飞. 不同温度对温室番茄生长发育及产量的影响. 西北农业学报, 2010, 19(2): 133-137. doi:10.3969/j.issn.1004-1389.2010.02.027.
doi: 10.3969/j.issn.1004-1389.2010.02.027. |
ZHAO Y P, ZOU Z R, BAI P W, REN L, LI P F. Effect of different temperature on the growth and yield of tomato in greenhouse. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(2): 133-137. doi:10.3969/j.issn.1004-1389.2010.02.027. (in Chinese)
doi: 10.3969/j.issn.1004-1389.2010.02.027. |
|
[32] |
ROSALES M A, CERVILLA L M, SÁNCHEZ-RODRÍGUEZ E, RUBIO-WILHELMI M D M, BLASCO B, RÍOS J J, SORIANO T, CASTILLA N, ROMERO L, RUIZ J M. The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 2011, 91(1): 152-162. doi:10.1002/jsfa.4166.
doi: 10.1002/jsfa.4166 pmid: 20853276 |
[33] | 李乐. 外源硒对番茄生物效应和硒累积的影响[D]. 银川: 宁夏大学, 2020. |
LI L. Effects of exogenous selenium on tomato biological effects and selenium accumulation[D]. Yinchuan: Ningxia University, 2020. (in Chinese) | |
[34] |
余琼, 张翔, 司贤宗, 索炎炎, 李亮, 毛家伟. 硒在农作物方面的研究进展. 山西农业科学, 2018, 46(12): 2122-2126. doi:10.3969/j.issn.1002-2481.2018.12.40.
doi: 10.3969/j.issn.1002-2481.2018.12.40. |
YU Q, ZHANG X, SI X Z, SUO Y Y, LI L, MAO J W. Research progress of selenium in crops. Journal of Shanxi Agricultural Sciences, 2018, 46(12): 2122-2126. doi:10.3969/j.issn.1002-2481.2018.12.40. (in Chinese)
doi: 10.3969/j.issn.1002-2481.2018.12.40. |
|
[35] |
PUCCINELLI M, MALORGIO F, PEZZAROSSA B. Selenium enrichment of horticultural crops. Molecules (Basel Switzerland), 2017, 22(6): 933. doi:10.3390/molecules22060933.
doi: 10.3390/molecules22060933. |
[36] |
李瑜. 安康富硒土壤中不同农作物富硒能力比较研究. 陕西农业科学, 2015, 61(11): 13-14, 46. doi:10.3969/j.issn.0488-5368.2015.11.003.
doi: 10.3969/j.issn.0488-5368.2015.11.003. |
LI Y. Comparative of selenium enrichment ability on different crops in selenium-rich soil in Ankang. Shaanxi Journal of Agricultural Sciences, 2015, 61(11): 13-14, 46. doi:10.3969/j.issn.0488-5368.2015.11.003. (in Chinese)
doi: 10.3969/j.issn.0488-5368.2015.11.003. |
|
[37] |
TALBI S, ROMERO-PUERTAS M C, HERNÁNDEZ A, TERRÓN L, FERCHICHI A, SANDALIO L M. Drought tolerance in a Saharian plant Oudneya Africana: role of antioxidant defences. Environmental and Experimental Botany, 2015, 111: 114-126. doi:10.1016/j.envexpbot.2014.11.004.
doi: 10.1016/j.envexpbot.2014.11.004. |
[38] |
TOPCU S, KIRDA C, DASGAN Y, KAMAN H, CETIN M, YAZICI A, BACON M A. Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. European Journal of Agronomy, 2007, 26(1): 64-70. doi:10.1016/j.eja.2006.08.004.
doi: 10.1016/j.eja.2006.08.004. |
[39] |
GUICHARD S, BERTIN N, LEONARDI C, GARY C. Tomato fruit quality in relation to water and carbon fluxes. Agronomie, 2001, 21(4): 385-392. doi:10.1051/agro:2001131.
doi: 10.1051/agro:2001131. |
[40] |
CHEN J L, KANG S Z, DU T S, QIU R J, GUO P, CHEN R Q. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management, 2013, 129: 152-162. doi:10.1016/j.agwat.2013.07.011.
doi: 10.1016/j.agwat.2013.07.011. |
[41] |
RODRIGUEZ-ORTEGA W M, MARTINEZ V, RIVERO R M, CAMARA-ZAPATA J M, MESTRE T, GARCIA-SANCHEZ F. Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agricultural Water Management, 2017, 183: 158-168. doi:10.1016/j.agwat.2016.07.014.
doi: 10.1016/j.agwat.2016.07.014. |
[42] |
KADER A A. Flavor quality of fruits and vegetables. Journal of the Science of Food and Agriculture, 2008, 88(11): 1863-1868. doi:10.1002/jsfa.3293.
doi: 10.1002/jsfa.3293. |
[43] |
CHEN J L, KANG S Z, DU T S, GUO P, QIU R J, CHEN R Q, GU F. Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition. Agricultural Water Management, 2014, 146: 131-148. doi:10.1016/j.agwat.2014.07.026.
doi: 10.1016/j.agwat.2014.07.026. |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[7] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[8] | 冯向前,殷敏,王孟佳,马横宇,褚光,刘元辉,徐春梅,章秀福,张运波,王丹英,陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响[J]. 中国农业科学, 2023, 56(1): 46-63. |
[9] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[10] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[11] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[12] | 邵淑君,胡璋健,师恺. 亚油酸乙醇胺诱导番茄对灰葡萄孢抗性的作用及机制[J]. 中国农业科学, 2022, 55(9): 1781-1789. |
[13] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[14] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[15] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
|