中国农业科学 ›› 2022, Vol. 55 ›› Issue (9): 1763-1780.doi: 10.3864/j.issn.0578-1752.2022.09.006
收稿日期:
2021-06-08
修回日期:
2021-09-06
出版日期:
2022-05-01
发布日期:
2022-05-19
联系方式:
郭世博,E-mail: gsb@cau.edu.cn。
基金资助:
GUO ShiBo(),ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang*()
Received:
2021-06-08
Revised:
2021-09-06
Published:
2022-05-01
Online:
2022-05-19
摘要:
【目的】大豆是主要的粮油兼用作物,东北三省是我国大豆主产区,研究气候变化背景下东北三省大豆气候生产潜力高产稳产性区域分布及其变化特征,明确不同区域限制大豆高产稳产性的主要农业气象灾害,可为东北三省大豆合理布局、防灾避灾以及高产稳产提供科学参考。【方法】以1981年为时间节点,将研究时段划分为1961—1980年(时段Ⅰ)和1981—2019年(时段Ⅱ)两个时段,利用调参验证后的DSSAT-CROPGRO-Soybean模型模拟研究区域大豆潜在种植区各站点气候生产潜力,明确气候变化背景下大豆气候生产潜力高产稳产性区域分布及其变化特征;结合大豆冷害和干旱指标,明确不同高产稳产性区域冷害和干旱的时空分布特征;结合统计方法,明确限制大豆高产性和稳产性的主要农业气象灾害因子。【结果】(1)与1961—1980年(时段Ⅰ)相比,1981—2019年(时段Ⅱ)大豆潜在种植区增加2.81×106 hm2,占研究区域总土地面积的3.57%;(2)与时段Ⅰ相比,时段Ⅱ稳产区面积占比减少,其中高产稳产区面积占潜在种植区内总土地面积的比例由17.67%减少到17.11%,高产不稳产区占比由13.54%增加到15.13%,低产稳产区占比由34.98%增加到38.17%,低产不稳产区占比由18.58%减小到18.49%;(3)研究时段内,大豆生长季冷害发生频次总体呈现先上升后下降趋势,高产稳产和高产不稳产区冷害特别是严重冷害发生频次高于低产稳产区以及低产不稳产区;大豆生长季轻旱和中旱发生频次增加,重旱发生频次减小;(4)大豆产量变化与冷害发生频次呈负相关关系,产量变异性的变化与冷害和干旱发生频次均呈正相关关系。【结论】气候变暖背景下,东北三省大豆潜在种植区呈北移西扩趋势,可种植面积增加;大豆高产不稳产和低产稳产面积增加,高产稳产区和低产不稳产区面积减少;不同高产稳产性区域内主要农业气象灾害不同,低产区较高产区总体低温冷害发生频次高,不稳产区较稳产区干旱发生频次高。但在高产稳产性变化区域,冷害发生频次下降,干旱发生频次上升。总体而言冷害是大豆高产性的主要限制因子,冷害和干旱是大豆产量不稳定的主要限制因子。
郭世博, 张方亮, 张镇涛, 周丽涛, 赵锦, 杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780.
GUO ShiBo, ZHANG FangLiang, ZHANG ZhenTao, ZHOU LiTao, ZHAO Jin, YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China[J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
表1
东北三省大豆主要生育阶段"
省份 Province | 播种日期 Sowing date | 分枝日期 Branch date | 开花日期 Flowering date | 成熟日期 Maturity date |
---|---|---|---|---|
辽宁 Liaoning | 4下-5上 L-Apr. to E-May | 6中-下 M-Jun. to L-Jun. | 7上 E-Jul. | 9中 M-Sep. |
吉林 Jilin | 5上-中 E-May to M-May | 6中-下 M-Jun. to L-Jun. | 7上 E-Jul. | 9中-下 M-Sep. to L-Sep. |
黑龙江 Heilongjiang | 5中 M-May | 6下 L-Jun. | 7上-中 E-Jul. to M-Jul. | 9下 L-Sep. |
表2
DSSAT-CSM-Soybean(v4.7)模型中对大豆品种控制参数的描述"
作物参数 Crop parameter | 单位 Unit | 描述 Description |
---|---|---|
EM-FL | d | 出苗到初花所需的日数(R1,光温日数) Time between plant emergence and flower appearance (R1, photothermal days) |
FL-SH | d | 初花到第一个荚所需的日数(R3,光温日数) Time between first flower and first pod (R3, photothermal days) |
FL-SD | d | 初花到初粒所需的日数(R5,光温日数) Time between first flower and first seed (R5, photothermal days) |
SD-PM | d | 初粒到生理成熟所需日数(R7,光温日数) Time between first seed (R5) and physiological maturity (R7, photothermal days) |
FL-LF | d | 第一朵花到叶片完全伸展所需的日数(光温日数) Time between first flower (R1) and end of leaf expansion (photothermal days) |
LFMAX | mg CO2·m-2·s-1 | 光饱和状态下,最适宜温度条件下最大叶片光合速率 Maximum leaf photosynthesis rate at 30℃, 350 vpm CO2, and high light |
SLAVR | cm2·g-1 | 代表性叶面积或营养生长高峰期通过环境因子修正的新叶比叶面积 Specific leaf area of cultivar under standard growth conditions |
SIZLF | cm2 | 标准生长条件下,全部叶片的最大面积 Maximum size of full leaf (three leaflets) |
XFRT | — | 分配到种子和荚皮的每日生长最大百分数 Maximum fraction of daily growth that is partitioned to seed + shell |
WTPSD | g | 每粒种子的最大重量 Maximum weight per seed |
SFDUR | d | 标准生长状况下,籽粒灌浆所需日数(光温日数) Seed filling duration for pod cohort at standard growth conditions (photothermal days) |
SDPDV | #/pod | 标准生长状况下,每个豆荚的平均籽粒数 Average seed per pod under standard growing conditions |
PODUR | d | 品种在最佳状态下,达到豆荚最大数量时所经历的日数(光温日数) Time required for cultivar to reach final pod load under optimal conditions (photothermal days) |
表3
东北三省大豆调参验证数据集"
熟期组 Maturity group (MG) | 站点 Station | 数据集 Subset | 试验年份或参数来源 Experiment data or parameters source |
---|---|---|---|
MG00 | 嫩江 Nenjiang | 调参 Calibration | 1991-1994 |
验证 Evaluation | 1995, 1997-2000 | ||
MG0 | 宝清 Baoqing | 调参 Calibration | 1991, 1992, 1994 |
验证 Evaluation | 1995-1997 | ||
MGⅠ | 哈尔滨 Haerbin | 调参 Calibration | 1992-1995 |
验证 Evaluation | 1997-2000 | ||
MGⅡ | 双阳 Shuangyang | 调参 Calibration | 1991-1994 |
验证 Evaluation | 1996, 1997, 1999, 2000 | ||
MGⅢ | 新民 Xinmin | 调参 Calibration | 1992-1995 |
验证 Evaluation | 1998-2000 |
表4
大豆冷害指标"
冷害强度 Cold damage intensity | T5-9≤80 | 80<T5-9≤85 | 85<T5-9≤90 | 90<T5-9≤95 | 95<T5-9≤100 | 100<T5-9≤105 | |
---|---|---|---|---|---|---|---|
∆T5-9 | 一般冷害 Gentle cold damage | -1.7<∆T5-9≤-1.1 | -2.4<∆T5-9≤-1.4 | -3.1<∆T5-9≤-1.7 | -3.7<∆T5-9≤-2.0 | -4.1<∆T5-9≤-2.2 | -4.4<∆T5-9≤-2.3 |
严重冷害 Serious cold damage | ∆T5-9≤-1.7 | ∆T5-9≤-2.4 | ∆T5-9≤-3.1 | ∆T5-9≤-3.7 | ∆T5-9≤-4.1 | ∆T5-9≤-4.4 |
表6
1961—2019年东北三省大豆气候生产潜力不同高产稳产性区域面积变化"
时段Ⅰ PeriodⅠ | 时段Ⅱ PeriodⅡ | 与时段I相比面积变化 Change in area compared to periodⅠ | ||||
---|---|---|---|---|---|---|
面积 Area (×106 hm2) | 占潜在种植区土地面积比例 Percentage in research area (%) | 面积 Area (×106 hm2) | 占研究种植区土地面积比例 Percentage in research area (%) | 面积 Area (×106 hm2) | 占研究种植区土地面积比例 Percentage in research area (%) | |
高产稳产区 High-stable | 11.99 | 17.67 | 11.62 | 17.11 | -0.37 | -0.54 |
高产不稳产区 High-unstable | 9.19 | 13.54 | 10.28 | 15.13 | 1.08 | 1.59 |
低产稳产区 Low-stable | 23.75 | 34.98 | 25.92 | 38.17 | 2.17 | 3.19 |
低产不稳产区 Low-unstable | 18.58 | 27.36 | 18.49 | 27.24 | -0.08 | -0.12 |
表7
1961—2019年研究区域大豆气候生产潜力不同高产稳产区内冷害以及干旱发生频次"
冷害发生频次 Frequency of cold damage (%) | 干旱发生频次 Frequency of drought (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
一般冷害 Gentle cold damage | 严重冷害 Serious cold damage | 总冷害 Sum cold damage | 轻旱 Light drought | 中旱 Moderate drought | 重旱 Severe drought | 轻旱及以上干旱 Light drought and above | ||||||||
时段Ⅰ PeriodⅠ | 时段Ⅱ PeriodⅡ | 时段Ⅰ PeriodⅠ | 时段Ⅱ PeriodⅡ | 时段Ⅰ PeriodⅠ | 时段Ⅱ PeriodⅡ | 时段Ⅰ PeriodⅠ | 时段Ⅱ PeriodⅡ | 时段Ⅰ PeriodⅠ | 时段Ⅱ PeriodⅡ | 时段Ⅰ PeriodⅠ | 时段Ⅱ PeriodⅡ | 时段Ⅰ PeriodⅠ | 时段Ⅱ PeriodⅡ | |
高产稳产区 High-stable | 10.0 | 13.3 | 10.2 | 11.7 | 20.2 | 25.0 | 21.8 | 22.9 | 15.2 | 13.8 | 5.1 | 5.6 | 42.1 | 42.4 |
高产不稳产区 High-unstable | 7.1 | 14.3 | 8.9 | 9.6 | 16.1 | 24.1 | 25.7 | 18.4 | 24.6 | 22.8 | 17.5 | 16.0 | 67.9 | 57.2 |
低产稳产区 Low-stable | 9.2 | 10.6 | 18.8 | 20.2 | 28.1 | 30.8 | 31.5 | 27.3 | 13.8 | 12.6 | 1.5 | 4.0 | 46.9 | 43.9 |
低产不稳产区 Low-unstable | 8.2 | 13.1 | 18.8 | 17.6 | 27.1 | 30.8 | 23.2 | 25.4 | 24.7 | 28.8 | 16.2 | 19.5 | 64.1 | 73.7 |
表8
大豆高产稳产性与冷害和干旱发生频次的关系"
农业气象灾害 Agro-meteorological disasters | 高产性 High yield | 稳产性 High yield stability | ||||||
---|---|---|---|---|---|---|---|---|
高产稳产区 High-stable | 高产不稳产区 High-unstable | 低产稳产区 Low-stable | 低产不稳产区 Low-unstable | 高产稳产区 High-stable | 高产不稳产区 High-unstable | 低产稳产区 Low-stable | 低产不稳产区 Low-unstable | |
一般冷害 Gentle cold damage | — | — | — | -29.08 | — | — | 1.59** | 0.60 |
严重冷害 Serious cold damage | — | -110.85** | -27.75* | — | — | 2.43** | — | — |
轻旱 Light drought | — | — | — | — | — | 0.61** | 0.92** | — |
中旱 Moderate drought | — | — | — | -43.33** | — | 0.71* | — | 0.55 |
重旱 Serious drought | — | — | — | -41.39** | 0.95* | 0.82** | 2.25** | 0.53 |
[1] | IPCC. Climate Change 2013: The Physical Science Basis. Working Group Ⅰ contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013. |
[2] | KAN H D. Climate change and human health in China. Environmental Health Perspectives, 2011, 119(2): A60-A61. |
[3] | 刘志娟, 杨晓光, 王文峰, 李克南, 张晓煜. 气候变化背景下我国东北三省农业气候资源变化特征. 应用生态学报, 2009, 20(9): 2199-2206. |
LIU Z J, YANG X G, WANG W F, LI K N, ZHANG X Y. Characteristics of agricultural climate resources in three provinces of Northeast China under global climate change. Chinese Journal of Applied Ecology, 2009, 20(9): 2199-2206. (in Chinese) | |
[4] | 中华人民共和国国家统计局. 中国统计年鉴(2019). 北京: 中国统计出版社, 2020. http://www.stats.gov.cn/ |
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook (2019). Beijing: China Statistics Press, 2020. http://www.stats.gov.cn/(in Chinese) | |
[5] | 赵锦, 杨晓光, 刘志娟, 吕硕, 王静, 陈阜. 全球气候变暖对中国种植制度的可能影响Ⅹ. 气候变化对东北三省春玉米气候适宜性的影响. 中国农业科学, 2014, 47(16): 3143-3156. |
ZHAO J, YANG X G, LIU Z J, LÜ S, WANG J, CHEN F. The possible effects of global warming on cropping systems in China Ⅹ. The possible impacts of climate change on climatic suitability of spring maize in the three provinces of Northeast China. Scientia Agricultura Sinica, 2014, 47(16): 3143-3156. (in Chinese) | |
[6] |
HE L, JIN N, YU Q. Impacts of climate change and crop management practices on soybean phenology changes in China. Science of the Total Environment, 2020, 707: 135638.
doi: 10.1016/j.scitotenv.2019.135638 |
[7] |
ITTERSUN M V, CASSMAN K G, GRASSINI P, WOLF J, TITTONELL P, HOCHMAN Z. Yield gap analysis with local to global relevance-A review. Field Crops Research, 2013, 143: 4-17.
doi: 10.1016/j.fcr.2012.09.009 |
[8] |
ZHANG L L, ZHANG Z, LUO Y C, CAO J, LI Z Y. Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China. Science of the Total Environment, 2020, 728: 138614.
doi: 10.1016/j.scitotenv.2020.138614 |
[9] |
LIU Z J, YANG X G, LIN X M, GOWDA P, LÜ S, WANG J. Climate zones determine where substantial increases of maize yields can be attained in Northeast China. Climatic Change, 2018, 149(3): 473-487.
doi: 10.1007/s10584-018-2243-x |
[10] |
ZHAO J, YANG X G. Distribution of high-yield and high- yield-stability zones for maize yield potential in the main growing regions in China. Agricultural and Forest Meteorology, 2018, 248: 511-517.
doi: 10.1016/j.agrformet.2017.10.016 |
[11] |
WANG X Y, LI T, YANG X G, ZHANG T Y, LIU Z J, GUO E J, LIU Z Q, QU H H, CHEN X, WANG L Z, XIANG H T, LAI Y C. Rice yield potential, gaps and constraints during the past three decades in a climate-changing Northeast China. Agricultural and Forest Meteorology, 2018, 259: 173-183.
doi: 10.1016/j.agrformet.2018.04.023 |
[12] | 黄兴成, 石孝均, 李渝, 张雅蓉, 刘彦伶, 张文安, 蒋太明. 基础地力对黄壤区粮油高产、稳产和可持续生产的影响. 中国农业科学, 2017, 50(8): 1476-1485. |
HUANG X C, SHI X J, LI Y, ZHANG Y R, LIU Y L, ZHANG W A, JIANG T M. Effect of the inherent soil productivity on high, stable and sustainable yield of grain and oil crops in yellow soil region. Scientia Agricultura Sinica, 2017, 50(8): 1476-1485. (in Chinese) | |
[13] | 何学敏, 刘笑, 殷红, 游松财. 1986-2015年中国东北地区主要农业气象灾害变化特征. 沈阳农业大学学报, 2019, 50(4): 392-398. |
HE X M, LIU X, YIN H, YOU S C. Characteristics of major agricultural meteorological disasters in Northeast China from 1986 to 2015. Journal of Shenyang Agricultural University, 2019, 50(4): 392-398. (in Chinese) | |
[14] | 曹娟, 张朝, 张亮亮, 骆玉川, 李子悦, 陶福禄. 基于Google Earth Engine和作物模型快速评估低温冷害对大豆生产的影响. 地理学报, 2020, 75(9): 1249-1265. |
CAO J, ZHANG Z, ZHANG L L, LUO Y C, LI Z Y, TAO F L. Damage evaluation on soybean chilling injury based on Google Earth Engine (GEE) and crop growth model. Acta Geographica Sinica, 2020, 75(9): 1249-1265. (in Chinese) | |
[15] | 殷世平, 朱海霞, 赵慧颖, 孙安辉, 宫丽娟, 李百超, 李秀芬, 姜丽霞. 大豆生育性状与产量因子对不同土壤干旱等级的响应. 中国农学通报, 2020, 36(28): 111-117. |
YIN S P, ZHU H X, ZHAO H Y, SUN A H, GONG L J, LI B C, LI X F, JIANG L X. Breeding traits and yield factors of soybean: Response to soil with different drought grades. Chinese Agricultural Science Bulletin, 2020, 36(28): 111-117. (in Chinese) | |
[16] |
ARAYA A, HOOGENBOOM G, LUEDELING E, HADGU K M, KISEKKA I, MARTORANO L G. Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agricultural and Forest Meteorology, 2015, 214-215: 252-265.
doi: 10.1016/j.agrformet.2015.08.259 |
[17] |
JONES J W, HOOGENBOOM G, PORTER C H, BOOTE K J, BATCHELOR W D, HUNT L A, WILKENS P W, SINGH U, GIJSMAN A J, RITCHIE J T. The DSSAT cropping system model. European Journal of Agronomy, 2003, 18(3-4): 235-265.
doi: 10.1016/S1161-0301(02)00107-7 |
[18] | LIU T, YANG X G, BATCHELOR W D, LIU Z J, ZHANG Z T, WAN N H, SUN S, HE B, GAO J Q, BAI F, ZHANG F L, ZHAO J. A case study of climate-smart management in foxtail millet (Setaria italica) production under future climate change in Lishu county of Jilin, China. Agricultural and Forest Meteorology, 2020, 292-293: 108131. |
[19] | CHEN S, JIANG T C, MA H J, HE C, XU F, MALONE R W, FENG H, YU Q, SIDDIQUE K H M, DONG Q G, HE J Q. Dynamic within-season irrigation scheduling for maize production in Northwest China: A method based on weather data fusion and yield prediction by DSSAT. Agricultural and Forest Meteorology, 2020, 285-286: 107928. |
[20] |
FENSTERSEIFER C A, STRECK N A, BAIGORRIA G A, TIMILSINA A P, ZANON A J, CERA J C, ROCHA T S M. On the number of experiments required to calibrate a cultivar in a crop model: The case of CROPGRO-soybean. Field Crops Research, 2017, 204: 146-152.
doi: 10.1016/j.fcr.2017.01.007 |
[21] | 傅蒙蒙, 王燕平, 任海祥, 王德亮, 包荣军, 杨兴勇, 田忠艳, 曹景举, 傅连舜, 程延喜, 苏江顺, 孙宾成, 杜维广, 赵团结, 盖钧镒. 东北春大豆熟期组的划分与地理分布. 大豆科学, 2016, 35(2): 181-192. |
FU M M, WANG Y P, REN H Y, WANG D L, BAO R J, YANG X Y, TIAN Z Y, CAO J J, FU L S, CHENG Y X, SU J S, SUN B C, DU W G, ZHAO T J, GAI J Y. Identification and distribution of maturity groups for spring-sowing soybeans in Northeast China. Soybean Science, 2016, 35(2): 181-192. (in Chinese) | |
[22] | 宋雯雯. 中国大豆品种生育期组的精细划分与应用[D]. 北京: 中国科学院大学, 2016. |
SONG W W. Digitized classification and application of soybean variety maturity groups in China[D]. Beijing: University of Chinese Academy of Sciences, 2016. (in Chinese) | |
[23] | 张镇涛, 杨晓光, 高继卿, 王晓煜, 白帆, 孙爽, 刘志娟, 明博, 谢瑞芝, 王克如, 李少昆. 气候变化背景下华北平原夏玉米适宜播期分析. 中国农业科学, 2018, 51(17): 3258-3274. |
ZHANG Z T, YANG Y X, GAO J Q, WANG X Y, BAI F, SUN S, LIU Z J, MING B, XIE R Z, WANG K R, LI S K. Analysis of suitable sowing date for summer maize in North China Plain under climate change. Scientia Agricultura Sinica, 2018, 51(17): 3258-3274. (in Chinese) | |
[24] | 潘铁夫, 张德荣, 张文广. 东北地区大豆气候区划的研究. 大豆科学, 1983(1): 1-13. |
PAN T F, ZHANG D R, ZHANG W G. The climatic regionalization of soybean in Northeast China. Soybean Science, 1983(1): 1-13. (in Chinese) | |
[25] |
ZHAO J, YANG X G, LV S, LIU Z J, WANG J. Variability of available climate resources and disaster risks for different maturity types of spring maize in Northeast China. Regional Environmental Change, 2014, 14: 17-26.
doi: 10.1007/s10113-013-0476-9 |
[26] | 孙玉亭, 王书裕, 杨永岐. 东北地区作物冷害的研究. 气象学报, 1983(3): 59-67. |
SUN Y T, WANG S Y, YANG Y Q. Studies on cool summer and crop yield in Northeast China. Acta Meteorological Sinica, 1983(3): 59-67. (in Chinese) | |
[27] | 万能涵, 杨晓光, 刘志娟, 何斌, 孙爽. 气候变化背景下中国主要作物农业气象灾害时空分布特征(Ⅲ): 华北地区夏玉米干旱. 中国农业气象, 2018, 39(4): 209-219. |
WAN N H, YANG X G, LIU Z J, HE B, SUN S. Temporal and spatial variations of agro-meteorological disasters of main crops in China in a changing climate (Ⅲ): Drought of summer maize in North China Plain. Chinese Journal of Agrometeorology, 2018, 39(4): 209-219. (in Chinese) | |
[28] | 黄晚华, 杨晓光, 李茂松, 张晓煜, 王明田, 代姝玮, 马洁华. 基于标准化降水指数的中国南方季节性干旱近58a演变特征. 农业工程学报, 2010, 26(7): 50-59. |
HUANG W H, YANG X G, LI M S, ZHANG X Y, WANG M T, DAI S W, MA J H. Evolution characteristics of seasonal drought in the south of China during the past 58 years based on standardized precipitation index. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7): 50-59. (in Chinese) | |
[29] | 解文娟, 杨晓光, 杨婕, 刘利民, 叶清, 董朝阳, 刘志娟, 赵锦. 气候变化背景下东北三省大豆干旱时空特征. 生态学报, 2014, 34(21): 6232-6243. |
XIE W J, YANG X G, YANG J, LIU L M, YE Q, DONG C Y, LIU Z J, ZHAO J. Spatio-temporal characteristics of drought for soybean under climate change in the three provinces of Northeast China. Acta Ecologica Sinica, 2014, 34(21): 6232-6243. (in Chinese) | |
[30] | 石延英, 郭尔静, 张镇涛, 朱茜, 杨晓光. 东北三省水稻生长季农业气候资源及障碍型冷害的时空特征. 应用生态学报, 2020, 31(5): 1625-1635. |
SHI Y Y, GUO E J, ZHANG Z T, ZHU X, YANG X G. Spatial- temporal characteristics of agricultural climate resources and sterile- type chilling injury in rice growing season in three provinces of Northeast China. Chinese Journal of Applied Ecology, 2020, 31(5): 1625-1635. (in Chinese) | |
[31] | 郑金涛, 彭涛, 董晓华, 刘冀, 常文娟, 林青霞, 王佳宝. 三峡库区气象干旱演变特征及致灾因子危险性评价. 水土保持研究, 2020, 27(5): 213-220. |
ZHENG J T, PENG T, DONG X H, LIU J, CHANG W J, LIN Q X, WANG J B. Evolution characteristics of meteorological drought and assessment of risk of disaster factors in the Three Reservoir Area. Research of Soil and Water Conservation, 2020, 27(5): 213-220. (in Chinese) | |
[32] | 李斌, 解建仓, 胡彦华, 姜仁贵. 基于标准化降水指数的陕西省干旱时空变化特征分析. 农业工程学报, 2017, 33(17): 113-119. |
LI B, XIE J C, HU Y H, JIANG R G. Analysis on spatiotemporal variability characteristics of drought in Shaanxi province using standard precipitation index. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 113-119. (in Chinese) | |
[33] | 孙爽, 杨晓光, 赵锦, 陈阜. 全球气候变暖对中国种植制度的可能影响 Ⅺ. 气候变化背景下中国冬小麦潜在光温适宜种植区变化特征. 中国农业科学, 2015, 48(10): 1926-1941. |
SUN S, YANG X G, ZHAO J, CHEN F. The possible effects of global warming on cropping systems in China Ⅺ. The variation of potential light-temperature suitable cultivation zone of winter wheat in China under climate change. Scientia Agricultura Sinica, 2015, 48(10): 1926-1941. (in Chinese) | |
[34] |
CHEN X X, WANG L C, NIU Z G, ZHANG M, LI C A, LI J R. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agricultural and Forest Meteorology, 2020, 282/283: 107867.
doi: 10.1016/j.agrformet.2019.107867 |
[35] |
YE Z, QIU X L, CHEN J, CAMMARANO D, GE Z L, RUANE A C, LIU L L, TANG L, CAO W X, LIU B, ZHU Y. Impacts of 1.5°C and 2.0°C global warming above pre-industrial on potential winter wheat production of China. European Journal of Agronomy, 2020, 120: 126149.
doi: 10.1016/j.eja.2020.126149 |
[36] |
GUO S B, YANG X G, ZHANG Z T, ZHANG F L, LIU T. Spatial distribution and temporal trend characteristics of agro-climatic resources and extreme climate events during the soybean growing season in Northeast China from 1981 to 2017. Journal of Meteorological Research, 2021, 34(6): 1309-1323.
doi: 10.1007/s13351-020-0061-3 |
[37] |
周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展. 作物学报, 2021, 47(10): 1843-1853.
doi: 10.3724/SP.J.1006.2021.13012 |
ZHOU B Y, HE J Z, SUN X F, HAN Y L, MA W, DING Z S, LI C F, ZHAO M. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow- Huaihe-Haihe Rivers plain. Acta Agronomica Sinica, 2021, 47(10): 1843-1853. (in Chinese)
doi: 10.3724/SP.J.1006.2021.13012 |
|
[38] | 潘晓卉, 张平宇, 刘世薇. 东北地区主要粮食作物种植结构时空变化分析. 土壤与作物, 2018, 7(3): 303-311. |
PAN X H, ZHANG P Y, LIU S W. Temporal-spatial changes of planting structure from main grain crops in Northeast China. Soils and Crops, 2018, 7(3): 303-311. (in Chinese) | |
[39] | 刘志娟, 杨晓光, 吕硕, 王静, LIN X M. 气候变化背景下东北三省春玉米产量潜力的时空特征. 应用生态学报, 2018, 29(1): 103-112. |
LIU Z J, YANG X G, LÜ S, WANG J, LIN X M. Spatial-temporal variations of spring maize potential yields in a changing climate in Northeast China. Chinese Journal of Applied Ecology, 2018, 29(1): 103-112. (in Chinese) | |
[40] |
LIN Y M, FENG Z M, WU W X, YANG Y Z, ZHOU Y, XU C. Potential impacts of climate change and adaptation on maize in Northeast China. Agronomy Journal, 2017, 109(4): 1476-1490.
doi: 10.2134/agronj2016.05.0275 |
[41] |
LIU X B, JIN J, WANG G H, HERBERT S J. Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crops Research, 2008, 105(3): 157-171.
doi: 10.1016/j.fcr.2007.09.003 |
[42] |
LIU Y J, TANG L, QIU X L, LIU B, CHANG X N, LIU L L, ZHANG X H, CAO W X, ZHU Y. Impacts of 1.5 and 2.0℃ global warming on rice production across China. Agricultural and Forest Meteorology, 2020, 284: 107900.
doi: 10.1016/j.agrformet.2020.107900 |
[43] | 李秀芬, 郭昭滨, 朱海霞, 王萍, 宫丽娟, 姜丽霞, 赵慧颖. 黑龙江省大豆生长季旱涝时序特征及其对产量的影响. 应用生态学报, 2020, 31(4): 1223-1232. |
LI X F, GUO Z B, ZHU H X, WANG P, GONG L J, JIANG L X, ZHAO H Y. Time-series characteristics of drought and flood in spring soybean growing season and its effect on soybean yield in Heilongjiang province, China. Chinese Journal of Applied Ecology, 2020, 31(4): 1223-1232. (in Chinese) |
[1] | 张文婧, 赵锦, 崔文倩, 黎满耀, 李娥, 弓晓雅, 杨晓光. 气候平均态和极端态变化对东北玉米气象产量的影响[J]. 中国农业科学, 2023, 56(10): 1859-1870. |
[2] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[3] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[4] | 董桑婕,姜小春,王羚羽,林锐,齐振宇,喻景权,周艳虹. 远红光补光对辣椒幼苗生长和非生物胁迫抗性的影响[J]. 中国农业科学, 2022, 55(6): 1189-1198. |
[5] | 李宁,柳坤,刘彤彤,史雨刚,王曙光,杨进文,孙黛珍. 小麦响应干旱胁迫环状RNA的鉴定[J]. 中国农业科学, 2022, 55(23): 4583-4599. |
[6] | 尹彦雨, 邢雨桐, 吴天凡, 王李妍, 赵子胥, 胡天然, 陈源, 陈媛, 陈德华, 张祥. 昼夜变温下高温与干旱胁迫对Bt棉毒蛋白含量的影响及其生理机制[J]. 中国农业科学, 2022, 55(23): 4614-4625. |
[7] | 刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444. |
[8] | 任义方,杨章平,零丰华,肖良文. 江苏奶牛热应激风险区划及其受气候变化的影响[J]. 中国农业科学, 2022, 55(22): 4513-4525. |
[9] | 李刚, 白阳, 贾子颖, 马正阳, 张祥池, 李春艳, 李诚. 两种磷素水平下小麦苗期对干旱胁迫的离子组和代谢组响应[J]. 中国农业科学, 2022, 55(2): 280-294. |
[10] | 李小凡, 邵靖宜, 于维祯, 刘鹏, 赵斌, 张吉旺, 任佰朝. 高温干旱复合胁迫对夏玉米产量及光合特性的影响[J]. 中国农业科学, 2022, 55(18): 3516-3529. |
[11] | 汝晨,胡笑涛,吕梦薇,陈滇豫,王文娥,宋天媛. 花后高温干旱胁迫下氮素对冬小麦氮积累与代谢酶、蛋白质含量及水氮利用效率的影响[J]. 中国农业科学, 2022, 55(17): 3303-3320. |
[12] | 孟雨,温鹏飞,丁志强,田文仲,张学品,贺利,段剑钊,刘万代,冯伟. 基于热红外图像的小麦品种抗旱性鉴定与评价[J]. 中国农业科学, 2022, 55(13): 2538-2551. |
[13] | 唐建昭,王靖,肖登攀,潘学标. 马铃薯生长模型的研究进展及发展前景[J]. 中国农业科学, 2021, 54(5): 921-932. |
[14] | 朱芳芳,董亚辉,任真真,王志勇,苏慧慧,库丽霞,陈彦惠. 过表达ZmIBH1-1提高玉米苗期抗旱性[J]. 中国农业科学, 2021, 54(21): 4500-4513. |
[15] | 薛仁风,丰明,黄宇宁,Matthew BLAIR,Walter MESSIER,葛维德. PvEG261对普通菜豆镰孢菌枯萎病抗性和抗旱性的影响[J]. 中国农业科学, 2021, 54(20): 4274-4285. |
|