中国农业科学 ›› 2022, Vol. 55 ›› Issue (9): 1822-1830.doi: 10.3864/j.issn.0578-1752.2022.09.011
收稿日期:
2021-09-06
修回日期:
2021-12-04
出版日期:
2022-05-01
发布日期:
2022-05-19
通讯作者:
温祥珍
作者简介:
隋心意,E-mail: 基金资助:
SUI XinYi(),ZHAO XiaoGang(),CHEN PengYu,LI YaLing,WEN XiangZhen*()
Received:
2021-09-06
Revised:
2021-12-04
Online:
2022-05-01
Published:
2022-05-19
Contact:
XiangZhen WEN
摘要:
【目的】光敏色素B(phytochrome,PHYB)是光和温度的受体。通过克隆光敏色素B基因(PHYB)可变剪接体并分析其在高温诱导下的表达模式,探究LsPHYB可变剪接体在生菜响应环境高温中的生物学功能,为培育耐热性生菜提供理论依据。【方法】采用生物信息学方法在生菜的基因组数据库搜索获得LsPHYB的cDNA序列的相关信息;对克隆得到的3个可变剪接体LsPHYB1、LsPHYB2和LsPHYB3进行多序列比对、可变剪接方式分析及系统进化树分析;通过在线软件预测PHYB1、PHYB2和PHYB3蛋白分子量、等电点和亲水性、疏水性等蛋白质理化性质,并通过生物信息学软件预测三者的二级结构、三级结构和保守结构域;采用荧光定量PCR(qRT-PCR)检测PHYB1、PHYB2和PHYB3在高温处理后的表达特征。【结果】克隆获得的生菜LsPHYB的3个可变剪接体LsPHYB1、LsPHYB2和LsPHYB3的CDS长度分别为3 509、3 877和2 690 bp,编码氨基酸长度分别为1 094、960和853 aa。其中LsPHYB1发生可变3′端位点和外显子跳跃类型可变剪接,LsPHYB2发生选择性保留polyA尾和内含子保留型可变剪接,LsPHYB3发生外显子跳跃类型可变剪接。保守结构域分析表明PHYB2的N端缺少PAS和PHY功能域;PHYB3的N端缺少PAS和PHY功能域,C端缺少HisKA功能域;系统进化树分析表明,3个可变剪接体聚为一支。qRT-PCR分析表明在高温处理第1天,LsPHYB3的表达量最高;在高温处理第5—9天,LsPHYB2的表达量高于LsPHYB1和LsPHYB3;在高温处理第11天,LsPHYB1的表达量高于LsPHYB2和LsPHYB3,处理11 d内三者表达量达到峰值的时间不同。【结论】高温下生菜LsPHYB的转录本存在3个可变剪接体LsPHYB1、LsPHYB2和LsPHYB3。LsPHYB3在高温处理前期高表达,LsPHYB2、LsPHYB1分别在高温处理中期、后期高表达,推测生菜3个LsPHYB可变剪接体在抗高温胁迫中发挥不同的作用。
隋心意,赵小刚,陈鹏宇,李亚灵,温祥珍. 生菜LsPHYB可变剪接体的克隆与高温诱导表达模式[J]. 中国农业科学, 2022, 55(9): 1822-1830.
SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress[J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
图5
不同植物PHYB氨基酸序列的系统进化分析 Ha:向日葵 Helianthus annuus,NC_035433.2;Nt:烟草 Nicotiana tabacum,NW_015887446.1;At:拟南芥 Arabidopsis thaliana,NC_003071.7;Bo:甘蓝 Brassica oleracea,NC_027752.1;Br:芜菁 Brassica rapa,NC_024799.2;Sl:番茄 Solanum lycopersicum,NC_015442.3;St:马铃薯 Solanum tuberosum,NW_006239191.1;So:菠菜 Spinacia oleracea,NW_018932796.1"
[1] |
LIPPMANN R, BABBEN S, MENGER A, DELKER C, QUINT M. Development of wild and cultivated plants under global warming conditions. Current Biology, 2019, 29(24): R1326-R1338. doi: 10.1016/j.cub.2019.10.016.
doi: 10.1016/j.cub.2019.10.016 |
[2] |
HAO J H, ZHANG L L, LI P P, SUN Y C, LI J K, QIN X X, WANG L, QI Z Y, XIAO S, HAN Y Y, LIU C J, FAN S X. Quantitative proteomics analysis of lettuce (Lactuca sativa L.) reveals molecular basis-associated auxin and photosynthesis with bolting induced by high temperature. International Journal of Molecular Sciences, 2018, 19(10): 2967.
doi: 10.3390/ijms19102967 |
[3] |
HALLIDAY K J, DAVIS S J. Light-sensing phytochromes feel the heat. Science, 2016, 354(6314): 832-833. doi: 10.1126/science.aaj1918.
doi: 10.1126/science.aaj1918 |
[4] |
LIN J Y, ZHU Z Q. Plant responses to high temperature: A view from pre-mRNA alternative splicing. Plant Molecular Biology, 2021, 105(6): 575-583. doi: 10.1007/s11103-021-01117-z.
doi: 10.1007/s11103-021-01117-z |
[5] |
CAPOVILLA G, PAJORO A, IMMINK R G, SCHMID M. Role of alternative pre-mRNA splicing in temperature signaling. Current Opinion in Plant Biology, 2015, 27: 97-103. doi: 10.1016/j.pbi.2015.06.016.
doi: 10.1016/j.pbi.2015.06.016 |
[6] |
STAIGER D, BROWN J W S. Alternative splicing at the intersection of biological timing, development, and stress responses. The Plant Cell, 2013, 25(10): 3640-3656. doi: 10.1105/tpc.113.113803
doi: 10.1105/tpc.113.113803 |
[7] | 曾纪晴, 张明永. 选择性剪接在植物逆境相关基因表达调控中的作用. 植物生理学通讯, 2006, 42(6): 1005-1014. |
ZENG J Q, ZHANG M Y. The role of alternative splicing in the regulation of plant stress-associated gene expression. Plant Physiology Communications, 2006, 42(6): 1005-1014. (in Chinese) | |
[8] |
GILBERT W. Why genes in pieces? Nature, 1978, 271(5645): 501.
doi: 10.1038/271501a0 |
[9] |
KEREN H, LEV-MAOR G, AST G. Alternative splicing and evolution: diversification, exon definition and function. Nature Reviews Genetics, 2010, 11(5): 345-355. doi: 10.1038/nrg2776.
doi: 10.1038/nrg2776 |
[10] |
KANNAN S, HALTER G, RENNER T, WATERS E R. Patterns of alternative splicing vary between species during heat stress. AoB PLANTS, 2018, 10(2): ply013. doi: 10.1093/aobpla/ply013.
doi: 10.1093/aobpla/ply013 |
[11] |
CHANG C Y, LIN W D, TU S L. Genome-wide analysis of heat-sensitive alternative splicing in Physcomitrella patens. Plant Physiology, 2014, 165(2): 826-840. doi: 10.1104/pp.113.230540.
doi: 10.1104/pp.113.230540 |
[12] |
HAYNES J G, HARTUNG A J, HENDERSHOT J D, PASSINGHAM R S, RUNDLE S J. Molecular characterization of the B' regulatory subunit gene family of Arabidopsis protein phosphatase 2A. European Journal of Biochemistry, 1999, 260(1): 127-136. doi: 10.1046/j.1432-1327.1999.00154.x.
doi: 10.1046/j.1432-1327.1999.00154.x. |
[13] |
KINOSHITA S, KANEKO G, LEE J H, KIKUCHI K, YAMADA H, HARA T, ITOH Y, WATABE S. A novel heat stress-responsive gene in the marine diatom Chaetoceros compressum encoding two types of transcripts, a trypsin-like protease and its related protein, by alternative RNA splicing. European Journal of Biochemistry, 2001, 268(17): 4599-4609.
doi: 10.1046/j.1432-1327.2001.02360.x |
[14] |
KELLER M, HU Y J, MESIHOVIC A, FRAGKOSTEFANAKIS S, SCHLEIFF E, SIMM S. Alternative splicing in tomato pollen in response to heat stress. DNA Research, 2016, 24(2): 205-217. doi: 10.1093/dnares/dsw051.
doi: 10.1093/dnares/dsw051 |
[15] |
MATSUKURA S, MIZOI J, YOSHIDA T, TODAKA D, ITO Y, MARUYAMA K, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress- responsive genes. Molecular Genetics and Genomics, 2010, 283(2): 185-196. doi: 10.1007/s00438-009-0506-y.
doi: 10.1007/s00438-009-0506-y |
[16] | LEE S S, JUNG W Y, PARK H J, LEE A, KWON S Y, KIM H S, CHO H S. Genome-wide analysis of alternative splicing in an inbred cabbage (Brassica oleracea L.) line ‘HO’ in response to heat stress. Current Genomics, 2018, 19(1): 12-20. |
[17] |
AIROLDI C A, MARY M, BRENDAN D. MAF2 is regulated by temperature-dependent splicing and represses flowering at low temperatures in parallel with FLM. PLoS ONE, 2015, 10(5): e0126516. doi: 10.1371/journal.pone.0126516.
doi: 10.1371/journal.pone.0126516 |
[18] |
POSE D, VERHAGE L, OTT F, YANT L, MATHIEU J, ANGENENT G C, IMMINK R, SCHMID M. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature, 2013, 503(7476): 414-417. doi: 10.1038/nature12633.
doi: 10.1038/nature12633 |
[19] |
YAN K, LIU P, WU C G, YANG G D, XU R, GUO Q H, HUANG J G, ZHENG C C. Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Molecular Cell, 2012, 48(4): 521-531. doi: 10.1016/j.molcel.2012.08.032.
doi: 10.1016/j.molcel.2012.08.032 |
[20] |
LEGRIS M, KLOSE C, BURGIE E S, ROJAS C C R, NEME M, HILTBRUNNER A, WIGGE P A, SCHÄFER E, VIERSTRA R D, CASAL J J. Phytochrome B integrates light and temperature signals in Arabidopsis. Science, 2016, 354(6314): 897-900. doi: 10.1126/science.aaf5656.
doi: 10.1126/science.aaf5656 |
[21] |
JAEHOON J, MIRELA D, CORNELIA K, SUROJIT B, DAPHNE E, GAO M J, KHAN K A, BOX M S, VARODOM C, SANDRA C, MANOJ K, ALASTAIR G, LOCKE J C W, EBERHARD S, JAEGER K E, WIGGE P A. Phytochromes function as thermosensors in Arabidopsis. Science, 2016, 354(6314): 886-889. doi: 10.1126/science.aaf6005.
doi: 10.1126/science.aaf6005 |
[22] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 |
[23] |
冯雅岚, 熊瑛, 张均, 原佳乐, 蔡艾杉, 马超. 可变剪切在植物发育和非生物胁迫响应中的作用. 核农学报, 2020, 34(1): 62-70. doi: 10.11869/j.issn.100-8551.2020.01.0062.
doi: 10.11869/j.issn.100-8551.2020.01.0062 |
FENG Y L, XIONG Y, ZHANG J, YUAN J L, CAI A S, MA C. Role of alternative splicing in plant development and abiotic stress responses. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 62-70. doi: 10.11869/j.issn.100-8551.2020.01.0062. (in Chinese)
doi: 10.11869/j.issn.100-8551.2020.01.0062 |
|
[24] |
卢欢欢, 邓琴霖, 吴梦丹, 王志敏, 魏大勇, 王鹤冰, 向华丰, 张洪成, 汤青林. 可变剪接调控植物开花的作用机制进展. 生物工程学报, 2021, 37(9): 2991-3004. doi: 10.13345/j.cjb.200628.
doi: 10.13345/j.cjb.200628 |
LU H H, DENG Q L, WU M D, WANG Z M, WEI D Y, WANG H B, XIANG H F, ZHANG H C, TANG Q L. Mechanisms of alternative splicing in regulating plant flowering: A review. Chinese Journal of Biotechnology, 2021, 37(9): 2991-3004. doi: 10.13345/j.cjb.200628. (in Chinese)
doi: 10.13345/j.cjb.200628 |
|
[25] |
石国良, 武强, 杨念婉, 黄聪, 刘万学, 钱万强, 万方浩. 苹果蠹蛾几丁质脱乙酰基酶2的基因克隆、表达模式和分子特性. 中国农业科学, 2021, 54(10): 2105-2117. doi: 10.3864/j.issn.0578-1752.2021.10.007.
doi: 10.3864/j.issn.0578-1752.2021.10.007 |
SHI G L, WU Q, YANG N W, HUANG C, LIU W X, QIAN W Q, WAN F H. Gene cloning, expression pattern and molecular characterization of chitin deacetylase 2 in Cydia pomonella. Scientia Agricultura Sinica, 2021, 54(10): 2105-2117. doi: 10.3864/j.issn.0578-1752.2021.10.007. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.10.007 |
|
[26] |
FANKHAUSER C. The phytochromes, a family of red/far-red absorbing photoreceptors. Journal of Biological Chemistry, 2001, 276(15): 11453-11456.
doi: 10.1074/jbc.R100006200 |
[27] |
BAE G, CHOI G. Decoding of light signals by plant phytochromes and their interacting proteins. Annual Review of Plant Biology, 2008, 59: 281-311. doi: 10.1146/annurev.arplant.59.032607.092859.
doi: 10.1146/annurev.arplant.59.032607.092859 |
[28] |
张媛媛. 光敏色素的结构及其信号调控机制. 湖北农业科学, 2020, 59(4): 5-10. doi: 10.14088/j.cnki.issn0439-8114.2020.04.001.
doi: 10.14088/j.cnki.issn0439-8114.2020.04.001 |
ZHANG Y Y. Structure and signal regulation mechanism of phytochrome. Hubei Agricultural Sciences, 2020, 59(4): 5-10. doi: 10.14088/j.cnki.issn0439-8114.2020.04.001. (in Chinese)
doi: 10.14088/j.cnki.issn0439-8114.2020.04.001 |
|
[29] |
KLOSE C, VICZIÁN A, KIRCHER S, SCHÄFER E, NAGY F. Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors. The New Phytologist, 2015, 206(3): 965-971.
doi: 10.1111/nph.13207 |
[30] | BURGIE E S, BUSSELL A N, WALKER J M, DUBIEL K, VIERSTRA R D. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10179-10184. |
[31] |
BURGIE E S, BUSSELL A N, LYE S H, WANG T, HU W M, MCLOUGHLIN K E, WEBER E L, LI H L, VIERSTRA R D. Photosensing and thermosensing by phytochrome B require both proximal and distal allosteric features within the dimeric photoreceptor. Scientific Reports, 2017, 7(1): 13648. doi: 10.1038/s41598-017-14037-0.
doi: 10.1038/s41598-017-14037-0 |
[32] |
BURGIE E S, ZHANG J R, VIERSTRA R D. Crystal structure of Deinococcus phytochrome in the photoactivated state reveals a cascade of structural rearrangements during photoconversion. Structure, 2016, 24(3): 448-457. doi: 10.1016/j.str.2016.01.001.
doi: 10.1016/j.str.2016.01.001 |
[33] |
XU D Q. Multifaceted roles of PIF4 in plants. Trends in Plant Science, 2018, 23(9): 749-751. doi: 10.1016/j.tplants.2018.07.003.
doi: 10.1016/j.tplants.2018.07.003 |
[34] | 吴发强. 大豆光敏色素基因的克隆和功能研究[D]. 北京: 中国农业科学院, 2011. |
WU F Q. Cloning and functional study of soybean phytochrome genes[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese) | |
[35] |
LIU B, ZHAO S, LI P L, YIN Y L, NIU Q L, YAN J Q, HUANG D F. Plant buffering against the high-light stress-induced accumulation of CsGA2ox8 transcripts via alternative splicing to finely tune gibberellin levels and maintain hypocotyl elongation. Horticulture Research, 2021, 8(1): 170-180.
doi: 10.1038/s41438-021-00606-y |
[36] |
WU Z, LIANG J H, WANG C P, DING L P, ZHAO X, CAO X, XU S J, TENG N J, YI M F. Alternative splicing provides a mechanism to regulate LlHSFA3 function in response to heat stress in lily. Plant Physiology, 2019, 181(4): 1651-1667. doi: 10.1104/pp.19.00839.
doi: 10.1104/pp.19.00839 |
[37] |
CHEN M, TAO Y, LIM J, SHAW A, CHORY J. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals. Current Biology, 2005, 15(7): 637-642. doi: 10.1016/j.cub.2005.02.028.
doi: 10.1016/j.cub.2005.02.028 |
[38] |
MATSUSHITA T, MOCHIZUKI N, NAGATANI A. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature, 2003, 424(6948): 571-574.
doi: 10.1038/nature01837 |
[39] |
HUQ E, AL-SADY B, QUAIL P H. Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. The Plant Journal, 2003, 35(5): 660-664.
doi: 10.1046/j.1365-313X.2003.01836.x |
[40] |
KOO S C, YOON H W, KIM C Y, MOON B C, CHEONG Y H, HAN H J, LEE S M, KANG K Y, KIM M C, LEE S Y, CHUNG W S, CHO M J. Alternative splicing of the OsBWMK1 gene generates three transcript variants showing differential subcellular localizations. Biochemical and Biophysical Research Communications, 2007, 360(1): 188-193. doi: 10.1016/j.bbrc.2007.06.052.
doi: 10.1016/j.bbrc.2007.06.052 |
[41] |
HE Z S, XIE R, ZOU H S, WANG Y Z, ZHU J B, YU G Q. Structure and alternative splicing of a heat shock transcription factor gene, MsHSF1, in Medicago sativa. Biochemical and Biophysical Research Communications, 2007, 364(4): 1056-1061.
doi: 10.1016/j.bbrc.2007.10.131 |
[1] | 范延艮,王域,刘富浩,赵秀秀,向勤锃,张丽霞. 茶树CsHIPP26.1互作蛋白的筛选与验证[J]. 中国农业科学, 2022, 55(8): 1630-1641. |
[2] | 余琦隆,韩莹琰,郝敬虹,秦晓晓,刘超杰,范双喜. 外源亚精胺对高温胁迫下生菜氮代谢的影响[J]. 中国农业科学, 2022, 55(7): 1399-1410. |
[3] | 刘振蓉,赵武奇,胡新中,贺刘成,陈月圆. 燕麦挂面制作过程中干燥工艺优化研究[J]. 中国农业科学, 2022, 55(24): 4927-4942. |
[4] | 李扬眉,刘鑫,贾梦晗,仝宇欣. 光期湿度对植物工厂生菜干烧心及其营养品质的影响[J]. 中国农业科学, 2022, 55(20): 4011-4019. |
[5] | 张川,刘栋,王洪章,任昊,赵斌,张吉旺,任佰朝,刘存辉,刘鹏. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响[J]. 中国农业科学, 2022, 55(19): 3710-3722. |
[6] | 金梦娇,刘博,王抗抗,张广忠,钱万强,万方浩. 薇甘菊光能利用及叶绿素合成在不同光照强度下的响应[J]. 中国农业科学, 2022, 55(12): 2347-2359. |
[7] | 钟艳平,师立松,周瑢,高媛,何延庆,方圣,张秀荣,王林海,吴自明,张艳欣. 芝麻素高效提取检测技术的建立与高芝麻素种质的筛选[J]. 中国农业科学, 2022, 55(11): 2109-2120. |
[8] | 杜金婷,张雁,李雁,王佳佳,廖娜,钟立煌,骆碧群,林江. 超声耦合双水相体系提取茶皂素的工艺优化与机制探讨[J]. 中国农业科学, 2022, 55(1): 167-183. |
[9] | 张明静,韩笑,胡雪,臧倩,许轲,蒋敏,庄恒扬,黄丽芬. 不同种植方式下温度升高对水稻产量及同化物转运的影响[J]. 中国农业科学, 2021, 54(7): 1537-1552. |
[10] | 鲁晓峰,杜国栋,邵静,张静茹,孙海龙. 草莓根系线粒体对外源酚酸胁迫的生理响应[J]. 中国农业科学, 2021, 54(5): 1029-1042. |
[11] | 吕士凯, 马小龙, 张敏, 邓平川, 陈春环, 张宏, 刘新伦, 吉万全. 小麦TaNAC基因基于可变剪切和microRNA的转录后调控分析[J]. 中国农业科学, 2021, 54(22): 4709-4727. |
[12] | 薛仁风,丰明,黄宇宁,Matthew BLAIR,Walter MESSIER,葛维德. PvEG261对普通菜豆镰孢菌枯萎病抗性和抗旱性的影响[J]. 中国农业科学, 2021, 54(20): 4274-4285. |
[13] | 龙卫华,浦惠明,高建芹,胡茂龙,张洁夫,陈松. 油菜高油酸种质的创建及高油酸性状遗传与生理特性的分析[J]. 中国农业科学, 2021, 54(2): 261-270. |
[14] | 黄秋红,刘智蕾,李鹏飞,车俊杰,于彩莲,彭显龙. 相同气候背景下南北方稻田土壤上水稻生长及氮响应差异研究[J]. 中国农业科学, 2021, 54(19): 4143-4154. |
[15] | 李艳林,SHAHID Iqbal,侍婷,宋娟,倪照君,高志红. 梅PmARF17克隆及其在花发育中与内源激素的调控模式[J]. 中国农业科学, 2021, 54(13): 2843-2857. |
|