中国农业科学 ›› 2022, Vol. 55 ›› Issue (23): 4583-4599.doi: 10.3864/j.issn.0578-1752.2022.23.002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦响应干旱胁迫环状RNA的鉴定

李宁(),柳坤,刘彤彤,史雨刚,王曙光,杨进文*(),孙黛珍*()   

  1. 山西农业大学农学院,山西太谷 030801
  • 收稿日期:2022-07-25 接受日期:2022-09-05 出版日期:2022-12-01 发布日期:2022-12-06
  • 联系方式: 李宁,E-mail:13159862006@163.cm。
  • 基金资助:
    山西省基础研究计划(20210302124148);山西省高等学校科技创新项目(2021L124);山西农业大学科技创新基金(2020BQ30)

Identification of Wheat Circular RNAs Responsive to Drought Stress

LI Ning(),LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen*(),SUN DaiZhen*()   

  1. College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2022-07-25 Accepted:2022-09-05 Published:2022-12-01 Online:2022-12-06

摘要: 目的 干旱是限制全球小麦生产的主要非生物胁迫之一,探索小麦应对干旱的分子调控机制对小麦分子育种具有重要意义。环状RNA(circRNA)已被证实在植物抵御外界环境胁迫的过程中扮演着重要角色。鉴定小麦响应干旱胁迫的circRNA,有助于构建小麦干旱胁迫响应的调控网络,为解析小麦的抗旱性机制奠定基础。方法 以2个抗旱性差异显著的小麦品种(周麦13和冀麦38)为试验材料,对其在干旱及对照条件下的根部样本进行circRNA测序。鉴定小麦circRNA并对其进行特征分析,筛选与干旱胁迫响应相关的差异表达circRNA,并对其靶向microRNA(miRNA)进行预测。进一步根据miRNA及其靶基因在干旱胁迫下的表达模式,构建小麦响应干旱胁迫的潜在circRNA-miRNA-mRNA调控模块。结果 共鉴定获得1 409个小麦circRNA,其中,多数(68.91%)为外显子circRNA,且仅有133个circRNA在2个品种中被同时鉴定获得。在干旱胁迫下共鉴定获得239个差异表达circRNA,其中138个circRNA在抗旱型品种周麦13(ZM13)中特异性差异表达,19个circRNA在2个品种中同时差异表达。共预测到34个靶向miRNA以及1 408个miRNA靶基因。根据这些差异表达circRNA、靶向miRNA以及miRNA靶基因在干旱胁迫后的表达模式,共筛选出5个分别以tae-miR9664-3p、tae-miR1122b-3p、tae-miR9662a-3p、tae-miR6197-5p和tae-miR1120c-5p为中心的小麦响应干旱胁迫的潜在circRNA-miRNA-mRNA调控模块。结论 小麦circRNA具有明显的品种特异性,且在不同抗旱型小麦品种之间具有不同的表达模式。共鉴定到239个响应干旱胁迫的小麦circRNA以及5个潜在的circRNA-miRNA-mRNA调控模块。

关键词: 小麦, circRNA, 干旱胁迫, miRNA

Abstract:

【Objective】 Drought is one of the foremost abiotic stress limiting global wheat production. Exploring the molecular mechanism of wheat response to drought stress have great significance in wheat molecular breeding. Circular RNAs (circRNAs) have been proved to play an important role in the process of plants tolerance to environmental stresses. Therefore, identifying circRNAs involved in drought stress response will help to construct a regulatory network of wheat drought tolerance, and lay a foundation for analyzing the drought resistance mechanism in wheat. 【Method】 In this study, two wheat varieties (Zhoumai13 and Jimai38) with significant differences in drought resistance were used and circRNA-seq was performed on their root samples under well-watered and drought conditions. Differentially expressed circRNAs related to drought stress response were screened based on the identified circRNAs and their microRNAs (miRNAs) targets were predicted. Further, potential circRNA-miRNA-mRNA regulatory modules related to wheat drought stress response were constructed according to the expression patterns of miRNAs and their target genes under drought stress..【Result】 A total of 1 409 wheat circRNAs were identified, most of which (68.91%) were exonic circRNAs. Only 133 circRNAs were simultaneously identified in both varieties. A total of 239 differentially expressed circRNAs were identified under drought stress, of which 138 circRNAs were specifically differentially expressed in the drought-resistant variety Zhoumai 13 (ZM13), and 19 circRNAs were differentially expressed simultaneously in both varieties. Besides, 34 targeted miRNAs and 1 408 miRNA target genes were predicted. Based on the expression patterns of these differentially expressed circRNAs, targeted miRNAs, and miRNA target genes, five potential circRNA-miRNA-mRNA regulatory modules centered on tae-miR9664-3p, tae-miR1122b-3p, tae-miR9662a-3p, tae-miR6197-5p and tae-miR1120c-5p in response to drought stress were screened..【Conclusion】 Wheat circRNAs have obvious specificity in different cultivars and different expression patterns among different drought-tolerant wheat cultivars. A total of 239 wheat circRNAs and 5 potential circRNA-miRNA-mRNA regulatory modules in response to drought stress were identified in the present study.

Key words: wheat, circular RNAs, drought stress, microRNAs