中国农业科学 ›› 2022, Vol. 55 ›› Issue (23): 4583-4599.doi: 10.3864/j.issn.0578-1752.2022.23.002
李宁(),柳坤,刘彤彤,史雨刚,王曙光,杨进文*(),孙黛珍*()
收稿日期:
2022-07-25
接受日期:
2022-09-05
出版日期:
2022-12-01
发布日期:
2022-12-06
联系方式:
李宁,E-mail:13159862006@163.cm。
基金资助:
LI Ning(),LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen*(),SUN DaiZhen*()
Received:
2022-07-25
Accepted:
2022-09-05
Published:
2022-12-01
Online:
2022-12-06
摘要: 目的 干旱是限制全球小麦生产的主要非生物胁迫之一,探索小麦应对干旱的分子调控机制对小麦分子育种具有重要意义。环状RNA(circRNA)已被证实在植物抵御外界环境胁迫的过程中扮演着重要角色。鉴定小麦响应干旱胁迫的circRNA,有助于构建小麦干旱胁迫响应的调控网络,为解析小麦的抗旱性机制奠定基础。方法 以2个抗旱性差异显著的小麦品种(周麦13和冀麦38)为试验材料,对其在干旱及对照条件下的根部样本进行circRNA测序。鉴定小麦circRNA并对其进行特征分析,筛选与干旱胁迫响应相关的差异表达circRNA,并对其靶向microRNA(miRNA)进行预测。进一步根据miRNA及其靶基因在干旱胁迫下的表达模式,构建小麦响应干旱胁迫的潜在circRNA-miRNA-mRNA调控模块。结果 共鉴定获得1 409个小麦circRNA,其中,多数(68.91%)为外显子circRNA,且仅有133个circRNA在2个品种中被同时鉴定获得。在干旱胁迫下共鉴定获得239个差异表达circRNA,其中138个circRNA在抗旱型品种周麦13(ZM13)中特异性差异表达,19个circRNA在2个品种中同时差异表达。共预测到34个靶向miRNA以及1 408个miRNA靶基因。根据这些差异表达circRNA、靶向miRNA以及miRNA靶基因在干旱胁迫后的表达模式,共筛选出5个分别以tae-miR9664-3p、tae-miR1122b-3p、tae-miR9662a-3p、tae-miR6197-5p和tae-miR1120c-5p为中心的小麦响应干旱胁迫的潜在circRNA-miRNA-mRNA调控模块。结论 小麦circRNA具有明显的品种特异性,且在不同抗旱型小麦品种之间具有不同的表达模式。共鉴定到239个响应干旱胁迫的小麦circRNA以及5个潜在的circRNA-miRNA-mRNA调控模块。
李宁,柳坤,刘彤彤,史雨刚,王曙光,杨进文,孙黛珍. 小麦响应干旱胁迫环状RNA的鉴定[J]. 中国农业科学, 2022, 55(23): 4583-4599.
LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress[J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
表1
荧光定量PCR引物序列"
circRNA ID | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
---|---|---|
chr4A:135615436|135616027 | GAAGTGGGGGTGCGTCTC | CCCAGTCCCTTTCTTCCTCG |
chr2A:391871653|391873055 | GGTCGACCCGGAGATGAAAA | GACCACCAAAGGGATCTGGG |
chr3B:734912137|734913464 | ATTCCTTCAAGCCCCCGAAG | GAGGAGAGGCATGAACCGAG |
chr6D:68976712|68979761 | TTTGCTCTTCCTTGCGTTGC | TGTTCAGATCAAGACGGCCC |
chr6D:68978282|68979761 | AGGACAGAGGTGCAATGCTT | TCCTCCTCGTAGTCCAAGCA |
chr3B:774401803|774404734 | ATCCCTTCAAGCCCCCAAAG | AGGACGAATTGCCTCACCAG |
chr3D:456098361|456098885 | CTCGGACAACCCCAAGATCC | TGAGGTGAAGAGGCGACATG |
chr7D:45482308|45483763 | GGCTCTGATGGTGTGCTTCT | CAGTGCATGTTCCTCCTCAGT |
chr3B:438537516|438537814 | TGCTTTGCCTGTCCACTTCT | TGTGGAAATGCGGTTACAAGC |
GAPDH | ACATTAAGGGTGGTGCCAAG | TGGTCATCAAACCCTCAACA |
表2
circRNA测序数据结果统计"
样本IDa Sample ID | Clean read数量 No. of clean reads | Clean data总碱基数 No. of bases in clean data | Q30 (%) | 对比率 Percentage of mapped reads (%) |
---|---|---|---|---|
JM38-CK-1 | 118952370 | 17735106554 | 93.08 | 99.68 |
JM38-CK-2 | 116572800 | 17380371520 | 93.19 | 99.47 |
JM38-CK-3 | 120557430 | 17933660922 | 93.60 | 99.61 |
JM38-T-1 | 97797440 | 14495476172 | 94.01 | 98.74 |
JM38-T-2 | 115322786 | 17223097988 | 94.79 | 99.55 |
JM38-T-3 | 101091222 | 15052976916 | 93.24 | 99.47 |
ZM13-CK-1 | 109456900 | 16361760332 | 95.37 | 99.79 |
ZM13-CK-2 | 158882218 | 23410171332 | 94.23 | 99.32 |
ZM13-CK-3 | 129129306 | 19198145718 | 93.53 | 99.40 |
ZM13-T-1 | 120213128 | 17925334142 | 93.34 | 99.52 |
ZM13-T-2 | 106276928 | 15847825216 | 93.01 | 99.59 |
ZM13-T-3 | 119369138 | 17788551356 | 93.18 | 99.65 |
表3
2个品种中共同差异表达circRNA的宿主基因的GO注释"
GO类别 GO category | GO名称 GO name | GO ID | 宿主基因数量 No. of host genes |
---|---|---|---|
生物过程 Biological process | 代谢过程Metabolic process | GO:0008152 | 5 |
细胞过程Cellular process | GO:0009987 | 3 | |
生物调节Biological regulation | GO:0065007 | 2 | |
细胞组分 Cellular component | 细胞外区域Extracellular region | GO:0005576 | 2 |
膜Membrane | GO:0016020 | 2 | |
膜组分Membrane part | GO:0044425 | 2 | |
分子功能 Molecular function | 结合Binding | GO:0005488 | 2 |
催化活性Catalytic activity | GO:0003824 | 2 |
表4
全部差异表达circRNA宿主基因的KEGG注释"
KEGG通路名称 Name of the KEGG pathway | KEGG编号 KEGG number | 宿主基因数量 No. of host genes | 通路名称 Name of the KEGG pathway | KEGG编号 KEGG number | 宿主基因数量 No. of host genes | |
---|---|---|---|---|---|---|
植物-病原菌互作 Plant-pathogen interaction | ko04626 | 9 | 内吞作用 Endocytosis | ko04144 | 6 | |
真核生物中的核糖体生物发生Ribosome biogenesis in eukaryotes | ko03008 | 4 | 植物激素信号转导 Plant hormone signal transduction | ko04075 | 4 | |
苯丙烷生物合成 Phenylpropanoid biosynthesis | ko00940 | 4 | 过氧化物酶体 Peroxisome | ko04146 | 4 | |
剪切体 Spliceosome | ko03040 | 3 | 氧化磷酸化 Oxidative phosphorylation | ko00190 | 2 | |
mRNA监测途径 mRNA surveillance pathway | ko03015 | 2 | RNA转运 RNA transport | ko03013 | 2 | |
甘油磷脂代谢 Glycerolipid metabolism | ko00561 | 2 | 鞘糖脂生物合成 Glycosphingolipid biosynthesis | ko00604 | 2 |
表5
ZM13中特异性差异表达circRNA的宿主基因的KEGG注释"
KEGG通路名称 Name of the KEGG pathway | KEGG编号 KEGG number | 宿主基因数量 No. of host genes | 通路名称 Name of the KEGG pathway | KEGG编号 KEGG number | 宿主基因数量 No. of host genes | |
---|---|---|---|---|---|---|
植物-病原菌互作 Plant-pathogen interaction | ko04626 | 5 | 内吞作用 Endocytosis | ko04144 | 4 | |
RNA转运RNA transport | ko03013 | 2 | 过氧化物酶体Peroxisome | ko04146 | 2 | |
氧化磷酸化 Oxidative phosphorylation | ko00190 | 2 | mRNA监测途径 mRNA surveillance pathway | ko03015 | 2 | |
剪切体Spliceosome | ko03040 | 2 |
表6
2个品种中共同差异表达circRNA的宿主基因的KEGG注释"
KEGG通路名称 Name of the KEGG pathway | KEGG编号 KEGG number | 宿主基因 Host genes | 差异表达circRNA Differentially expressed circRNAs |
---|---|---|---|
剪切体Spliceosome | ko03040 | TraesCS4D02G214100 | chr4D:367041574|367041924 |
真核生物中的核糖体生物发生Ribosome biogenesis in eukaryotes | ko03008 | TraesCS2B02G435400 | chr2B:625556656|625557509 |
植物激素信号转导Plant hormone signal transduction | ko04075 | TraesCS4A02G446600 | chr4A:714100537|714100686 |
苯丙烷生物合成Phenylpropanoid biosynthesis | ko00940 | TraesCS2B02G613900 | chr2B:793034311|793034526 |
过氧化物酶体Peroxisome | ko04146 | TraesCS6D02G174600 | chr6D:164766767|164767073 |
甘油磷脂代谢Glycerolipid metabolism | ko00561 | TraesCS5A02G157700 | chr5A:337941529|337942323 |
氨基糖和核苷酸糖代谢Amino sugar and nucleotide sugar metabolism | ko00520 | TraesCS1A02G353400 | chr1A:536974543|536974758 |
表7
差异表达circRNA宿主基因在水稻中的同源基因及其抗逆性功能"
差异表达circRNA Differentially expressed circRNAs | 宿主基因 Host genes | 水稻同源基因 Homologous genes in rice | 同源基因功能 Homologous gene function |
---|---|---|---|
chr2A:52664278|52664553 | TraesCS2A02G099900 | OsEIL2 (LOC_Os07g48630) | 耐盐Tolerant to salt stress[ |
chr1D:299577794|299577982 | TraesCS1D02G214200 | OsNRT1.1B(LOC_Os10g40600) | 耐低氮Tolerant to low nitrogen stress[ |
chr3A:638334965|638335214 | TraesCS3A02G390200 | OsPUB15(LOC_Os08g01900) | 耐盐Tolerant to salt stress[ |
chr3D:394765145|394765294 | TraesCS3D02G285400 | OsTT1 (LOC_Os03g26970) | 耐高温Tolerant to high temperature stress[ |
chr4B:606908755|606908957 | TraesCS4B02G317200 | OsPht1;2(LOC_Os03g05640) | 耐低钾Tolerance to low potassium stress [ |
chr4D:41728977|41729938 | TraesCS4D02G066700 | OsHOS1(LOC_Os03g52700) | 耐冷Tolerant to cold stress[ |
chr5B:17981442|17981743 | TraesCS5B02G018700 | OsASTOL1(LOC_Os12g42980) | 耐砷Tolerant to arsenic stress[ |
chr6A:608632503|608632694 | TraesCS6A02G396400 | OsPP1a(LOC_Os03g16110) | 耐盐Tolerant to salt stress[ |
chr7A:222784992|222785194 | TraesCS7A02G245100 | OsSAP11(LOC_Os08g39450) | 耐盐和耐旱Tolerant to salt and drought stress[ |
OsSAP1(LOC_Os09g31200) | 耐盐和耐旱Tolerant to salt and drought stress[ |
表8
差异表达circRNA及其靶向miRNA"
circRNA ID | 靶向miRNA <BOLD>T</BOLD>arget miRNAs |
---|---|
chr2B:56775826|56778058 | tae-miR9778 |
chr7A:735704463|735710613 | tae-miR9673-5p; tae-miR9661-5p |
chr1B:642165761|642197014 | tae-miR9664-3p; tae-miR1133; tae-miR1122b-3p |
chr5D:543694782|543696753 | tae-miR9662a-3p |
chr1B:518799941|518803372 | tae-miR1137a |
chr1B:477404890|477416633 | tae-miR1137a; tae-miR1133; tae-miR1122b-3p |
chr5B:528574134|528588868 | tae-miR1135; tae-miR1133; tae-miR1127a; tae-miR1122a; tae-miR9668-5p; tae-miR1127b-3p |
chr2B:32870327|32874189 | tae-miR1121; tae-miR6197-5p;tae-miR9653a-3p |
chr5A:482358772|482427161 | tae-miR1117; tae-miR1125 |
chr7B:68317992|68345006 | tae-miR1117 |
chr3B:778404617|778442815 | tae-miR1117; tae-miR1133; tae-miR1131; tae-miR1127a; tae-miR1120c-5p |
chr2B:787486469|787538256 | tae-miR5384-3p |
chr3A:7907994|7923795 | tae-miR1117; tae-miR5049-3p |
chr2A:771191685|771242152 | tae-miR1117; tae-miR7757-5p; tae-miR1131 |
chr6D:454657953|454748495 | tae-miR1121; tae-miR5175-5p; tae-miR1118; tae-miR1130b-3p; tae-miR1120c-5p |
chr7B:1308928|1352258 | tae-miR1122c-3p; tae-miR1133; tae-miR1127a; tae-miR1122a; tae-miR1127b-3p |
chr4A:668278340|668323672 | tae-miR1131; tae-miR9673-5p |
chr2B:16815429|16856732 | tae-miR1117; tae-miR1139; tae-miR1118; tae-miR408 |
chr4D:65120787|65147651 | tae-miR1117; tae-miR9664-3p; tae-miR7757-5p; tae-miR1127a; tae-miR1122a |
chr6D:469968655|469986922 | tae-miR7757-5p; tae-miR1133 |
chr3B:54538153|54591607 | tae-miR5384-3p; tae-miR9659-3p |
chr6B:265924545|265976740 | tae-miR9674a-5p |
chr7D:615903829|615904057 | tae-miR1122c-3p; tae-miR1130b-3p; tae-miR1120b-3p |
chr1A:589450964|589476548 | tae-miR1121; tae-miR1122c-3p; tae-miR1133; tae-miR171b; tae-miR1130a; tae-miR1130b-3p; tae-miR1120b-3p |
表9
circRNA-miRNA-mRNA调控模块"
模块编号 Module number | 差异表达circRNA Differentially expressed circRNAs | 差异表达的靶向miRNA Differentially expressed target miRNAs | 差异表达的miRNA靶基因 Target genes of differentially expressed miRNA | 靶基因功能注释 Target gene functional annotation |
---|---|---|---|---|
1 | chr1B:642165761|642197014 chr4D:65120787|65147651 | tae-miR9664-3p | TraesCS5B02G405300 | 过氧化物酶Peroxidase |
TraesCS5A02G141700 | 乙烯反应转录因子 Ethylene-responsive transcription factor | |||
TraesCS5D02G084300 | 细胞色素P450 Cytochrome P450 | |||
TraesCS3D02G225900 | 细胞色素P450 Cytochrome P450 | |||
TraesCS3B02G256400 | 细胞色素P450 Cytochrome P450 | |||
TraesCS3A02G224900 | 钙依赖性蛋白激酶Calcium-dependent protein kinase | |||
TraesCS3B02G254500 | 钙依赖性蛋白激酶Calcium-dependent protein kinase | |||
TraesCS3D02G228700 | 钙依赖性蛋白激酶Calcium-dependent protein kinase | |||
TraesCS4B02G365000 | ABC转运体A家族成员 ABC transporter A family member | |||
TraesCSU02G138200 | ABC转运体A家族成员 ABC transporter A family member | |||
2 | chr1B:642165761|642197014 chr1B:477404890|477416633 | tae-miR1122b-3p | TraesCS1A02G272100 | 丝氨酸/苏氨酸蛋白激酶Serine/threonine-protein kinase |
TraesCS7B02G481100 | E3 泛素蛋白连接酶E3 ubiquitin-protein ligase | |||
TraesCS7B02G165100 | E3 泛素蛋白连接酶E3 ubiquitin-protein ligase | |||
TraesCS6D02G330500 | 谷氨酸受体Glutamate receptor | |||
TraesCS6B02G281000 | 乙烯反应转录因子 Ethylene-responsive transcription factor | |||
TraesCS7D02G416700 | 胆碱单加氧酶Choline monooxygenase | |||
TraesCS1B02G138100 | 生长素反应蛋白Auxin-responsive protein | |||
TraesCS2D02G404800 | 水通道蛋白Aquaporin | |||
TraesCS3D02G258200 | ABC转运体B家族成员 ABC transporter B family member | |||
3 | chr5D:543694782|543696753 | tae-miR9662a-3p | TraesCS7A02G218600 | 锌指蛋白Zinc finger protein |
TraesCS7D02G220300 | 锌指蛋白Zinc finger protein | |||
TraesCS7B02G125500 | 锌指蛋白Zinc finger protein | |||
TraesCS5B02G526300 | 富含半胱氨酸的受体蛋白激酶 Cysteine-rich receptor-like protein kinase | |||
4 | chr2B:32870327|32874189 | tae-miR6197-5p | TraesCS4A02G193600 | WRKY转录因子WRKY transcription factor |
TraesCS1D02G276100 | 转录因子TGAL5 Transcription factor TGAL5 | |||
TraesCS4D02G056900 | 转录因子bHLH25 Transcription factor bHLH25 | |||
TraesCS4D02G273600 | 丝氨酸/苏氨酸蛋白激酶Serine/threonine-protein kinase | |||
5 | chr3B:778404617|778442815 chr6D:454657953|454748495 | tae-miR1120c-5p | TraesCS4A02G119400 | 普遍胁迫蛋白Universal stress protein |
TraesCS4B02G275000 | 丝氨酸/苏氨酸蛋白激酶Serine/threonine-protein kinase | |||
TraesCS4D02G273600 | 丝氨酸/苏氨酸蛋白激酶Serine/threonine-protein kinase | |||
TraesCS3A02G045200 | 富含半胱氨酸的受体蛋白激酶 Cysteine-rich receptor-like protein kinase | |||
TraesCS7B02G298200 | 肉桂酰辅酶A还原酶Cinnamoyl-CoA reductase | |||
TraesCS7D02G391800 | 肉桂酰辅酶A还原酶Cinnamoyl-CoA reductase |
[1] |
AKRAM N A, WASEEM M, AMEEN R, ASHRAF M. Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: Some key physio-biochemical traits. Acta Physiologiae Plantarum, 2016, 38(1): 3.
doi: 10.1007/s11738-015-2018-1 |
[2] |
JECK W R, SHARPLESS N E. Detecting and characterizing circular RNAs. Nature Biotechnology, 2014, 32(5): 453-461.
doi: 10.1038/nbt.2890 pmid: 24811520 |
[3] |
SALZMAN J. Circular RNA expression: Its potential regulation and function. Trends in Genetics, 2016, 32(5): 309-316.
doi: S0168-9525(16)00032-9 pmid: 27050930 |
[4] |
LI L, GUO J, CHEN Y, CHANG C, XU C. Comprehensive CircRNA expression profile and selection of key circRNAs during priming phase of rat liver regeneration. BMC Genomics, 2017, 18(1): 80.
doi: 10.1186/s12864-016-3476-6 pmid: 28086788 |
[5] |
ZHENG Q, BAO C, GUO W, LI S, CHEN J, CHEN B, LUO Y, LYU D, LI Y, SHI G. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Communications, 2016, 7: 11215.
doi: 10.1038/ncomms11215 pmid: 27050392 |
[6] |
WANG K, BO L, FANG L, WANG J X, LIU C Y, BING Z, ZHOU L Y, TENG S, MAN W, TAO Y.A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. European Heart Journal, 2016, 37(33): 2602-2611.
doi: 10.1093/eurheartj/ehv713 pmid: 26802132 |
[7] |
LI Z, HUANG C, BAO C, CHEN L, LIN M, WANG X, ZHONG G, YU B, HU W, DAI L. Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural and Molecular Biology, 2015, 22: 256.
doi: 10.1038/nsmb.2959 pmid: 25664725 |
[8] |
WANG P L, BAO Y, YEE M C, BARRETT S P, HOGAN G J, OLSEN M N, DINNENY J R, BROWN P O, SALZMAN J. Circular RNA is expressed across the eukaryotic tree of life. PLoS ONE, 2014, 9(3): e90859.
doi: 10.1371/journal.pone.0090859 |
[9] |
YE C Y, CHEN L, LIU C, ZHU Q H, FAN L J. Widespread noncoding circular RNAs in plants. New Phytologist, 2015, 208(1): 88-95.
doi: 10.1111/nph.13585 |
[10] |
YIN J L, LIU M Y, MA D F, WU J W, LI S L, ZHU Y X, HAN B. Identification of circular RNAs and their targets during tomato fruit ripening. Postharvest Biology and Technology, 2018, 136: 90-98.
doi: 10.1016/j.postharvbio.2017.10.013 |
[11] |
ZHOU R, ZHU Y X, ZHAO J, FANG Z W, WANG S P, YIN J L, CHU Z H, MA D F. Transcriptome-wide identification and characterization of potato circular RNAs in response to Pectobacterium carotovorum subspecies Brasiliense infection. International Journal of Molecular Sciences, 2018, 19(1): 71.
doi: 10.3390/ijms19010071 |
[12] | WANG Y, YANG M, WEI S, QIN F, ZHAO H, SUO B. Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Frontiers in Plant Science, 2017, 7: 2024. |
[13] |
ZHAO W, CHENG Y, ZHANG C, YOU Q, SHEN X, GUO W, JIAO Y. Genome-wide identification and characterization of circular RNAs by high throughput sequencing in soybean. Scientific Reports, 2017, 7(1): 5636.
doi: 10.1038/s41598-017-05922-9 pmid: 28717203 |
[14] |
WEI T, JIE Y, YAN H, LI F, ZHOU Q, WEI C, BENNETZEN J L. Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis). Planta, 2018, 248(10): 1-13.
doi: 10.1007/s00425-018-2910-1 |
[15] |
DARBANI B, NOEPARVAR S, BORG S. Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley. Frontiers in Plant Science, 2016, 7: 776.
doi: 10.3389/fpls.2016.00776 pmid: 27375638 |
[16] | CHEN L, ZHANG P, FAN Y, LU Q, LI Q, YAN J, MUEHLBAUER G J, SCHNABLE P S, DAI M, LI L. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytologist, 2018, 217(3): 3. |
[17] |
TAN J, ZHOU Z, NIU Y, SUN X, DENG Z. Identification and functional characterization of tomato circrnas derived from genes involved in fruit pigment accumulation. Scientific Reports, 2017, 7: 8594.
doi: 10.1038/s41598-017-08806-0 pmid: 28819222 |
[18] |
CHENG J, ZHANG Y, LI Z, WANG T, ZHANG X, ZHENG B. A lariat-derived circular RNA is required for plant development in Arabidopsis. Science China Life Sciences, 2018, 61(2): 204-213.
doi: 10.1007/s11427-017-9182-3 |
[19] |
PAN T, SUN X, LIU Y, LI H, DENG G, LIN H, WANG S. Heat stress alters genome wide profiles of circular RNAs in Arabidopsis. Plant Molecular Biology, 2018, 96(3): 217-229.
doi: 10.1007/s11103-017-0684-7 |
[20] | LI N, LIU T T, GUO F, YANG J W, SHI Y G, WANG S G, SUN D Z. Identification of long non-coding RNA-microRNA-mRNA regulatory modules and their potential roles in drought stress response in wheat (Triticum aestivum L.). Frontiers in Plant Science, 2022, 10: 1011064. |
[21] |
QUAN X, ZENG J, YE L, CHEN G, HAN Z, SHAH J, ZHANG G. Transcriptome profiling analysis for two Tibetan wild barley genotypes in responses to low nitrogen. BMC Plant Biology, 2016, 16(1): 30-45.
doi: 10.1186/s12870-016-0721-8 |
[22] |
SUN Y, SONG K, SUN L, QIN Q, JIANG T, JIANG Q, XUE Y. Morpho-Physiological and transcriptome analysis provide insights into the effects of zinc application on nitrogen accumulation and metabolism in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 2020, 149: 111-120.
doi: 10.1016/j.plaphy.2020.01.038 |
[23] |
KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357-360.
doi: 10.1038/nmeth.3317 pmid: 25751142 |
[24] |
MEMCZAK S, JENS M, ELEFSINIOTI A, TORTI F, KRUEGER J, RYBAK A, MAIER L, MACKOWIAK S D, GREGERSEN L H, MUNSCHAUER M, LOEWER A, ZIEBOLD U, LANDTHALER M, KOCKS C, NOBLE F, RAJEWSKY N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338.
doi: 10.1038/nature11928 |
[25] |
ZHU Y X, JIA J H, YANG L, XIA Y C, ZHANG H L, JIA J B, ZHOU R, NIE P Y, YIN J L, MA D F, LIU L C. Identification of cucumber circular RNAs responsive to salt stress. BMC Plant Biology, 2019, 19(1): 164.
doi: 10.1186/s12870-019-1712-3 |
[26] |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 2014, 15(12): 550.
doi: 10.1186/s13059-014-0550-8 |
[27] |
BO X, WANG S. Target Finder: A software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA. Bioinformatics, 2005, 21(8):1401.
doi: 10.1093/bioinformatics/bti211 |
[28] |
MA S W, WANG M, WU J H, GUO W L, CHEN Y M, LI G W, WANG Y P, SHI W M, XIA G M, FU D L, KANG Z S, NI F. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant, 2021, 14(12): 1965-1968.
doi: 10.1016/j.molp.2021.10.006 pmid: 34715393 |
[29] | CONESA A, GÖTZ S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics, 2008, 2008: 619832. |
[30] |
YANG C, LU X, MA B, CHEN S Y, ZHANG J S. Ethylene signaling in rice and Arabidopsis: Conserved and diverged aspects. Molecular Plant, 2015, 8(4): 495-505.
doi: 10.1016/j.molp.2015.01.003 |
[31] |
HU B, JIANG Z, WANG W, QIU Y, ZHANG Z, LIU Y, LI A, GAO X, LIU L, QIAN Y, HUANG X, YU F, KANG S, WANG Y, XIE J, CAO S, ZHANG L, WANG Y, XIE Q, KOPRIVA S, CHU C. Nitrate- NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nature Plants, 2019, 5(4): 401-413.
doi: 10.1038/s41477-019-0384-1 |
[32] |
PARK J J, YI J, YOON J, CHO L H, PING J, JEONG H J, CHO S K, KIM W T, AN G. OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. The Plant Journal, 2011, 65(2): 194-205.
doi: 10.1111/j.1365-313X.2010.04416.x |
[33] |
LI X M, CHAO D Y, WU Y, HUANG X H, CHEN K, CUI L G, SU L, YE W W, CHEN H, CHEN H C, DONG N Q, GUO T, SHI M, FENG Q, ZHANG P, HAN B, SHAN J X, GAO J P, LIN H X. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015, 47(7): 827-833.
doi: 10.1038/ng.3305 |
[34] |
AI P H, SUN S B, ZHAO J N, FAN X R, XIN W J, GUO Q, YU L, SHEN Q R, WU P, MILLER A J, XU G H. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. The Plant Journal, 2009, 57(5): 798-809.
doi: 10.1111/j.1365-313X.2008.03726.x pmid: 18980647 |
[35] |
LOURENÇO T, SAPETA H, FIGUEIREDO D D, RODRIGUES M, CORDEIRO A, ABREU I A, SAIBO N J, OLIVEIRA M M. Isolation and characterization of rice (Oryza sativa L.) E3-ubiquitin ligase OsHOS1 gene in the modulation of cold stress response. Plant Molecular Biology, 2013, 83(4/5): 351-363.
doi: 10.1007/s11103-013-0092-6 |
[36] |
SUN S K, XU X, TANG Z, TANG Z, HUANG X Y, WIRTZ M, HELL R, ZHAO F J. A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nature Communications, 2021, 12: 1392.
doi: 10.1038/s41467-021-21282-5 |
[37] |
LIAO Y D, LIN K H, CHEN C C, CHIANG C M. Oryza sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Molecular Breeding, 2016, 36: 22.
doi: 10.1007/s11032-016-0446-2 |
[38] |
GIRI J, VIJ S, DANSANA P K, TYAGI A K. Rice A20/AN1 zinc- finger containing stress-associated proteins (SAP1/11) and a receptor- like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytologist, 2011, 191(3): 721-732.
doi: 10.1111/j.1469-8137.2011.03740.x |
[39] | MUKHOPADHYAY A, VIJ S, TYAGI A K.Overexpression of a zinc- finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proceedings of the National Academy of Sciences of the USA, 2004, 101(16): 6309-6314. |
[40] |
ERRICHELLI L, DINI M S, LANEVE P, COLANTONI A, LEGNINI I, CAPAUTO D, ROSA A, DE SANTIS R, SCARFO R, PERUZZI G. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nature Communications, 2017, 8: 14741.
doi: 10.1038/ncomms14741 pmid: 28358055 |
[41] | YIN J L, MA D F, LIU L C, XIA Y C, ZHU Y X. Biology features of circular RNAs and their research progress in plants. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(12): 2510-2518. |
[42] |
LU T, CUI L, ZHOU Y, ZHU C, FAN D, GONG H, ZHAO Q, ZHOU C, ZHAO Y, LU D. Transcriptome-wide investigation of circular RNAs in rice. RNA, 2015, 21(12): 2076-2087
doi: 10.1261/rna.052282.115 pmid: 26464523 |
[43] |
HANSEN T B, JENSEN T I, CLAUSEN B H, BRAMSEN J B, FINSEN B, DAMGAARD C K. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495: 384-388.
doi: 10.1038/nature11993 |
[44] |
MELONI D, OLIVA M, MARTINEZ C, CAMBRAIA J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 2003, 49: 69-76.
doi: 10.1016/S0098-8472(02)00058-8 |
[45] |
GUTTERSON N, REUBER T L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 2004, 7(4): 465-471.
pmid: 15231271 |
[46] |
NELSON D R. Plant cytochrome P450s from moss to poplar. Phytochemistry Reviews, 2006, 5(2/3): 193-204.
doi: 10.1007/s11101-006-9015-3 |
[47] |
SCHULZ P, HERDE M, ROMEIS T. Calcium-dependent protein kinases: Hubs in plant stress signaling and development. Plant Physiology, 2013, 163(2): 523-530.
doi: 10.1104/pp.113.222539 pmid: 24014579 |
[48] |
DAS R, PANDEY G. Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Current Genomics, 2010, 11(1): 2-13.
doi: 10.2174/138920210790217981 pmid: 20808518 |
[49] |
LI M Z, LI M F, LI D D, WANG S M, YIN H J. Overexpression of the Zygophyllum xanthoxylum aquaporin, ZxPIP1;3, promotes plant growth and stress tolerance. International Journal of Molecular Sciences, 2021, 22(4): 2112.
doi: 10.3390/ijms22042112 |
[50] |
CAO Y F, WU Y F, ZHENG Z, SONG F G. Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiological and Molecular Plant Pathology, 2006, 67(3/5): 202-211.
doi: 10.1016/j.pmpp.2006.01.004 |
[51] |
LIU C W, FUKUMOTO T, MATSUMOTO T, GENA P, FRASCARIA D, KANEKO T, KATSUHARA M, ZHONG S H, SUN X L, ZHU Y M, IWASAKI I, DING X D, CALAMITA G, KITAGAWA Y. Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination. Plant Physiology and Biochemistry, 2013, 63: 151-158.
doi: 10.1016/j.plaphy.2012.11.018 |
[1] | 彭海霞, 卡得艳, 张天星, 周梦蝶, 吴林楠, 辛转霞, 赵惠贤, 马猛. 过量表达小麦TaCYP78A5增加花器官的大小[J]. 中国农业科学, 2023, 56(9): 1633-1645. |
[2] | 魏永康, 杨天聪, 臧少龙, 贺利, 段剑钊, 谢迎新, 王晨阳, 冯伟. 基于无人机多光谱影像特征融合的小麦倒伏监测[J]. 中国农业科学, 2023, 56(9): 1670-1685. |
[3] | 张旭, 韩金妤, 李晨晨, 张丹丹, 吴启蒙, 刘胜杰, 焦韩轩, 黄硕, 李春莲, 王长发, 曾庆东, 康振生, 韩德俊, 吴建辉. 结合基因关联和转录组分析鉴定小麦成株期抗条锈病位点YrZ501-2BL的候选基因[J]. 中国农业科学, 2023, 56(8): 1429-1443. |
[4] | 韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应[J]. 中国农业科学, 2023, 56(8): 1503-1514. |
[5] | 马胜兰, 况福虹, 林洪羽, 崔俊芳, 唐家良, 朱波, 蒲全波. 秸秆还田量对川中丘陵冬小麦-夏玉米轮作体系土壤物理特性的影响[J]. 中国农业科学, 2023, 56(7): 1344-1358. |
[6] | 南瑞, 杨玉存, 石芳慧, 张礼宁, 米彤茜, 张立强, 李春艳, 孙风丽, 奚亚军, 张超. 小麦源库优异种质的鉴定与源库类型的划分[J]. 中国农业科学, 2023, 56(6): 1019-1034. |
[7] | 常春义, 曹元, Ghulam Mustafa, 刘红艳, 张羽, 汤亮, 刘兵, 朱艳, 姚霞, 曹卫星, 刘蕾蕾. 白粉病对小麦光合特性的影响及病害严重度的定量模拟[J]. 中国农业科学, 2023, 56(6): 1061-1073. |
[8] | 王箫璇, 张敏, 张鑫尧, 魏鹏, 柴如山, 张朝春, 张亮亮, 罗来超, 郜红建. 不同磷肥对砂姜黑土和红壤磷库转化及冬小麦磷素吸收利用的影响[J]. 中国农业科学, 2023, 56(6): 1113-1126. |
[9] | 王脉, 董清峰, 高珅奥, 刘德政, 卢山, 乔朋放, 陈亮, 胡银岗. 小麦苗期根系性状的全基因组关联分析与优异位点挖掘[J]. 中国农业科学, 2023, 56(5): 801-820. |
[10] | 樊志龙, 胡发龙, 殷文, 范虹, 赵财, 于爱忠, 柴强. 干旱灌区春小麦水分利用特征对绿肥与麦秸协同还田的响应[J]. 中国农业科学, 2023, 56(5): 838-849. |
[11] | 郭燕, 井宇航, 王来刚, 黄竞毅, 贺佳, 冯伟, 郑国清. 基于无人机影像特征的冬小麦植株氮含量预测及模型迁移能力分析[J]. 中国农业科学, 2023, 56(5): 850-865. |
[12] | 王建锋, 成嘉欣, 舒伟学, 张艳茹, 王晓杰, 康振生, 汤春蕾. 小麦条锈菌效应蛋白Hasp83在条锈菌致病性中的功能分析[J]. 中国农业科学, 2023, 56(5): 866-878. |
[13] | 丁锦峰, 徐东忆, 丁永刚, 朱敏, 李春燕, 朱新开, 郭文善. 栽培模式对稻茬小麦籽粒产量、氮素吸收利用和群体质量的影响[J]. 中国农业科学, 2023, 56(4): 619-634. |
[14] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[15] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
|