中国农业科学 ›› 2022, Vol. 55 ›› Issue (23): 4600-4613.doi: 10.3864/j.issn.0578-1752.2022.23.003
伊英杰1(),韩坤1,赵斌1,刘国利2,林佃旭2,陈国强2,任昊1,张吉旺1,任佰朝1,刘鹏1,*()
收稿日期:
2021-12-19
接受日期:
2022-04-14
出版日期:
2022-12-01
发布日期:
2022-12-06
联系方式:
伊英杰,E-mail:805813883@qq.com。
基金资助:
YI YingJie1(),HAN Kun1,ZHAO Bin1,LIU GuoLi2,LIN DianXu2,CHEN GuoQiang2,REN Hao1,ZHANG JiWang1,REN BaiZhao1,LIU Peng1,*()
Received:
2021-12-19
Accepted:
2022-04-14
Published:
2022-12-01
Online:
2022-12-06
摘要: 目的 基于定位试验平台,比较长期不同施肥处理下小麦-玉米轮作体系周年土壤氮素氨挥发损失的差异,为降低氨挥发损失、提高氮肥利用率提供理论依据。方法 2019—2021年,依托山东农业大学黄淮海玉米技术创新中心定位试验平台,以冬小麦品种石麦15和夏玉米品种郑单958为试验材料,以不施氮肥为对照(CK),采用有机肥(腐熟牛粪M)和无机氮肥(U)两种氮肥类型,设置两个施氮量分别为380 kg N·hm-2(M1、U1、U2M2)和190 kg N·hm-2(U2、M2),试验共计6个处理,其中氮肥在两季作物间的分配是小麦47.4%、玉米52.6%。采用通气法比较各处理土壤氨挥发速率、累积损失量、籽粒产量及氮肥利用效率的差异。结果 两个种植周期内不同施肥处理均显著影响土壤氨挥发。各处理施肥后氨挥发损失速率变化趋势基本一致,小麦和玉米两季的土壤氨挥发均主要发生在施肥后0—7 d,之后处理间的差异逐渐变小。小麦玉米轮作体系周年氨挥发损失量可达8.6—79.4 kg N·hm-2,以U1处理最高,达到79.4 kg N·hm-2,其氨挥发损失量较U2、U2M2、M1、M2和CK分别增加18.5%、111.7%、162.3%、20.5%和825.7%,表明高施氮量增加土壤氨挥发损失量,无机氮肥较有机肥增加氨挥发损失量。U2M2、M1和M2处理的氨挥发损失率比U1处理降低80.9%、61.3%、24.8%,表明有机氮肥与无机氮肥配施或单施有机氮肥可显著降低氨挥发损失。周年籽粒产量以U2M2处理最高,达到24 621.8 kg·hm-2,较U1、U2、M1、M2分别增产10.1%、24.7%、11.7%和32.7%。U2M2处理周年氮肥利用率达52.6%,较U1、U2、M1和M2处理分别提高11.3%、4.1%、13.4%和10.7%。U2M2处理降低了氨挥发损失、同步提高了产量和氮肥利用率,是冬小麦玉米周年轮作的理想施肥策略。结论 施用有机肥可以显著降低小麦玉米轮作体系的周年氨挥发损失量,提高周年籽粒产量和氮肥利用效率。考虑到有机肥源及施用便捷性可将有机无机配施作为当前小麦玉米轮作生产体系降低氨挥发损失、提高氮肥利用效率的主要施肥方式。
伊英杰, 韩坤, 赵斌, 刘国利, 林佃旭, 陈国强, 任昊, 张吉旺, 任佰朝, 刘鹏. 长期不同施肥措施冬小麦-夏玉米轮作体系周年氨挥发损失的差异[J]. 中国农业科学, 2022, 55(23): 4600-4613.
YI YingJie, HAN Kun, ZHAO Bin, LIU GuoLi, LIN DianXu, CHEN GuoQiang, REN Hao, ZHANG JiWang, REN BaiZhao, LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures[J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
表1
2019—2021年小麦播种前0—20 cm土层土壤化学性质"
处理 Treatment | pH | 有机碳 Organic carb (g·kg-1) | 总氮 Total N (g·kg-1) | 碱解氮 Alkaline-hydrolytic N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|
U1 | 6.69 | 11.76b | 0.70b | 74.08c | 50.20c | 58.52ab |
U2 | 6.72 | 11.45b | 0.73b | 36.54de | 43.80c | 58.86ab |
M1 | 7.08 | 17.24a | 0.97a | 87.97b | 87.81b | 73.27ab |
M2 | 6.82 | 12.55b | 0.79ab | 44.85d | 61.88c | 52.96b |
U2M2 | 6.98 | 16.73a | 1.00a | 110.21a | 160.07a | 80.77a |
CK | 7.13 | 7.90c | 0.62b | 28.30e | 47.70c | 50.52ab |
表3
2019—2021年各处理养分用量"
作物 Crop | 处理 Treatment | 基肥 Base fertilizer | 追肥Top dressing | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
有机肥 Organic manure (kg N·hm-2) | 化肥 Chemical fertilizer (kg·hm-2) | 化肥 Chemical fertilizer (kg N·hm-2) | ||||||||||||||||||
N | P2O5 | K2O | ||||||||||||||||||
小麦季 Wheat season | U1 | 0 | 90 | 150 | 150 | 90 | ||||||||||||||
U2 | 0 | 45 | 150 | 150 | 45 | |||||||||||||||
M1 | 180 | 0 | 150 | 150 | 0 | |||||||||||||||
M2 | 90 | 0 | 150 | 150 | 0 | |||||||||||||||
U2M2 | 90 | 45 | 150 | 150 | 45 | |||||||||||||||
CK | 0 | 0 | 150 | 150 | 0 | |||||||||||||||
玉米季 Maize season | U1 | 0 | 100 | 245.71 | 202.45 | 100 | ||||||||||||||
U2 | 0 | 50 | 245.71 | 202.45 | 50 | |||||||||||||||
M1 | 200 | 0 | 245.71 | 202.45 | 0 | |||||||||||||||
M2 | 100 | 0 | 245.71 | 202.45 | 0 | |||||||||||||||
U2M2 | 100 | 50 | 245.71 | 202.45 | 50 | |||||||||||||||
CK | 0 | 0 | 245.71 | 202.45 | 0 |
表4
不同施肥处理土壤氨挥发累积量、损失率及其占施氮量的百分比"
年份 Year | 处理 Treatment | 小麦Wheat | 玉米Maize | 周年Annual | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
累积量 Cumulative quantity (kg·hm-2) | 损失率 Loss (%) | 占施入氮比例 Proportion of total N (%) | 累积量 Cumulative quantity (kg·hm-2) | 损失率 Loss (%) | 占施入氮比例 Proportion of total N (%) | 总累积量 Cumulative quantity (kg·hm-2) | 总损 失率 Loss (%) | 总施入 氮比例 Proportion of total N (%) | ||||||||||||||
基肥 Base fertilizer | 追肥 Top- dressing | 总 Total | 基肥 Base fertilizer | 追肥 Top- dressing | 总 Total | 基肥 Base fertilizer | 追肥 Top- dressing | 总 Total | 基肥 Base fertilizer | 追肥 Top- dressing | 总 Total | 基肥 Base fertilizer | 追肥 Top- dressing | 总 Total | 基肥 Base fertilizer | 追肥 Top- dressing | 总 Total | |||||
2019- 2020 | U1 | 16.90a | 11.88a | 28.78a | 16.75b | 12.14c | 14.44b | 9.39c | 6.60b | 7.57b | 21.16a | 23.60a | 44.75a | 18.16b | 23.52c | 20.84b | 10.58c | 11.80b | 11.78b | 73.54a | 17.81b | 19.35b |
U2 | 14.24d | 10.34b | 24.58b | 27.58a | 20.86a | 24.22a | 15.82a | 11.49a | 12.94a | 17.13d | 20.34b | 37.47b | 28.27a | 40.52a | 34.40a | 17.13a | 20.34a | 19.72a | 62.05b | 29.58a | 32.66a | |
M1 | 15.64b | 1.57d | 17.21c | 7.67e | 8.02e | 8.69d | 0.87d | 4.53e | 18.99c | 1.22d | 20.21d | 7.99e | 8.57e | 9.49d | 0.61e | 5.32e | 37.42d | 8.31e | 9.85e | |||
M2 | 12.71e | 1.05e | 13.75d | 12.08c | 12.19d | 14.12b | 1.16d | 7.24c | 15.05e | 1.16e | 16.20e | 12.05c | 13.12d | 15.05b | 1.16d | 8.53d | 29.95e | 12.68d | 15.76d | |||
U2M2 | 14.71c | 9.48c | 24.19b | 9.54d | 18.96b | 11.89c | 8.17d | 5.27c | 6.37d | 19.31b | 16.67c | 35.98c | 10.87d | 33.18b | 16.45c | 9.65d | 8.34c | 9.47c | 60.17c | 14.29c | 15.83c | |
CK | 1.83f | 0.95f | 2.78e | 3.00f | 0.08f | 3.08f | 5.86f | |||||||||||||||
2020- 2021 | U1 | 14.82a | 17.88a | 32.69a | 10.99b | 17.10c | 14.05b | 8.23c | 9.93b | 8.60b | 24.01a | 28.57a | 52.58a | 20.51b | 28.18c | 24.34b | 12.00c | 14.29b | 13.84b | 85.27a | 19.47b | 22.44b |
U2 | 11.90d | 16.52b | 28.42b | 15.52a | 31.19a | 23.35a | 13.23a | 18.6a | 14.96a | 19.71d | 23.82b | 43.53b | 32.44a | 46.84a | 39.64a | 19.71a | 23.82a | 22.91a | 71.95b | 31.92a | 37.87a | |
M1 | 13.76b | 1.26e | 15.02d | 4.91e | 4.23e | 7.64d | 0.70e | 3.95e | 21.49c | 1.07d | 22.56c | 9.00e | 9.34e | 10.75d | 0.54e | 5.94e | 37.58d | 6.92e | 9.89e | |||
M2 | 10.61e | 1.14f | 11.75e | 6.33c | 4.83d | 11.79b | 1.26d | 6.19d | 17.81e | 1.02e | 18.84d | 14.32c | 14.94d | 17.81b | 1.02d | 9.91d | 30.59e | 10.15d | 16.10d | |||
U2M2 | 12.46c | 15.15c | 27.61c | 5.58d | 28.13b | 11.22c | 6.92e | 8.41c | 7.26c | 21.44b | 22.54c | 43.97b | 11.97d | 44.25b | 20.04c | 10.72d | 11.26c | 11.57c | 71.57c | 15.86c | 18.84c | |
CK | 4.92f | 2.49d | 7.41f | 3.49f | 0.40f | 3.89e | 11.30f | |||||||||||||||
方差分析 ANOVA | ||||||||||||||||||||||
年份Year (Y) | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** | ** | |
处理 Treatment (T) | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
年份×处理 Y×T | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
表5
不同施肥处理不同器官干物质积累量及其比例"
年份 Year | 处理 Treatment | 小麦 Wheat | 玉米 Maize | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单株累积量 Dry matter amount (g) | 分配比例 Distribution (%) | 累积量 Dry matter amount (kg·hm-2) | 分配比例 Distribution (%) | |||||||||||||
籽粒 Grain | 茎 Stem | 叶片 Leaf | 籽粒 Grain | 茎 Stem | 叶片 Leaf | 籽粒 Grain | 茎 Stem | 叶片 Leaf | 穗轴 Cob | 合计 Total | 籽粒 Grain | 茎 Stem | 叶片 Leaf | 穗轴 Cob | ||
2019- 2020 | U1 | 2.13b | 1.66b | 0.25b | 52.89d | 41.03a | 6.08bc | 11653.20c | 6604.20b | 4429.58c | 1811.25bc | 24498.23c | 47.57ab | 26.96b | 18.08b | 7.39ab |
U2 | 1.89d | 1.14d | 0.18d | 58.82a | 35.56e | 5.63cd | 10643.63d | 5431.73d | 4255.43c | 1764.45c | 22095.23d | 48.17b | 24.58c | 19.26a | 7.99a | |
M1 | 1.99c | 1.48c | 0.22c | 54.07c | 40.01b | 5.92c | 12162.15b | 6262.88c | 4889.70b | 1915.88ab | 25230.60b | 48.21a | 24.82c | 19.38a | 7.59ab | |
M2 | 1.80e | 1.07e | 0.16e | 59.35a | 35.43e | 5.22d | 10788.53d | 6631.20b | 3822.75d | 1510.88d | 22753.35d | 47.41ab | 29.14a | 16.80c | 6.64c | |
U2M2 | 2.53a | 1.73a | 0.30a | 55.54b | 37.93c | 6.53b | 12629.70a | 7116.75a | 5385.83a | 2000.03a | 27132.30a | 46.55bc | 26.23b | 19.85a | 7.37b | |
CK | 0.41f | 0.30f | 0.10f | 50.64e | 36.70d | 12.66a | 5885.55e | 3875.63e | 2301.53e | 970.43e | 13033.13e | 45.16c | 29.73a | 17.66bc | 7.44ab | |
2020- 2021 | U1 | 2.11b | 1.42b | 0.28b | 55.33b | 37.36e | 7.31d | 11637.23c | 7865.78b | 4615.43a | 1950.98b | 26069.40b | 44.64d | 30.17c | 17.70c | 7.49b |
U2 | 1.72c | 1.32d | 0.26d | 52.06d | 40.19b | 7.75c | 10780.43e | 6637.28e | 4515.53a | 2313.45a | 24246.68e | 44.46d | 27.37e | 18.62b | 9.54a | |
M1 | 2.09b | 1.52c | 0.38c | 52.42c | 38.15d | 9.43a | 12578.18b | 7241.85d | 4266.23b | 1954.13b | 26040.38c | 48.30a | 27.81d | 16.38d | 7.50b | |
M2 | 1.50d | 0.72e | 0.16e | 62.84a | 30.29f | 6.87e | 11314.13d | 7899.53c | 3963.83c | 1634.85d | 24812.33d | 45.60c | 31.84a | 15.98d | 6.59c | |
U2M2 | 2.23a | 1.66a | 0.42a | 51.75d | 38.57c | 9.68a | 13460.40a | 8879.63a | 4289.85b | 1852.88c | 28482.75a | 47.26b | 31.17b | 15.06e | 6.51c | |
CK | 0.73e | 0.60f | 0.13f | 49.98e | 41.20a | 8.82b | 6582.83f | 4178.48f | 3171.38d | 1478.93e | 15411.60f | 42.72e | 27.11e | 20.57a | 9.60a |
表6
不同施肥措施对小麦、玉米产量的影响"
年份 Year | 处理 Treatment | 小麦Wheat | 玉米Maize | 周年籽粒产量 Grain yield (kg·hm-2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
单位面积穗数 Spike number (×104·hm-2) | 穗粒数 Kernel numbers | 千粒重 1000-grain weight (g) | 籽粒产量 Grain yield (kg·hm-2) | 单位面积穗数 Actual ears (×104·hm-2) | 穗粒数 Grains per ear | 千粒重 1000-grain weight (g) | 籽粒产量 Grain yield (kg·hm-2) | |||
2019-2020 | U1 | 614.03b | 37.57bc | 36.19ab | 8347.45b | 7.04a | 633.60b | 277.18b | 13070.29bc | 21417.75c |
U2 | 566.03d | 35.43d | 35.48c | 7116.58c | 6.56d | 584.25c | 272.07c | 11831.04d | 18947.62d | |
M1 | 611.03c | 36.73c | 35.83bc | 8042.17b | 6.77bc | 636.40b | 283.88a | 13111.50b | 21153.67b | |
M2 | 544.03e | 29.17e | 34.27d | 5437.10d | 6.72c | 581.27c | 283.81a | 12277.55c | 17714.65e | |
U2M2 | 633.03a | 41.07a | 36.50a | 9489.54a | 6.88b | 679.77a | 285.63a | 14450.50a | 23940.03a | |
CK | 507.03f | 23.07f | 32.93e | 3849.23e | 6.24e | 439.31d | 248.48d | 8122.714d | 11971.94f | |
2020-2021 | U1 | 592.03b | 38.93b | 37.54a | 8653.07b | 7.04a | 632.03a | 296.72b | 14655.13b | 23308.20b |
U2 | 541.03d | 35.70c | 36.39b | 7028.08d | 6.56c | 612.61a | 288.97c | 13504.65c | 20532.73d | |
M1 | 586.03c | 37.33b | 37.19a | 8133.34c | 6.88b | 636.18a | 300.19ab | 14801.81b | 22935.15c | |
M2 | 536.03e | 34.63c | 35.52c | 6591.31e | 6.72bc | 619.89a | 277.55d | 12803.52d | 19394.83e | |
U2M2 | 596.03a | 44.07a | 37.75a | 9915.39a | 6.72bc | 634.77a | 303.01a | 15388.26a | 25303.64a | |
CK | 443.02f | 33.87d | 33.27d | 4994.23f | 6.24d | 418.57b | 260.69e | 8053.09e | 13047.32f | |
平均 Average | U1 | 603.03b | 38.25b | 36.87b | 8500.26b | 7.04a | 632.82c | 282.78c | 13666.25c | 22362.97b |
U2 | 553.53d | 35.57d | 35.94d | 7567.17d | 6.56e | 598.43e | 274.68e | 12413.19e | 19740.18d | |
M1 | 598.53c | 37.03c | 36.51c | 8087.76c | 6.83b | 636.29b | 292.04b | 13956.65b | 22044.41c | |
M2 | 540.03e | 31.90e | 34.89e | 6014.20e | 6.72d | 600.58d | 280.68d | 12540.53d | 18554.74e | |
U2M2 | 614.53a | 42.57a | 37.13a | 9702.46a | 6.80c | 657.27a | 294.32a | 14919.38a | 24621.84a | |
CK | 475.03f | 28.47f | 33.10f | 4421.73f | 6.24f | 428.94f | 254.59f | 8087.90f | 12509.63f |
表7
不同施肥处理对小麦、玉米氮素利用的影响"
年份 Year | 处理 Treatment | 籽粒吸氮量 Grain N uptake (kg·hm-2) | 地上部总吸氮量 Aboveground N uptake (kg·hm-2) | 氮素收获指数 NHI (kg·kg-1) | 氮肥利用率 NUE (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
小麦 Wheat | 玉米 Maize | 周年 Annual | 小麦 Wheat | 玉米 Maize | 周年 Annual | 小麦 Wheat | 玉米 Maize | 周年 Annual | 小麦 Wheat | 玉米 Maize | 周年 Annual | ||
2019-2020 | U1 | 150.17b | 153.93c | 304.09b | 178.42b | 288.17b | 466.60b | 84.16d | 53.41f | 67.99e | 36.58d | 45.69c | 41.37c |
U2 | 102.42d | 121.52d | 223.94c | 129.22d | 205.39d | 334.61d | 79.26f | 59.16b | 68.69d | 47.27b | 47.81b | 47.55b | |
M1 | 147.86c | 156.88b | 304.74b | 170.61c | 279.45c | 450.06c | 86.67b | 56.14c | 70.61b | 34.52e | 43.40d | 39.19e | |
M2 | 100.20e | 103.19e | 203.39d | 118.34e | 188.53e | 306.87e | 84.67c | 54.74d | 68.92c | 41.54c | 38.94e | 40.17d | |
U2M2 | 180.97a | 179.96a | 360.93a | 223.06a | 329.83a | 552.89a | 81.13e | 54.56e | 67.16f | 48.33a | 56.65a | 52.71a | |
CK | 34.67f | 69.98f | 104.66e | 39.41f | 114.55f | 153.96f | 87.97a | 61.10a | 73.84a | ||||
2020-2021 | U1 | 153.16b | 159.46c | 312.61b | 174.21b | 295.47b | 469.69b | 87.91b | 53.97f | 70.06d | 34.75c | 46.93c | 41.16c |
U2 | 115.32d | 129.40d | 244.72d | 132.32d | 214.58d | 346.90d | 87.15d | 60.30b | 73.03b | 47.45a | 51.29b | 49.47b | |
M1 | 148.42c | 160.41b | 308.83c | 169.64c | 285.47c | 455.11c | 87.49c | 56.19e | 71.03e | 33.55c | 44.30d | 39.20e | |
M2 | 107.74e | 116.13e | 223.87e | 126.26e | 199.37e | 325.63e | 85.33e | 58.25c | 71.09c | 44.26b | 43.28e | 43.74d | |
U2M2 | 185.37a | 187.36a | 372.73a | 225.37a | 331.45a | 556.82a | 82.25f | 56.53d | 68.72f | 48.21a | 56.40a | 52.52a | |
CK | 39.27f | 72.66f | 111.94f | 42.16f | 117.14f | 159.30f | 93.14a | 62.03a | 76.78a | ||||
平均 Average | U1 | 151.66b | 156.69c | 308.35b | 176.32b | 291.82b | 468.14b | 86.04c | 53.69e | 69.02e | 35.67d | 46.31c | 41.27c |
U2 | 108.87d | 125.46d | 234.33d | 130.77d | 209.98d | 340.75d | 83.21e | 59.73b | 70.86b | 47.36b | 49.55b | 48.51b | |
M1 | 148.14c | 158.65b | 306.79c | 170.12c | 282.46c | 452.59c | 87.08b | 56.17d | 70.82c | 34.04e | 43.85d | 39.20d | |
M2 | 103.97e | 109.66e | 213.63e | 122.30e | 193.95e | 316.25e | 85.00d | 56.49c | 70.00d | 42.90c | 41.11e | 41.96c | |
U2M2 | 183.17a | 183.66a | 366.83a | 224.21a | 330.64a | 554.85a | 81.69f | 55.55f | 67.94f | 48.27a | 56.53a | 52.61a | |
CK | 36.97f | 71.32f | 108.30f | 40.79f | 115.84f | 156.63f | 90.56a | 61.57a | 75.31a |
[37] | 石玉, 于振文, 李延奇, 王雪. 施氮量和底追肥比例对冬小麦产量及肥料氮去向的影响. 中国农业科学, 2007, 40(1): 54-62. |
SHI Y, YU Z W, LI Y Q, WANG X. Effects of nitrogen fertilizer rate and ratio of base and topdressing on winter wheat yield and fate of fertilizer nitrogen. Scientia Agricultura Sinica, 2007, 40(1): 54-62. (in Chinese) | |
[1] | 孙新素, 龙致炜, 宋广鹏, 陈长青. 气候变化对黄淮海地区夏玉米-冬小麦种植模式和产量的影响. 中国农业科学, 2017, 50(13): 2476-2487. |
SUN X S, LONG Z W, SONG G P, CHEN C Q. Effects of climate change on cropping pattern and yield of summer maize-winter wheat in Huang-Huai-Hai plain. Scientia Agricultura Sinica, 2017, 50(13): 2476-2487. (in Chinese) | |
[38] | 李银坤, 郝卫平, 龚道枝, 夏旭, 李昊儒. 减氮配施有机肥对夏玉米-冬小麦土壤硝态氮及氮肥利用的影响. 土壤通报, 2019, 50(2): 348-354. |
LI Y K, HAO W P, GONG D Z, XIA X, LI H R. Effects of nitrogen reduction and combined application with organic fertilizer on soil nitrate nitrogen and nitrogen fertilizer utilization efficiency in summer maize and winter wheat systems. Chinese Journal of Soil Science, 2019, 50(2): 348-354. (in Chinese) | |
[2] | 吕广德, 王瑞霞, 牟秋焕, 米勇, 亓晓蕾, 李宁, 吴科, 钱兆国. 玉米小麦周年氮肥运筹对砂浆黑土区小麦干物质及氮素积累分配和产量的影响. 麦类作物学报, 2020, 40(8): 972-980. |
LÜ G D, WANG R X, MOU Q H, MI Y, QI X L, LI N, WU K, QIAN Z G. Effect of annual nitrogen fertilization on dry matter and nitrogen accumulation and yield of winter wheat in mortar black soil. Journal of Triticeae Crops, 2020, 40(8): 972-980. (in Chinese) | |
[39] | YAN S C, WU Y, FAN J L, ZHANG F C, ZHENG J, QIANG S C, GUO J J, XIANG Y Z, ZOU H Y, WU L F. Dynamic change and accumulation of grain macronutrient (N, P, and K) concentrations in winter wheat under different drip fertigation regimes. Field Crops Research, 2020, 250(C): 107767-107780. |
[40] | 刘泰, 王洪媛, 杨波, 魏静, 贺鹏程, 王玉龙, 刘宏斌. 粪肥增施对水稻产量和氮素利用效率的影响. 农业资源与环境学报. 2022, 39(3): 545-555. |
[3] | 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20(4): 783-795. |
JU X T, GU B J. Status-quo, problem, and trend of nitrogen fertilization in China. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese) | |
[40] | LIU T, WANG H Y, YANG B, WEI J, HE P C, WANG Y L, LIU H B. Effects of additional applications of manure on rice crop yield and nitrogen use efficiency. Journal of Agricultural Resources and Environment, 2022, 39(3): 545-555. (in Chinese) |
[41] | 高德才, 刘强, 张玉平, 荣湘民, 张蕾, 田昌. 添加生物黑炭对玉米产量、品质、肥料利用率及氮磷径流损失的影响. 中国土壤与肥料, 2015(5): 72-76. |
GAO D C, LIU Q, ZHANG Y P, RONG X M, ZHANG L, TIAN C. Effects of bio-black carbon on yield, quality, fertilizer utilization efficiency, and nitrogen and phosphorus loss in maize. Soil and Fertilizer in China, 2015(5): 72-76. (in Chinese) | |
[42] | 孟琳, 张小莉, 蒋小芳, 王秋君, 黄启为, 徐阳春, 杨兴明, 沈其荣. 有机肥料氮替代部分化肥氮对稻谷产量的影响及替代率. 中国农业科学, 2009, 42(2): 532-542. |
MENG L, ZHANG X L, JIANG X F, WANG Q J, HUANG Q W, XU Y C, YANG X M, SHEN Q R. Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yields of rice grains and their proper substitution rate. Scientia Agricultura Sinica, 2009, 42(2): 532-542. (in Chinese) | |
[43] | 李春明, 熊淑萍, 赵巧梅, 杨颖颖, 马新明. 有机无机肥配施对小麦冠层结构、产量和蛋白质含量的影响. 中国农业科学, 2008, 41(12): 4287-4293. |
LI C M, XIONG S P, ZHAO Q M, YANG Y Y, MA X M. Effects of organic manure and urea mixture on canopy architecture, grain yield and protein content of wheat. Scientia Agricultura Sinica, 2008, 41(12): 4287-4293. (in Chinese) | |
[44] | 蒋一飞, 张砚铭, 杨明, 虞娜, 张玉玲, 邹洪涛, 张玉龙. 不同材料包膜氮肥氮素挥发特征及对油菜产量的影响. 中国农业科学, 2018, 51(12): 2348-2356. |
JIANG Y F, ZHANG Y M, YANG M, YU N, ZHANG Y L, ZOU H T, ZHANG Y L. Nitrogen volatilization characteristics of different materials coated nitrogen fertilizer and its effect on rape yield. Scientia Agricultura Sinica, 2018, 51(12): 2348-2356. (in Chinese) | |
[45] | 李欠欠, 李雨繁, 高强, 李世清, 陈新平, 张福锁, 刘学军. 传统和优化施氮对春玉米产量、氨挥发及氮平衡的影响. 植物营养与肥料学报, 2015, 21(3): 571-579. |
LI Q Q, LI Y F, GAO Q, LI S Q, CHEN X P, ZHANG F S, LIU X J. Effect of conventional and optimized nitrogen fertilization on spring maize yield, ammonia volatilization and nitrogen balance in the soil-maize system. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 571-579. (in Chinese) | |
[46] | 刘益仁, 李想, 郁洁, 沈其荣, 徐阳春. 有机无机肥配施提高麦-稻轮作系统中水稻氮肥利用率的机制. 应用生态学报, 2012, 23(1): 81-86. |
LIU Y R, LI X, YU J, SHEN Q R, XU Y C. Mechanisms for the increased fertilizer nitrogen use efficiency of rice in wheat-rice rotation system under combined application of inorganic and organic fertilizers. Chinese Journal of Applied Ecology, 2012, 23(1): 81-86. (in Chinese) | |
[4] |
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447 |
[5] | 李然, 蔡威威, 艾天成, 申华平, 武红亮, 王斌, 李如楠. 稻田氨挥发损失和水稻产量对不同水氮处理的响应. 中国土壤与肥料, 2020(3): 47-54. |
LI R, CAI W W, AI T C, SHEN H P, WU H L, WANG B, LI R N. Response of ammonia volatilization loss and rice yield to different water and nitrogen treatments in rice fields. Soil and Fertilizer Sciences in China, 2020(3): 47-54. (in Chinese) | |
[6] |
白杨, 杨明, 陈松岭, 朱晓晴, 蒋一飞, 邹洪涛, 张玉龙. 掺混氮肥配施抑制剂对土壤氮库的调控作用. 应用生态学报, 2019, 30(11): 3804-3810.
doi: 10.13287/j.1001-9332.201911.027 |
BAI Y, YANG M, CHEN S L, ZHU X Q, JIANG Y F, ZOU H T, ZHANG Y L. Effects of the blended nitrogen fertilizers combined with inhibitors on soil nitrogen pools. Chinese Journal of Applied Ecology, 2019, 30(11): 3804-3810. (in Chinese)
doi: 10.13287/j.1001-9332.201911.027 |
|
[7] |
GAO W, HOWARTH R W, SWANEY D P, HONG B. Enhanced N input to lake Dianchi basin from 1980 to 2010: Drivers and consequences. Science of the Total Environment, 2015, 505: 376-384.
doi: 10.1016/j.scitotenv.2014.10.016 |
[8] | 朱小红, 马中文, 马友华, 张丽娟, 汪丽婷, 徐宏军, 肖圣辉. 施肥对巢湖流域稻季氨挥发损失的影响. 生态学报, 2012, 32(7): 2119-2126. |
ZHU X H, MA Z W, MA Y H, ZHANG L J, WANG L T, XU H J, XIAO S H. Effects of fertilization on ammonia volatilization from paddy fields in Chao lake basin. Acta Ecological Sinica, 2012, 32(7): 2119-2126. (in Chinese) | |
[9] |
PAN B B, LAM S K, MOSIER A, LUO Y Q, CHEN D L. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agriculture, Ecosystems & Environment, 2016, 232: 283-289.
doi: 10.1016/j.agee.2016.08.019 |
[10] |
JU X T, ZHANG C. Nitrogen cycling and environmental impacts in upland agricultural soils in north China: A review. Journal of Integrative Agriculture, 2017, 16(12): 2848-2862.
doi: 10.1016/S2095-3119(17)61743-X |
[11] |
YANG Y, LI N, NI X Y, YU L X. Combining deep flooding and slow-release urea to reduce ammonia emission from rice fields. Journal of Cleaner Production, 2020, 244(C): 118745-118756.
doi: 10.1016/j.jclepro.2019.118745 |
[12] | 唐良梁, 李艳, 李恋卿, 陈义, 吴春艳, 唐旭. 不同施氮量对稻田氨挥发的影响及阈值探究. 土壤通报, 2015, 46(5): 1232-1239. |
TANG L L, LI Y, LI L Q, CHEN Y, WU C Y, TANG X. Effect of different nitrogen application rate on paddy ammonia volatilization and nitrogen threshold. Chinese Journal of Soil Science, 2015, 46(5): 1232-1239. (in Chinese) | |
[13] | 赵欣周, 张世春, 李颖, 郑益旻, 赵洪亮, 谢立勇. 辽河平原玉米田不同施肥下的土壤氨挥发特征. 中国农业科学, 2020, 53(18): 3741-3751. |
ZHAO X Z, ZHANG S C, LI Y, ZHENG Y M, ZHAO H L, XIE L Y. The characteristics of soil ammonia volatilization under different fertilizer application measures in corn field of Liaohe plain. Scientia Agricultura Sinica, 2020, 53(18): 3741-3751. (in Chinese) | |
[14] | 山楠, 赵同科, 杜连凤, 安志装, 何艳洁, 郝玉翠, 孙秀君, 串丽敏. 华北平原中部夏玉米农田不同施氮水平氨挥发规律. 中国土壤与肥料, 2020(4): 32-40. |
SHAN N, ZHAO T K, DU L F, AN Z Z, HE Y J, HAO Y C, SUN X J, CHUAN L M. Rule of ammonia volatilization at different nitrogen application levels in summer maize fields in central North China Plain. Soil and Fertilizer Sciences in China, 2020(4): 32-40. (in Chinese) | |
[15] | 卢艳艳, 宋付朋, 赵杰, 高杨. 控释尿素对土壤氨挥发和无机氮含量及玉米氮素利用率的影响. 水土保持学报, 2010, 24(6): 79-82. |
LU Y Y, SONG F P, ZHAO J, GAO Y. Effects of controlled-release urea on ammonia volatilization and inorganic nitrogen of soil and nitrogen use efficiency in maize. Journal of Soil and Water Conservation, 2010, 24(6): 79-82. (in Chinese) | |
[16] |
董文旭, 吴电明, 胡春胜, 张玉铭, 杨培培, 王莹. 华北山前平原农田氨挥发速率与调控研究. 中国生态农业学报, 2011, 19(5): 1115-1121.
doi: 10.3724/SP.J.1011.2011.01115 |
DONG W X, WU D M, HU C S, ZHANG Y M, YANG P P, WANG Y. Ammonia volatilization and control mechanisms in the piedmont of North China Plain. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1115-1121. (in Chinese)
doi: 10.3724/SP.J.1011.2011.01115 |
|
[17] | 席吉龙, 李永山, 王珂, 杨娜, 郝佳丽, 张建诚, 武雪萍. 氮肥对麦-玉轮作体系产量和氮肥效率的影响. 中国土壤与肥料, 2019(1): 10-15. |
XI J L, LI Y S, WANG K, YANG N, HAO J L, ZHANG J C, WU X P. Effect of nitrogen fertilizer on yield and nitrogen use efficiency in winter wheat-summer maize rotation system. Soil and Fertilizer Sciences in China, 2019(1): 10-15. (in Chinese) | |
[18] | 符小文, 刘文, 徐文修, 张永杰, 杜孝敬, 厍润祥, 房彦飞. 伊犁河谷冬小麦-夏大豆轮作体系土壤氨挥发对氮肥的响应. 新疆农业大学学报, 2018, 41(2): 79-85. |
FU X W, LIU W, XU W X, ZHANG Y J, DU X J, SHE R X, FANG Y F. Response of soil ammonia volatilization to nitrogen fertilizer in winter wheat-summer soybean rotation system in Ili river valley. Journal of Xinjiang Agricultural University, 2018, 41(2): 79-85. (in Chinese) | |
[19] | 苏芳, 丁新泉, 高志岭, 黄彬香, 陈新平, 张福锁, MARTIN K, VOLKER R. 华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发. 中国环境科学, 2007, 27(3): 409-413. |
SU F, DING X Q, GAO Z L, HUANG B X, CHEN X P, ZHANG F S, MARTIN K, VOLKER R. Ammonia volatilization from nitrogen fertilization of winter wheat-summer maize rotation system in the North China Plain. China Environmental Science, 2007, 27(3): 409-413. (in Chinese) | |
[20] | 李燕青, 温延臣, 林治安, 赵秉强. 不同有机肥与化肥配施对作物产量及农田氮肥气态损失的影响. 植物营养与肥料学报, 2019, 25(11): 1835-1846. |
LI Y Q, WEN Y C, LIN Z A, ZHAO B Q. Effect of different manures combined with chemical fertilizer on yields of crops and gaseous N loss in farmland. Journal of Plant Nutrition and Fertilizer, 2019, 25(11): 1835-1846. (in Chinese) | |
[21] | 倪康, 丁维新, 蔡祖聪. 有机无机肥长期定位试验土壤小麦季氨挥发损失及其影响因素研究. 农业环境科学学报, 2009, 28(12): 2614-2622. |
NI K, DING W X, CAI Z C. Ammonia volatilization from soil as affected by long-term application of organic manure and chemical fertilizers during wheat growing season. Journal of Agro-Environment Science, 2009, 28(12): 2614-2622. (in Chinese) | |
[22] | 李喜喜, 杨娟, 王昌全, 白根川, 游来勇, 易云亮, 黄帆, 李博, 曾鹏宇. 猪粪施用对成都平原稻季氨挥发特征的影响. 农业环境科学学报, 2015, 34(11): 2236-2244. |
LI X X, YANG J, WANG C Q, BAI G C, YOU L Y, YI Y L, HUANG F, LI B, ZENG P Y. Effects of pig manure applications on ammonia volatilization in the soil during rice season in Chengdu Plain. Journal of Agro-Environment Science, 2015, 34(11): 2236-2244. (in Chinese) | |
[23] | 董文, 张青, 罗涛, 王煌平. 不同有机肥连续施用对土壤质量的影响. 中国农学通报, 2020, 36(28): 106-110. |
DONG W, ZHANG Q, LUO T, WANG H P. Effects of continuous application of different organic fertilizers on soil quality. Chinese Agricultural Science Bulletin, 2020, 36(28): 106-110. (in Chinese) | |
[24] | 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000, 12. |
BAO S D. Analysis of Soil Agronomy. Beijing: China Agricultural Press, 2000, 12. (in Chinese) | |
[25] | 王朝辉, 刘学军, 巨晓棠, 张福锁. 田间土壤氨挥发的原位测定-通气法. 植物营养与肥料学报, 2002, 8(2): 205-209. |
WANG Z H, LIU X J, JU X T, ZHANG F S. Field in situ determination of ammonia volatilization from soil: Venting method. Journal of Plant Nutrition and Fertilizer, 2002, 8(2): 205-209. (in Chinese) | |
[26] |
CHEN A Q, LEI B K, HU W L, LU Y, MAO Y T, DUAN Z Y, SHI Z S. Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai lake watershed, China. Nutrient Cycling in Agroecosystems, 2015, 101(1): 139-152.
doi: 10.1007/s10705-014-9660-7 |
[27] |
SUN X, ZHONG T, ZHANG L, ZHANG K S, WU W X. Reducing ammonia volatilization from paddy field with rice straw derived biochar. Science of the Total Environment, 2019, 660: 512-518.
doi: 10.1016/j.scitotenv.2018.12.450 |
[28] |
HE T H, LIU D Y, YUAN J J, NI K, ZAMAN M, LUO J F, LINDSEY S, DING W X. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agriculture Ecosystems & Environment, 2018, 264: 44-53.
doi: 10.1016/j.agee.2018.05.010 |
[29] | 周慧, 史海滨, 徐昭, 郭珈玮, 付小军, 李正中. 化肥有机肥配施对盐渍化土壤氨挥发及玉米产量的影响. 农业环境科学学报, 2019, 38(7): 1649-1656. |
ZHOU H, SHI H B, XU Z, GUO J W, FU X J, LI Z Z. Effects of combined application of chemical and organic fertilizers on ammonia volatilization and maize yield in salinized soil. Journal of Agro-Environment Science, 2019, 38(7): 1649-1656. (in Chinese) | |
[30] | 马银丽, 吉艳芝, 李鑫, 张琳, 巨晓棠, 张丽娟. 施氮水平对小麦-玉米轮作体系氨挥发与氧化亚氮排放的影响. 生态环境学报, 2012, 21(2): 225-230. |
MA Y L, JI Y Z, LI X, ZHANG L, JU X T, ZHANG L J. Effect of nitrogen application level on ammonia volatilization and nitrous oxide emission in a wheat-corn rotation system. Ecology and Environmental Sciences, 2012, 21(2): 225-230. (in Chinese) | |
[31] |
王磊, 董树亭, 刘鹏, 张吉旺, 赵斌, 郑凤霞. 水氮互作对冬小麦田氨挥发损失和产量的影响. 应用生态学报, 2018, 29(6): 1919-1927.
doi: 10.13287/j.1001-9332.201806.026 |
WANG L, DONG S T, LIU P, ZHANG J W, ZHAO B, ZHENG F X. The interactive effects of water and nitrogen addition on ammonia volatilization loss and yield of winter wheat. Chinese Journal of Applied Ecology, 2018, 29(6): 1919-1927. (in Chinese)
doi: 10.13287/j.1001-9332.201806.026 |
|
[32] | 杨清龙, 刘鹏, 董树亭, 张吉旺, 赵斌, 李荣发, 任昊, 任寒, 韩祥飞. 有机无机肥配施对夏玉米氮素气态损失及籽粒产量的影响. 中国农业科学, 2018, 51(13): 2476-2488. |
YANG Q L, LIU P, DONG S T, ZHANG J W, ZHAO B, LI R F, REN H, REN H, HAN X F. Effects of combined application of manure and chemical fertilizers on loss of gaseous nitrogen and yield of summer maize. Scientia Agricultura Sinica, 2018, 51(13): 2476-2488. (in Chinese) | |
[33] | 郑凤霞, 董树亭, 刘鹏, 张吉旺, 赵斌. 长期有机无机肥配施对冬小麦籽粒产量及氨挥发损失的影响. 植物营养与肥料学报, 2017, 23(3): 567-577. |
ZHENG F X, DONG S T, LIU P, ZHANG J W, ZHAO B. Effects of combined application of manure and chemical fertilizers on ammonia volatilization loss and yield of winter wheat. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 567-577. (in Chinese) | |
[34] | 赵冬, 颜廷梅, 乔俊, 杨林章, 吕寒. 太湖地区稻田氮素损失特征及环境效应分析. 生态环境学报, 2012, 21(6): 1149-1154. |
ZHAO D, YAN T M, QIAO J, YANG L Z, LÜ H. Characteristics of nitrogen loss and environmental effects in rice fields in Taihu lake region. Ecology and Environmental Sciences, 2012, 21(6): 1149-1154. (in Chinese) | |
[35] |
WANG H Y, ZHANG D, ZHANG Y T, ZHAI L M, YIN B, ZHOU F, GENG Y C, PAN J T, LUO J F, GU B J, LIU H B. Ammonia emissions from paddy fields are underestimated in China. Environmental Pollution, 2018, 235: 482-488.
doi: S0269-7491(17)33749-1 pmid: 29324377 |
[36] | 葛顺峰, 姜远茂, 魏绍冲, 房祥吉. 不同供氮水平下幼龄苹果园氮素去向初探. 植物营养与肥料学报, 2011, 17(4): 949-955. |
GE S F, JIANG Y M, WEI S C, FANG X J. Nitrogen balance under different nitrogen application rates in young apple orchards. Journal of Plant Nutrition and Fertilizer, 2011, 17(4): 949-955. (in Chinese) |
[1] | 尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利, 岳善超, 李世清. 长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应[J]. 中国农业科学, 2023, 56(9): 1708-1717. |
[2] | 王飞, 李清华, 何春梅, 游燕玲, 黄毅斌. 长期施肥对黄泥田土壤团聚体中氮素积累和有机氮组成的影响[J]. 中国农业科学, 2023, 56(9): 1718-1728. |
[3] | 王宁, 冯克云, 南宏宇, 丛安琪, 张铜会. 水分亏缺下有机无机肥配施比例对棉花水氮利用效率的影响[J]. 中国农业科学, 2023, 56(8): 1531-1546. |
[4] | 李德近, 马想, 孙悦, 徐明岗, 段英华. 典型区域秸秆和有机肥混土填埋后的腐解特征[J]. 中国农业科学, 2023, 56(6): 1127-1138. |
[5] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[6] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[7] | 王树会,陶雯,梁硕,张旭博,孙楠,徐明岗. 长期施用有机肥情景下华北平原旱地土壤固碳及N2O排放的空间格局[J]. 中国农业科学, 2022, 55(6): 1159-1171. |
[8] | 李晓立,何堂庆,张晨曦,田明慧,吴梅,李潮海,杨青华,张学林. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948-961. |
[9] | 万连杰,何满,李俊杰,田洋,张绩,郑永强,吕强,谢让金,马岩岩,邓烈,易时来. 有机肥替代部分化肥对椪柑生长、品质及土壤特性的影响[J]. 中国农业科学, 2022, 55(15): 2988-3001. |
[10] | 徐芳蕾,张杰,李阳,张伟伟,薄其飞,李世清,岳善超. 施肥方式对黄土高原旱作春玉米农田土壤氨挥发的影响[J]. 中国农业科学, 2022, 55(12): 2360-2371. |
[11] | 王宁,冯克云,南宏宇,张铜会. 不同水分条件下有机无机肥配施对棉花根系特征及产量的影响[J]. 中国农业科学, 2022, 55(11): 2187-2201. |
[12] | 王从,孙会峰,徐春花,王站付,张继宁,张鲜鲜,陈春宏,周胜. 施肥方式对设施菜地氨挥发的影响[J]. 中国农业科学, 2022, 55(1): 123-133. |
[13] | 刘彦伶,李渝,张艳,张雅蓉,黄兴成,张萌,张文安,蒋太明. 长期施用磷肥和有机肥黄壤微生物量磷特征[J]. 中国农业科学, 2021, 54(6): 1188-1198. |
[14] | 毛安然,赵护兵,杨慧敏,王涛,陈秀文,梁文娟. 不同覆盖时期和覆盖方式对旱地冬小麦经济和环境效应的影响[J]. 中国农业科学, 2021, 54(3): 608-618. |
[15] | 赵鹏,刘明,靳容,陈晓光,张爱君,唐忠厚,魏猛. 长期施用有机肥对潮土区甘薯碳氮积累与分配的影响[J]. 中国农业科学, 2021, 54(10): 2142-2153. |
|