中国农业科学 ›› 2022, Vol. 55 ›› Issue (13): 2538-2551.doi: 10.3864/j.issn.0578-1752.2022.13.005
孟雨1(),温鹏飞1,丁志强2,田文仲2,张学品2,贺利1,段剑钊1,刘万代1,冯伟1(
)
收稿日期:
2021-10-13
接受日期:
2021-12-14
出版日期:
2022-07-01
发布日期:
2022-07-08
联系方式:
孟雨,E-mail: mengyu9540@163.com。
基金资助:
MENG Yu1(),WEN PengFei1,DING ZhiQiang2,TIAN WenZhong2,ZHANG XuePin2,HE Li1,DUAN JianZhao1,LIU WanDai1,FENG Wei1(
)
Received:
2021-10-13
Accepted:
2021-12-14
Published:
2022-07-01
Online:
2022-07-08
摘要:
【目的】分析不同基因型小麦冠层的温度参数相关信息,探寻快速高效筛选冬小麦抗旱品种的指标和方法,给冬小麦抗旱品种筛选提供参考依据。【方法】本研究以小麦为研究对象,获取干旱胁迫下10个抗旱性存在差异的小麦品种冠层热红外图像,采用温度频率直方图等分析方法提取冠层温度特征参数,明确温度特征参数与抗旱指数之间定量关系,分析冠层温度特征参数对筛选冬小麦抗旱品种的有效性。【结果】基于产量抗旱指数(DRI)的分级标准将测定小麦品种分为4种抗旱类别,其抗旱性越强,最大光化学效率(Fv/Fm),植株含水量(PWC),气孔导度(Gs),蒸腾速率(Tr)和籽粒产量越稳定。基于热红外图像提取冠层温度特征参数,小麦抗旱性越强,冠层温度的差异性越小,冠层温度的离散程度也较小。产量抗旱指数(DRI)与拔节期、孕穗期和开花期的作物冠层温度与环境温度的偏差(CTD)均呈现极显著的正相关关系,相关系数r为0.79—0.84,而与冠层温度标准差(CTSD)、变异系数(CTCV)、水分胁迫指数(CWSI)和冠层相对温差(CRTD)呈显著负相关(r=-0.56—-0.78)。基于单一生育时期冠层温度特征参数建立了产量抗旱指数(DRI)回归模型,估算精度为r2=0.73—0.87,其中以拔节期预测模型精度最高。而基于3个生育时期的相关冠层温度参数CTD、CTCV、CTSD CWSI组合构建产量抗旱指数(DRI)预测模型,较基于单一生育时期预测精度显著提升(r2=0.95)。【结论】利用热红外图像可进行小麦品种抗旱性的早期鉴定与快速评价,这对促进作物高效节水生产具有重要意义。
孟雨,温鹏飞,丁志强,田文仲,张学品,贺利,段剑钊,刘万代,冯伟. 基于热红外图像的小麦品种抗旱性鉴定与评价[J]. 中国农业科学, 2022, 55(13): 2538-2551.
MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image[J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
表2
不同抗旱性小麦品种产量及抗旱性评价"
代号 Number | 品种名称 Cultivar | 产量Grain yield(kg·hm-2) | 抗旱指数 Drought index | 抗旱评价 Drought evaluation | |
---|---|---|---|---|---|
棚内 Output in dry land | 棚外 Output in wet land | ||||
1 | 洛旱19 Luohan 19 | 4816.98b | 8610.52c | 1.06 | 中等MR |
2 | 洛旱22 Luohan 22 | 5026.80a | 8713.45bc | 1.14 | 强R |
3 | 洛麦26 Luomai 26 | 4584.04c | 9378.24a | 0.88 | 弱S |
4 | 中麦175 Zhongmai 175 | 4350.88d | 9050.06b | 0.82 | 弱S |
5 | 百农207 Bainong 207 | 4299.84d | 8144.90d | 0.89 | 弱S |
6 | 豫农516 Yunong516 | 4551.87c | 8838.05b | 0.92 | 中等MR |
7 | 中麦895 Zhongmai 895 | 3873.35e | 8831.18b | 0.67 | 极弱HS |
8 | 安农0711 Annong 0711 | 4390.08d | 8953.79b | 0.85 | 弱S |
9 | 华成3366 Huacheng 3366 | 3915.60e | 8679.40bc | 0.69 | 极弱HS |
10 | 晋麦47 Jinmai 47 | 4587.77c | 8269.14d | 1.00 | 中等MR |
表3
干旱胁迫下不同抗旱性小麦相关冠层温度参数变化特性"
时期 Time | 抗旱性评价 Drought evaluation | CETR | CTEP | CTSD | CTCV | CTD | CWSI | CRTD |
---|---|---|---|---|---|---|---|---|
拔节期 Jointing stage | 强R | 14.90-19.17 | 6.58 | 0.480 | 0.03 | 5.14 | 0.4 | 0.138 |
中等MR | 14.71-23.42 | 7.99-9.28 | 0.934-1.102 | 0.048-0.054 | 3.42-4.87 | 0.41-0.44 | 0.158-0.174 | |
弱S | 14.98-23.51 | 9.62-10.00 | 1.036-1.273 | 0.053-0.065 | 2.22-3.00 | 0.45-0.47 | 0.164-0.210 | |
极弱HS | 15.15-23.60 | 11.37-11.62 | 1.105-1.227 | 0.068-0.071 | 1.81-2.69 | 0.46-0.50 | 0.198-0.214 | |
孕穗期 Booting stage | 强R | 21.93-26.28 | 7.63 | 0.660 | 0.028 | -0.32 | 0.44 | 0.076 |
中等MR | 21.72-28.73 | 8.43-9.33 | 0.728-0.850 | 0.031-0.034 | -0.66--1.13 | 0.46-0.48 | 0.086-0.096 | |
弱S | 22.14-28.36 | 9.91-10.52 | 0.807-0.880 | 0.033-0.040 | -1.42--1.88 | 0.48-0.50 | 0.101-0.112 | |
极弱HS | 21.45-29.77 | 11.06-11.79 | 0.952-1.164 | 0.039-0.045 | -1.65--2.38 | 0.51-0.54 | 0.119-0.153 | |
开花期 Anthesis stage | 强R | 21.01-27.67 | 11.58 | 1.108 | 0.041 | -4.17 | 0.47 | 0.105 |
中等MR | 24.92-35.29 | 12.21-14.29 | 1.298-1.601 | 0.043-0.051 | -4.30--5.16 | 0.49-0.51 | 0.108-0.116 | |
弱S | 25.42-36.19 | 13.52-14.95 | 1.270-1.812 | 0.047-0.056 | -5.56--6.47 | 0.53-0.54 | 0.120-0.136 | |
极弱HS | 25.90-38.48 | 15.14-18.82 | 1.824-1.963 | 0.054-0.060 | -6.87--7.78 | 0.59-0.60 | 0.149-0.159 |
[1] |
SOUSSANA J F, GRAUX A L, TUBIELLO F N. Improving the use of modelling for projections of climate change impacts on crops and pastures. Journal of Experimental Botany, 2010, 61(8): 2217-2228.
doi: 10.1093/jxb/erq100 |
[2] | BLOEM M W, SEMBA R D, KRAEMER K. Castel gandolfo workshop: An introduction to the impact of climate change, the economic crisis, and the increase in the food prices on malnutrition. Journal of Nutrition, 2010, 140: 132S-135S. |
[3] | 康绍忠. 水安全与粮食安全. 中国生态农业学报, 2014, 22(8): 880-885. |
KANG S Z. Towards water and food security in China. Chinese Journal of Eco-Agriculture, 2014, 22(8): 880-885. (in Chinese) | |
[4] |
GUO Z J, SHI Y, YU Z W, ZHANG Y L. Supplemental irrigation affected flag leaves senescence post-anthesis and grain yield of winter wheat in the Huang-Huai-Hai Plain of China. Field Crops Research, 2015, 180: 100-109.
doi: 10.1016/j.fcr.2015.05.015 |
[5] |
李瑞雪, 孙任洁, 汪泰初, 陈丹丹, 李荣芳, 李龙, 赵卫国. 植物抗旱性鉴定评价方法及抗旱机制研究进展. 生物技术通报, 2017, 33(7): 40-48.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0023 |
LI R X, SUN R J, WANG T C, CHEN D D, LI R F, LI L, ZHAO W G. Research progress on identification and evaluation methods, and mechanism of drought resistance in plants. Biotechnology Bulletin, 2017, 33(7): 44-48. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0023 |
|
[6] |
李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44(7): 988-999.
doi: 10.3724/SP.J.1006.2018.00988 |
LI L, MAO X G, WANG J Y, CHANG X P, LIU Y P, JING R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44(7): 988-999. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00988 |
|
[7] |
BlUM A. Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive?. Australian Journal of Agricultural Research, 2005, 56: 1159-1168.
doi: 10.1071/AR05069 |
[8] | NOURI-GANBALANI A, NOURI-GANBALANI G, HASSANPANAH D. Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran. Journal of Food Agriculture and Environment, 2009, 7(3): 228-234. |
[9] |
ALMESELMANI M, DESHMUKH P S, SAIRAM R K, KUSHWAHA S R, SINGH T P. Protective role of antioxidant enzymes under high temperature stress. Plant Science, 2006, 171: 382-388.
doi: 10.1016/j.plantsci.2006.04.009 |
[10] |
余斌, 杨宏羽, 王丽, 刘玉汇, 白江平, 张峰, 王蒂, 张俊莲. 马铃薯冠气温差变化特性与耐旱性的关系. 作物学报, 2018, 44(7): 1086-1094.
doi: 10.3724/SP.J.1006.2018.01086 |
YU B, YANG H Y, WANG L, LIU Y H, BAI J P, ZHANG F, WANG D, ZHANG J L. Relationship between potato canopy-air temperature difference and drought tolerance. Acta Agronomica Sinica, 2018, 44(7): 1086-1094. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01086 |
|
[11] |
LUAN Y J, XU J Z, LV Y P, LIU X Y, WANG H Y, LIU S M. Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging. Agricultural Water Management, 2021, 246(401): 106699.
doi: 10.1016/j.agwat.2020.106699 |
[12] | 赵刚, 樊廷录, 李尚中, 王勇, 王磊, 党翼, 唐小明, 张建军, 王国宇. 不同品种冬小麦冠层温度与抗旱性和水分利用效率的关系研究. 农业现代化研究, 2010, 31(3): 334-337. |
ZHAO G, FAN T L, LI S Z, WANG Y, WANG L, DANG Y, TANG X M, ZHANG J J, WANG G Y. Study of relationship of canopy temperature with drought resistance and water use efficiency on different genotype winter wheat. Research of Agricultural Modernization, 2010, 31(3): 334-337. (in Chinese) | |
[13] |
FANG J J, MA W Y, ZHAO X Q, HE X, LI B, TONG Y P, LI Z S. Lower canopy temperature is associated with higher cytokinin concentration in the flag leaf of wheat. Crop Science, 2012, 52: 2743-2756.
doi: 10.2135/cropsci2012.03.0163 |
[14] | 黄山, 王伟, 毕永基, 曾罗华, 刘庆友, 谭雪明, 潘晓华. 不同早稻品种冠层温度的差异及其与产量的关系. 江西农业大学学报, 2014, 36(6): 1179-1184. |
HUANG S, WANG W, BI Y J, ZENG L H, LIU Q Y, TAN X M, PANG X H. Genetic differences in canopy temperature of different early-rice varieties and its relationship with yield. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(6): 1179-1184. (in Chinese) | |
[15] | SADLER E J, CAMP C R, EVANS D E, MILLAN J A. Corn canopy temperatures measured with a moving infrared thermometerarray. Transactions of the ASAE, 2002, 45(3): 581-591. |
[16] | WANG M, HUANG T. An integrated electric energy management system to improve fuel economy. Lecture Notes in Electrical Engineering, 2013, 194: 115-122. |
[17] | WATANABE K, AGARIE H, APARATANA K, MITSUOKA M, TAIRA E, UENO M, KAWAMITSU Y. Fundamental study on water stress detection in sugarcane using thermal image combined with photosynthesis measurement under a greenhouse condition. Sugar Tech, 2022: 1-9. |
[18] |
CHAERLE L, CAENEGHEM W V, MESSENS E, LAMBERS H, MONTAGU M V, STRAETEN D V D. Presymptomatic visualization of plant-virus interactions by thermography. Nature Biotechnology, 1999, 17(8): 813-816.
doi: 10.1038/11765 |
[19] |
PEARCE R S, FULLER M P. Freezing of barley studied by infrared video thermography. Plant physiology, 2001, 125(1): 227-240.
doi: 10.1104/pp.125.1.227 |
[20] |
O’SHAUGHNESSY S A, EVETT S R, COLAIZZI P D, HOWELL T A. Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, 2011, 98(10): 1523-1535.
doi: 10.1016/j.agwat.2011.05.005 |
[21] |
MANGUS D L, SHARDA A, ZHANG N. Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Computers and Electronics in Agriculture, 2016, 121(4): 149-159.
doi: 10.1016/j.compag.2015.12.007 |
[22] | 张智韬, 边江, 韩文霆, 付秋萍, 陈硕博, 崔婷. 无人机热红外图像计算冠层温度特征数诊断棉花水分胁迫. 农业工程学报, 2018, 34(15): 77-84. |
ZHANG Z T, BIAN J, HAN W T, FU Q P, CHEN S B, CUI T. Cotton moisture stress diagnosis based on canopy temperature characteristics calculated from UAV thermal infrared image. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 77-84. (in Chinese) | |
[23] |
PURUSHOTHAMAN R, THUDI M, KRISHNAMURTHY L, UPADHYAYA H D, KASHIWAGI J, GOWDA C L L, VARSHNEY A K. Association of mid-reproductive stage canopy temperature depression with the molecular markers and grain yields of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Research, 2015, 174: 1-11.
doi: 10.1016/j.fcr.2015.01.007 |
[24] | 张智韬, 许崇豪, 谭丞轩, 李宇, 宁纪锋. 基于无人机热红外遥感的玉米地土壤含水率诊断方法. 农业机械学报, 2020, 51(3): 180-190. |
ZHANG Z T, XU C H, TAN C X, LI Y, NING J F. Diagnosing method of soil moisture content in corn field based on thermal infrared remote sensing of UAV. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 180-190. (in Chinese) | |
[25] |
JACKSON R D, IDSO S B, REGINATO R J, PINTER, JR P J. Canopy temperature as a crop water stress indicator. Water Resources Research, 1981, 17(4): 1133-1138.
doi: 10.1029/WR017i004p01133 |
[26] |
OLIVO N, GIRONA J, MARSAL J. Seasonal sensitivity of stem water potential to vapour pressure deficit in grapevine. Irrigation Science, 2009, 27(2): 175-182.
doi: 10.1007/s00271-008-0134-z |
[27] |
BERGER B, PARENT B, TESTER M. High-throughput shoot imaging to study drought responses. Journal of Experimental Botany, 2010, 61(13): 3519-3528.
doi: 10.1093/jxb/erq201 |
[28] | ZIA S, ROMANO G, SPREER W, SANCHEZ C, CAIRNS J, ARAUS J L, MULLER J. Infrared thermal imaging as a rapid tool for identifying water-stress tolerant maize genotypes of different phenology. Journal of Agronomy and Crop Science, 2012, 13: 931-2250. |
[29] |
GRANT O M, TRONINA L, JONES H G, CHAVES M M. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. Journal of Experimental Botany, 2007, 58(4): 815-825.
doi: 10.1093/jxb/erl153 |
[30] | 李磊, 贾志清, 朱雅娟, 綦艳林. 我国干旱区植物抗旱机理研究进展. 中国沙漠, 2010, 30(5): 1053-1059. |
LI L, JIA Z Q, ZHU Y J, QI Y L. Research advances on drought resistance mechanism of plant species in arid area of China. Journal of Desert Research, 2010, 30(5): 1053-1059. (in Chinese) | |
[31] |
MING H, ZHANG H, DEJONGE K C, COMAS L H, TROUT T J. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricultural Water Management, 2016, 177: 400-409.
doi: 10.1016/j.agwat.2016.08.031 |
[32] | 吴金芝, 王志敏, 李友军, 张英华. 干旱胁迫下不同抗旱性小麦品种产量形成与水分利用特征. 中国农业大学学报, 2015, 20(6): 25-35. |
WU J Z, WANG Z M, LI Y J, ZHANG Y H. Characteristics of yield formation and water use in different drought tolerance cultivars of winter wheat under drought stress. Journal of China Agricultural University, 2015, 20(6): 25-35. (in Chinese) | |
[33] |
IDSO S B, JACKSON R D, PINTER, JR P J, REGINATO R J, HATFIELD J L. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 1981, 24(1): 45-55.
doi: 10.1016/0002-1571(81)90032-7 |
[34] |
XU J, LV Y P, LIU X Y, DALSON T, YANG S H, WU J. Diagnosing crop water stress of rice using infrared thermal imager under water deficit condition. International Journal of Agriculture & Biology, 2015. DOI: 10.17957/IJAB/15.0125.
doi: 10.17957/IJAB/15.0125 |
[35] |
BIJU S, FUENTES S, GUPTA D. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought- tolerant lentil genotypes. Plant Physiology and Biochemistry, 2018, 127: 11-24.
doi: 10.1016/j.plaphy.2018.03.005 |
[36] |
BIAN J, ZHANG Z T, CHEN J Y, CHEN H Y, CUI C F, LI X W, CHEN S B, FU Q Q. Simplified evaluation of cotton water stress using high resolution Unmanned Aerial Vehicle thermal imagery. Remote Sensing, 2019, 11(3): 267.
doi: 10.3390/rs11030267 |
[37] | 张仁华. 定量热红外遥感模型及地面实验基础. 北京: 科学出版社, 2009. |
ZHANG R H. Quantitative Thermal Infrared Remote Sensing Model and Ground Experiment Basis. Beijing: Science Press, 2009. (in Chinese) | |
[38] | KARIMIZADEH R, MOHAMMADI M. Association of canopy temperature depression with yield of durum wheat genotypes under supplementary irrigated and rainfed conditions. Australian Journal of Crop Science, 2011, 5(2): 138-146. |
[39] |
KUMAR M, GOVINDASAMY, RANE J, SINGH A K, CHOUDHARY R L, RAINA S K, GEORGE P, AHER L K, SINGH N P. Canopy temperature depression (CTD) and canopy greenness associated with variation in seed yield of soybean genotypes grown in semi-arid environment. South African Journal of Botany, 2017, 113: 230-238.
doi: 10.1016/j.sajb.2017.08.016 |
[40] |
REBETZKE G J, RATTEY A R, FARQHAR G D, RICHARDS R A, CONDON A G. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Functional Plant Biology, 2013, 40(1): 14-33.
doi: 10.1071/FP12184 |
[41] |
KRISHNAMURTHY L, KASHIWAGI J, GAUR P M, UPADHYAYA H D, VADAZ V. Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasm. Field Crops Research, 2010, 119(2/3): 322-330.
doi: 10.1016/j.fcr.2010.08.002 |
[42] |
JOAQUIM B, JORDI M, JOAN G, VICTORIA G D, ELIAS F, SUSAN L U, PABLO J Z T. Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and saturn peach orchards. Remote Sensing, 2016, 8(1): 39.
doi: 10.3390/rs8010039 |
[43] | 王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 40(11): 2452-2459. |
WANG S Q, HU Y G, SHE K J, ZHOU L L, MENG F L. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Scientia Agricultura Sinica, 2007, 40(11): 2452-2459. (in Chinese) | |
[44] | 徐蕊, 王启柏, 张春庆, 吴承来. 玉米自交系抗旱性评价指标体系的建立. 中国农业科学, 2009, 42(1): 72-84. |
XU R, WANG Q B, ZHANG C Q, WU C L. Drought-resistance evaluation system of maize inbred. Scientia Agricultura Sinica, 2009, 42(1): 72-84. (in Chinese) | |
[45] | 谢小玉, 张霞, 张兵. 油菜苗期抗旱性评价及抗旱相关指标变化分析. 中国农业科学, 2013, 46(3): 476-485. |
XIE X Y, ZHANG X, ZHANG B. Evaluation of drought resistance and analysis of variation of relevant parameters at seedling stage of rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2013, 46(3): 476-485. (in Chinese) | |
[46] |
李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44(7): 988-999.
doi: 10.3724/SP.J.1006.2018.00988 |
LI L, MAO X G, WANG J Y, CHANG X P, LIU Y P, JING R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44(7): 988-999. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00988 |
|
[47] | 唐延林, 黄敬峰, 王人潮, 王福民. 水稻遥感估产模拟模式比较. 农业工程学报, 2004, 20(1): 166-171. |
TANG Y L, HUANG J F, WANG R C, WANG F M. Comparsion of yield estimation simulated models of rice by remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(1): 166-171. (in Chinese) | |
[48] | 张龙龙, 杨明明, 董剑, 赵万春, 高翔, 陈冬阳. 三个小麦新品种不同生育阶段抗旱性的综合评价. 麦类作物学报, 2016, 36(4): 426-434. |
ZHANG L L, YANG M M, DONG J, ZHAO W C, GAO X, CHEN D Y. Comprehensive analysis of drought resistance of three new wheat cultivars at different growth stages. Journal of Triticeae Crops, 2016, 36(4): 426-434. (in Chinese) |
[1] | 张颖, 石婷瑞, 曹瑞, 潘文秋, 宋卫宁, 王利, 聂小军. ICARDA引进-小麦苗期抗旱性的全基因组关联分析[J]. 中国农业科学, 2024, 57(9): 1658-1673. |
[2] | 臧少龙, 刘淋茹, 高越之, 吴珂, 贺利, 段剑钊, 宋晓, 冯伟. 基于无人机影像多时相的小麦品种氮效率分类识别[J]. 中国农业科学, 2024, 57(9): 1687-1708. |
[3] | 高晨凯, 刘水苗, 李煜铭, 赵志恒, 邵京, 于昊琳, 吴鹏年, 王艳丽, 关小康, 王同朝, 温鹏飞. 冬小麦水分利用效率相关驱动因子及其预测模型构建[J]. 中国农业科学, 2024, 57(7): 1281-1294. |
[4] | 王语, 张渝鹏, 朱冠亚, 廖航烯, 侯文峰, 高强, 王寅. 局部供氮对干旱胁迫下玉米苗期生长发育和水氮利用的影响[J]. 中国农业科学, 2024, 57(5): 919-934. |
[5] | 高尚洁, 刘杏认, 李迎春, 柳晓婉. 施用生物炭和秸秆还田对农田温室气体排放及增温潜势的影响[J]. 中国农业科学, 2024, 57(5): 935-949. |
[6] | 朱瑞明, 赵荣钦, 焦士兴, 李小建, 肖连刚, 谢志祥, 杨青林, 王帅, 张慧芳. 河南省乡镇尺度冬小麦灌溉碳排放强度空间格局及影响因素分析[J]. 中国农业科学, 2024, 57(5): 950-964. |
[7] | 张荣, 刘淋茹, 付凯霞, 武紫君, 宋一凡, 王璐媛, 侯阁阁, 贺利, 冯伟, 段剑钊, 王永华, 郭天财. 干旱胁迫下外源褪黑素对冬小麦小花发育及碳营养代谢的调控[J]. 中国农业科学, 2024, 57(23): 4644-4657. |
[8] | 董奎军, 张亦涛, 刘瀚文, 张继宗, 王伟军, 温延臣, 雷秋良, 文宏达. 玉米大豆间作减量施氮对当季作物农艺性状、经济效益和后茬小麦产量的影响[J]. 中国农业科学, 2024, 57(22): 4495-4506. |
[9] | 商航, 程宇坤, 任毅, 耿洪伟. 冬小麦淀粉糊化性状的全基因组关联分析[J]. 中国农业科学, 2024, 57(18): 3507-3521. |
[10] | 陈实, 黄银兰, 金云翔, 徐成林, 邹金秋. 中国北部冬小麦安全种植的农业气候因子及其阈值[J]. 中国农业科学, 2024, 57(16): 3142-3153. |
[11] | 贾兵丽, 李艳行, 杨文杰, 于杰, 苑爱静, 李宁娜, 邱炜红, 王朝辉. 不同降水年型磷肥对旱地冬小麦产量及磷素吸收利用的影响[J]. 中国农业科学, 2024, 57(16): 3192-3206. |
[12] | 赵花荣, 周广胜, 齐月, 耿金剑, 田晓丽. 播期调整对华北北部冬小麦、夏玉米产量和品质的影响[J]. 中国农业科学, 2024, 57(15): 2964-2985. |
[13] | 王宇, 宋一凡, 张荣, 牟海萌, 孙丽芳, 付凯霞, 武紫君, 黄青青, 徐应明, 李鸽子, 王永华, 郭天财. 土壤施用钝化剂与复合微生物肥对冬小麦镉积累的影响[J]. 中国农业科学, 2024, 57(1): 126-141. |
[14] | 栗晗, 江尚焘, 彭海英, 李培根, 顾长宜, 张金莲, 陈廷速, 徐阳春, 沈其荣, 董彩霞. 接种土著和外源AM真菌对杜梨抗旱性的影响及其适应机制[J]. 中国农业科学, 2024, 57(1): 159-172. |
[15] | 魏永康, 杨天聪, 臧少龙, 贺利, 段剑钊, 谢迎新, 王晨阳, 冯伟. 基于无人机多光谱影像特征融合的小麦倒伏监测[J]. 中国农业科学, 2023, 56(9): 1670-1685. |
|