中国农业科学 ›› 2022, Vol. 55 ›› Issue (13): 2538-2551.doi: 10.3864/j.issn.0578-1752.2022.13.005
孟雨1(),温鹏飞1,丁志强2,田文仲2,张学品2,贺利1,段剑钊1,刘万代1,冯伟1()
收稿日期:
2021-10-13
接受日期:
2021-12-14
出版日期:
2022-07-01
发布日期:
2022-07-08
通讯作者:
冯伟
作者简介:
孟雨,E-mail: 基金资助:
MENG Yu1(),WEN PengFei1,DING ZhiQiang2,TIAN WenZhong2,ZHANG XuePin2,HE Li1,DUAN JianZhao1,LIU WanDai1,FENG Wei1()
Received:
2021-10-13
Accepted:
2021-12-14
Online:
2022-07-01
Published:
2022-07-08
Contact:
Wei FENG
摘要:
【目的】分析不同基因型小麦冠层的温度参数相关信息,探寻快速高效筛选冬小麦抗旱品种的指标和方法,给冬小麦抗旱品种筛选提供参考依据。【方法】本研究以小麦为研究对象,获取干旱胁迫下10个抗旱性存在差异的小麦品种冠层热红外图像,采用温度频率直方图等分析方法提取冠层温度特征参数,明确温度特征参数与抗旱指数之间定量关系,分析冠层温度特征参数对筛选冬小麦抗旱品种的有效性。【结果】基于产量抗旱指数(DRI)的分级标准将测定小麦品种分为4种抗旱类别,其抗旱性越强,最大光化学效率(Fv/Fm),植株含水量(PWC),气孔导度(Gs),蒸腾速率(Tr)和籽粒产量越稳定。基于热红外图像提取冠层温度特征参数,小麦抗旱性越强,冠层温度的差异性越小,冠层温度的离散程度也较小。产量抗旱指数(DRI)与拔节期、孕穗期和开花期的作物冠层温度与环境温度的偏差(CTD)均呈现极显著的正相关关系,相关系数r为0.79—0.84,而与冠层温度标准差(CTSD)、变异系数(CTCV)、水分胁迫指数(CWSI)和冠层相对温差(CRTD)呈显著负相关(r=-0.56—-0.78)。基于单一生育时期冠层温度特征参数建立了产量抗旱指数(DRI)回归模型,估算精度为r2=0.73—0.87,其中以拔节期预测模型精度最高。而基于3个生育时期的相关冠层温度参数CTD、CTCV、CTSD CWSI组合构建产量抗旱指数(DRI)预测模型,较基于单一生育时期预测精度显著提升(r2=0.95)。【结论】利用热红外图像可进行小麦品种抗旱性的早期鉴定与快速评价,这对促进作物高效节水生产具有重要意义。
孟雨,温鹏飞,丁志强,田文仲,张学品,贺利,段剑钊,刘万代,冯伟. 基于热红外图像的小麦品种抗旱性鉴定与评价[J]. 中国农业科学, 2022, 55(13): 2538-2551.
MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image[J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
表2
不同抗旱性小麦品种产量及抗旱性评价"
代号 Number | 品种名称 Cultivar | 产量Grain yield(kg·hm-2) | 抗旱指数 Drought index | 抗旱评价 Drought evaluation | |
---|---|---|---|---|---|
棚内 Output in dry land | 棚外 Output in wet land | ||||
1 | 洛旱19 Luohan 19 | 4816.98b | 8610.52c | 1.06 | 中等MR |
2 | 洛旱22 Luohan 22 | 5026.80a | 8713.45bc | 1.14 | 强R |
3 | 洛麦26 Luomai 26 | 4584.04c | 9378.24a | 0.88 | 弱S |
4 | 中麦175 Zhongmai 175 | 4350.88d | 9050.06b | 0.82 | 弱S |
5 | 百农207 Bainong 207 | 4299.84d | 8144.90d | 0.89 | 弱S |
6 | 豫农516 Yunong516 | 4551.87c | 8838.05b | 0.92 | 中等MR |
7 | 中麦895 Zhongmai 895 | 3873.35e | 8831.18b | 0.67 | 极弱HS |
8 | 安农0711 Annong 0711 | 4390.08d | 8953.79b | 0.85 | 弱S |
9 | 华成3366 Huacheng 3366 | 3915.60e | 8679.40bc | 0.69 | 极弱HS |
10 | 晋麦47 Jinmai 47 | 4587.77c | 8269.14d | 1.00 | 中等MR |
表3
干旱胁迫下不同抗旱性小麦相关冠层温度参数变化特性"
时期 Time | 抗旱性评价 Drought evaluation | CETR | CTEP | CTSD | CTCV | CTD | CWSI | CRTD |
---|---|---|---|---|---|---|---|---|
拔节期 Jointing stage | 强R | 14.90-19.17 | 6.58 | 0.480 | 0.03 | 5.14 | 0.4 | 0.138 |
中等MR | 14.71-23.42 | 7.99-9.28 | 0.934-1.102 | 0.048-0.054 | 3.42-4.87 | 0.41-0.44 | 0.158-0.174 | |
弱S | 14.98-23.51 | 9.62-10.00 | 1.036-1.273 | 0.053-0.065 | 2.22-3.00 | 0.45-0.47 | 0.164-0.210 | |
极弱HS | 15.15-23.60 | 11.37-11.62 | 1.105-1.227 | 0.068-0.071 | 1.81-2.69 | 0.46-0.50 | 0.198-0.214 | |
孕穗期 Booting stage | 强R | 21.93-26.28 | 7.63 | 0.660 | 0.028 | -0.32 | 0.44 | 0.076 |
中等MR | 21.72-28.73 | 8.43-9.33 | 0.728-0.850 | 0.031-0.034 | -0.66--1.13 | 0.46-0.48 | 0.086-0.096 | |
弱S | 22.14-28.36 | 9.91-10.52 | 0.807-0.880 | 0.033-0.040 | -1.42--1.88 | 0.48-0.50 | 0.101-0.112 | |
极弱HS | 21.45-29.77 | 11.06-11.79 | 0.952-1.164 | 0.039-0.045 | -1.65--2.38 | 0.51-0.54 | 0.119-0.153 | |
开花期 Anthesis stage | 强R | 21.01-27.67 | 11.58 | 1.108 | 0.041 | -4.17 | 0.47 | 0.105 |
中等MR | 24.92-35.29 | 12.21-14.29 | 1.298-1.601 | 0.043-0.051 | -4.30--5.16 | 0.49-0.51 | 0.108-0.116 | |
弱S | 25.42-36.19 | 13.52-14.95 | 1.270-1.812 | 0.047-0.056 | -5.56--6.47 | 0.53-0.54 | 0.120-0.136 | |
极弱HS | 25.90-38.48 | 15.14-18.82 | 1.824-1.963 | 0.054-0.060 | -6.87--7.78 | 0.59-0.60 | 0.149-0.159 |
[1] |
SOUSSANA J F, GRAUX A L, TUBIELLO F N. Improving the use of modelling for projections of climate change impacts on crops and pastures. Journal of Experimental Botany, 2010, 61(8): 2217-2228.
doi: 10.1093/jxb/erq100 |
[2] | BLOEM M W, SEMBA R D, KRAEMER K. Castel gandolfo workshop: An introduction to the impact of climate change, the economic crisis, and the increase in the food prices on malnutrition. Journal of Nutrition, 2010, 140: 132S-135S. |
[3] | 康绍忠. 水安全与粮食安全. 中国生态农业学报, 2014, 22(8): 880-885. |
KANG S Z. Towards water and food security in China. Chinese Journal of Eco-Agriculture, 2014, 22(8): 880-885. (in Chinese) | |
[4] |
GUO Z J, SHI Y, YU Z W, ZHANG Y L. Supplemental irrigation affected flag leaves senescence post-anthesis and grain yield of winter wheat in the Huang-Huai-Hai Plain of China. Field Crops Research, 2015, 180: 100-109.
doi: 10.1016/j.fcr.2015.05.015 |
[5] |
李瑞雪, 孙任洁, 汪泰初, 陈丹丹, 李荣芳, 李龙, 赵卫国. 植物抗旱性鉴定评价方法及抗旱机制研究进展. 生物技术通报, 2017, 33(7): 40-48.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0023 |
LI R X, SUN R J, WANG T C, CHEN D D, LI R F, LI L, ZHAO W G. Research progress on identification and evaluation methods, and mechanism of drought resistance in plants. Biotechnology Bulletin, 2017, 33(7): 44-48. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0023 |
|
[6] |
李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44(7): 988-999.
doi: 10.3724/SP.J.1006.2018.00988 |
LI L, MAO X G, WANG J Y, CHANG X P, LIU Y P, JING R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44(7): 988-999. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00988 |
|
[7] |
BlUM A. Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive?. Australian Journal of Agricultural Research, 2005, 56: 1159-1168.
doi: 10.1071/AR05069 |
[8] | NOURI-GANBALANI A, NOURI-GANBALANI G, HASSANPANAH D. Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran. Journal of Food Agriculture and Environment, 2009, 7(3): 228-234. |
[9] |
ALMESELMANI M, DESHMUKH P S, SAIRAM R K, KUSHWAHA S R, SINGH T P. Protective role of antioxidant enzymes under high temperature stress. Plant Science, 2006, 171: 382-388.
doi: 10.1016/j.plantsci.2006.04.009 |
[10] |
余斌, 杨宏羽, 王丽, 刘玉汇, 白江平, 张峰, 王蒂, 张俊莲. 马铃薯冠气温差变化特性与耐旱性的关系. 作物学报, 2018, 44(7): 1086-1094.
doi: 10.3724/SP.J.1006.2018.01086 |
YU B, YANG H Y, WANG L, LIU Y H, BAI J P, ZHANG F, WANG D, ZHANG J L. Relationship between potato canopy-air temperature difference and drought tolerance. Acta Agronomica Sinica, 2018, 44(7): 1086-1094. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01086 |
|
[11] |
LUAN Y J, XU J Z, LV Y P, LIU X Y, WANG H Y, LIU S M. Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging. Agricultural Water Management, 2021, 246(401): 106699.
doi: 10.1016/j.agwat.2020.106699 |
[12] | 赵刚, 樊廷录, 李尚中, 王勇, 王磊, 党翼, 唐小明, 张建军, 王国宇. 不同品种冬小麦冠层温度与抗旱性和水分利用效率的关系研究. 农业现代化研究, 2010, 31(3): 334-337. |
ZHAO G, FAN T L, LI S Z, WANG Y, WANG L, DANG Y, TANG X M, ZHANG J J, WANG G Y. Study of relationship of canopy temperature with drought resistance and water use efficiency on different genotype winter wheat. Research of Agricultural Modernization, 2010, 31(3): 334-337. (in Chinese) | |
[13] |
FANG J J, MA W Y, ZHAO X Q, HE X, LI B, TONG Y P, LI Z S. Lower canopy temperature is associated with higher cytokinin concentration in the flag leaf of wheat. Crop Science, 2012, 52: 2743-2756.
doi: 10.2135/cropsci2012.03.0163 |
[14] | 黄山, 王伟, 毕永基, 曾罗华, 刘庆友, 谭雪明, 潘晓华. 不同早稻品种冠层温度的差异及其与产量的关系. 江西农业大学学报, 2014, 36(6): 1179-1184. |
HUANG S, WANG W, BI Y J, ZENG L H, LIU Q Y, TAN X M, PANG X H. Genetic differences in canopy temperature of different early-rice varieties and its relationship with yield. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(6): 1179-1184. (in Chinese) | |
[15] | SADLER E J, CAMP C R, EVANS D E, MILLAN J A. Corn canopy temperatures measured with a moving infrared thermometerarray. Transactions of the ASAE, 2002, 45(3): 581-591. |
[16] | WANG M, HUANG T. An integrated electric energy management system to improve fuel economy. Lecture Notes in Electrical Engineering, 2013, 194: 115-122. |
[17] | WATANABE K, AGARIE H, APARATANA K, MITSUOKA M, TAIRA E, UENO M, KAWAMITSU Y. Fundamental study on water stress detection in sugarcane using thermal image combined with photosynthesis measurement under a greenhouse condition. Sugar Tech, 2022: 1-9. |
[18] |
CHAERLE L, CAENEGHEM W V, MESSENS E, LAMBERS H, MONTAGU M V, STRAETEN D V D. Presymptomatic visualization of plant-virus interactions by thermography. Nature Biotechnology, 1999, 17(8): 813-816.
doi: 10.1038/11765 |
[19] |
PEARCE R S, FULLER M P. Freezing of barley studied by infrared video thermography. Plant physiology, 2001, 125(1): 227-240.
doi: 10.1104/pp.125.1.227 |
[20] |
O’SHAUGHNESSY S A, EVETT S R, COLAIZZI P D, HOWELL T A. Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, 2011, 98(10): 1523-1535.
doi: 10.1016/j.agwat.2011.05.005 |
[21] |
MANGUS D L, SHARDA A, ZHANG N. Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Computers and Electronics in Agriculture, 2016, 121(4): 149-159.
doi: 10.1016/j.compag.2015.12.007 |
[22] | 张智韬, 边江, 韩文霆, 付秋萍, 陈硕博, 崔婷. 无人机热红外图像计算冠层温度特征数诊断棉花水分胁迫. 农业工程学报, 2018, 34(15): 77-84. |
ZHANG Z T, BIAN J, HAN W T, FU Q P, CHEN S B, CUI T. Cotton moisture stress diagnosis based on canopy temperature characteristics calculated from UAV thermal infrared image. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 77-84. (in Chinese) | |
[23] |
PURUSHOTHAMAN R, THUDI M, KRISHNAMURTHY L, UPADHYAYA H D, KASHIWAGI J, GOWDA C L L, VARSHNEY A K. Association of mid-reproductive stage canopy temperature depression with the molecular markers and grain yields of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Research, 2015, 174: 1-11.
doi: 10.1016/j.fcr.2015.01.007 |
[24] | 张智韬, 许崇豪, 谭丞轩, 李宇, 宁纪锋. 基于无人机热红外遥感的玉米地土壤含水率诊断方法. 农业机械学报, 2020, 51(3): 180-190. |
ZHANG Z T, XU C H, TAN C X, LI Y, NING J F. Diagnosing method of soil moisture content in corn field based on thermal infrared remote sensing of UAV. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 180-190. (in Chinese) | |
[25] |
JACKSON R D, IDSO S B, REGINATO R J, PINTER, JR P J. Canopy temperature as a crop water stress indicator. Water Resources Research, 1981, 17(4): 1133-1138.
doi: 10.1029/WR017i004p01133 |
[26] |
OLIVO N, GIRONA J, MARSAL J. Seasonal sensitivity of stem water potential to vapour pressure deficit in grapevine. Irrigation Science, 2009, 27(2): 175-182.
doi: 10.1007/s00271-008-0134-z |
[27] |
BERGER B, PARENT B, TESTER M. High-throughput shoot imaging to study drought responses. Journal of Experimental Botany, 2010, 61(13): 3519-3528.
doi: 10.1093/jxb/erq201 |
[28] | ZIA S, ROMANO G, SPREER W, SANCHEZ C, CAIRNS J, ARAUS J L, MULLER J. Infrared thermal imaging as a rapid tool for identifying water-stress tolerant maize genotypes of different phenology. Journal of Agronomy and Crop Science, 2012, 13: 931-2250. |
[29] |
GRANT O M, TRONINA L, JONES H G, CHAVES M M. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. Journal of Experimental Botany, 2007, 58(4): 815-825.
doi: 10.1093/jxb/erl153 |
[30] | 李磊, 贾志清, 朱雅娟, 綦艳林. 我国干旱区植物抗旱机理研究进展. 中国沙漠, 2010, 30(5): 1053-1059. |
LI L, JIA Z Q, ZHU Y J, QI Y L. Research advances on drought resistance mechanism of plant species in arid area of China. Journal of Desert Research, 2010, 30(5): 1053-1059. (in Chinese) | |
[31] |
MING H, ZHANG H, DEJONGE K C, COMAS L H, TROUT T J. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricultural Water Management, 2016, 177: 400-409.
doi: 10.1016/j.agwat.2016.08.031 |
[32] | 吴金芝, 王志敏, 李友军, 张英华. 干旱胁迫下不同抗旱性小麦品种产量形成与水分利用特征. 中国农业大学学报, 2015, 20(6): 25-35. |
WU J Z, WANG Z M, LI Y J, ZHANG Y H. Characteristics of yield formation and water use in different drought tolerance cultivars of winter wheat under drought stress. Journal of China Agricultural University, 2015, 20(6): 25-35. (in Chinese) | |
[33] |
IDSO S B, JACKSON R D, PINTER, JR P J, REGINATO R J, HATFIELD J L. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 1981, 24(1): 45-55.
doi: 10.1016/0002-1571(81)90032-7 |
[34] |
XU J, LV Y P, LIU X Y, DALSON T, YANG S H, WU J. Diagnosing crop water stress of rice using infrared thermal imager under water deficit condition. International Journal of Agriculture & Biology, 2015. DOI: 10.17957/IJAB/15.0125.
doi: 10.17957/IJAB/15.0125 |
[35] |
BIJU S, FUENTES S, GUPTA D. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought- tolerant lentil genotypes. Plant Physiology and Biochemistry, 2018, 127: 11-24.
doi: 10.1016/j.plaphy.2018.03.005 |
[36] |
BIAN J, ZHANG Z T, CHEN J Y, CHEN H Y, CUI C F, LI X W, CHEN S B, FU Q Q. Simplified evaluation of cotton water stress using high resolution Unmanned Aerial Vehicle thermal imagery. Remote Sensing, 2019, 11(3): 267.
doi: 10.3390/rs11030267 |
[37] | 张仁华. 定量热红外遥感模型及地面实验基础. 北京: 科学出版社, 2009. |
ZHANG R H. Quantitative Thermal Infrared Remote Sensing Model and Ground Experiment Basis. Beijing: Science Press, 2009. (in Chinese) | |
[38] | KARIMIZADEH R, MOHAMMADI M. Association of canopy temperature depression with yield of durum wheat genotypes under supplementary irrigated and rainfed conditions. Australian Journal of Crop Science, 2011, 5(2): 138-146. |
[39] |
KUMAR M, GOVINDASAMY, RANE J, SINGH A K, CHOUDHARY R L, RAINA S K, GEORGE P, AHER L K, SINGH N P. Canopy temperature depression (CTD) and canopy greenness associated with variation in seed yield of soybean genotypes grown in semi-arid environment. South African Journal of Botany, 2017, 113: 230-238.
doi: 10.1016/j.sajb.2017.08.016 |
[40] |
REBETZKE G J, RATTEY A R, FARQHAR G D, RICHARDS R A, CONDON A G. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Functional Plant Biology, 2013, 40(1): 14-33.
doi: 10.1071/FP12184 |
[41] |
KRISHNAMURTHY L, KASHIWAGI J, GAUR P M, UPADHYAYA H D, VADAZ V. Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasm. Field Crops Research, 2010, 119(2/3): 322-330.
doi: 10.1016/j.fcr.2010.08.002 |
[42] |
JOAQUIM B, JORDI M, JOAN G, VICTORIA G D, ELIAS F, SUSAN L U, PABLO J Z T. Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and saturn peach orchards. Remote Sensing, 2016, 8(1): 39.
doi: 10.3390/rs8010039 |
[43] | 王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 40(11): 2452-2459. |
WANG S Q, HU Y G, SHE K J, ZHOU L L, MENG F L. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Scientia Agricultura Sinica, 2007, 40(11): 2452-2459. (in Chinese) | |
[44] | 徐蕊, 王启柏, 张春庆, 吴承来. 玉米自交系抗旱性评价指标体系的建立. 中国农业科学, 2009, 42(1): 72-84. |
XU R, WANG Q B, ZHANG C Q, WU C L. Drought-resistance evaluation system of maize inbred. Scientia Agricultura Sinica, 2009, 42(1): 72-84. (in Chinese) | |
[45] | 谢小玉, 张霞, 张兵. 油菜苗期抗旱性评价及抗旱相关指标变化分析. 中国农业科学, 2013, 46(3): 476-485. |
XIE X Y, ZHANG X, ZHANG B. Evaluation of drought resistance and analysis of variation of relevant parameters at seedling stage of rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2013, 46(3): 476-485. (in Chinese) | |
[46] |
李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44(7): 988-999.
doi: 10.3724/SP.J.1006.2018.00988 |
LI L, MAO X G, WANG J Y, CHANG X P, LIU Y P, JING R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44(7): 988-999. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00988 |
|
[47] | 唐延林, 黄敬峰, 王人潮, 王福民. 水稻遥感估产模拟模式比较. 农业工程学报, 2004, 20(1): 166-171. |
TANG Y L, HUANG J F, WANG R C, WANG F M. Comparsion of yield estimation simulated models of rice by remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(1): 166-171. (in Chinese) | |
[48] | 张龙龙, 杨明明, 董剑, 赵万春, 高翔, 陈冬阳. 三个小麦新品种不同生育阶段抗旱性的综合评价. 麦类作物学报, 2016, 36(4): 426-434. |
ZHANG L L, YANG M M, DONG J, ZHAO W C, GAO X, CHEN D Y. Comprehensive analysis of drought resistance of three new wheat cultivars at different growth stages. Journal of Triticeae Crops, 2016, 36(4): 426-434. (in Chinese) |
[1] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[2] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[3] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[4] | 董桑婕,姜小春,王羚羽,林锐,齐振宇,喻景权,周艳虹. 远红光补光对辣椒幼苗生长和非生物胁迫抗性的影响[J]. 中国农业科学, 2022, 55(6): 1189-1198. |
[5] | 李宁,柳坤,刘彤彤,史雨刚,王曙光,杨进文,孙黛珍. 小麦响应干旱胁迫环状RNA的鉴定[J]. 中国农业科学, 2022, 55(23): 4583-4599. |
[6] | 伊英杰,韩坤,赵斌,刘国利,林佃旭,陈国强,任昊,张吉旺,任佰朝,刘鹏. 长期不同施肥措施冬小麦-夏玉米轮作体系周年氨挥发损失的差异[J]. 中国农业科学, 2022, 55(23): 4600-4613. |
[7] | 刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444. |
[8] | 李刚,白阳,贾子颖,马正阳,张祥池,李春艳,李诚. 两种磷素水平下小麦苗期对干旱胁迫的离子组和代谢组响应[J]. 中国农业科学, 2022, 55(2): 280-294. |
[9] | 刘丰,蒋佳丽,周琴,蔡剑,王笑,黄梅,仲迎鑫,戴廷波,曹卫星,姜东. 美国软麦籽粒品质变化趋势及对我国弱筋小麦标准达标度分析[J]. 中国农业科学, 2022, 55(19): 3723-3737. |
[10] | 汝晨,胡笑涛,吕梦薇,陈滇豫,王文娥,宋天媛. 花后高温干旱胁迫下氮素对冬小麦氮积累与代谢酶、蛋白质含量及水氮利用效率的影响[J]. 中国农业科学, 2022, 55(17): 3303-3320. |
[11] | 韩守威,司纪升,余维宝,孔令安,张宾,王法宏,张海林,赵鑫,李华伟,孟鈺. 山东省冬小麦产量差与氮肥利用效率差形成机理解析[J]. 中国农业科学, 2022, 55(16): 3110-3122. |
[12] | 高志源,许吉利,刘硕,田汇,王朝辉. 大田群体冬小麦氮收获指数变异特征研究[J]. 中国农业科学, 2021, 54(3): 583-595. |
[13] | 毛安然,赵护兵,杨慧敏,王涛,陈秀文,梁文娟. 不同覆盖时期和覆盖方式对旱地冬小麦经济和环境效应的影响[J]. 中国农业科学, 2021, 54(3): 608-618. |
[14] | 向晓玲,陈松鹤,杨洪坤,杨永恒,樊高琼. 秸秆覆盖与施磷对丘陵旱地小麦产量和磷素吸收利用效应的影响[J]. 中国农业科学, 2021, 54(24): 5194-5205. |
[15] | 高兴祥,张悦丽,安传信,李美,李健,房锋,张双应. 山东省冬小麦田杂草群落调查及其变化原因分析[J]. 中国农业科学, 2021, 54(24): 5230-5239. |
|