[1] |
LIU Z J, HUBBARD K G, LIN X M, YANG X G. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global Change Biology, 2013, 19(11): 3481-3492.
doi: 10.1111/gcb.12324
pmid: 23857749
|
[2] |
LI C L, WANG Y, LI Y X, ZHU L, CAO Y Q, ZHAO X H, FENG G Z, GAO Q. Mixture of controlled-release and normal urea to improve nitrogen management for maize across contrasting soil types. Agronomy Journal, 2020, 112(4): 3101-3113.
doi: 10.1002/agj2.v112.4
|
[3] |
王缘怡, 李晓宇, 王寅, 张馨月, 冯国忠, 焉莉, 李翠兰, 高强. 吉林省农户玉米种植与施肥现状调查. 中国农业资源与区划, 2021, 42(9): 262-271.
|
|
WANG Y Y, LI X Y, WANG Y, ZHANG X Y, FENG G Z, YAN L, LI C L, GAO Q. Smallholder investigation on current maize cultivation and fertilization in Jilin Province. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(9): 262-271. (in Chinese)
|
[4] |
WANG Y, ZHANG X Y, CHEN J, CHEN A J, WANG L Y, GUO X Y, NIU Y L, LIU S R, MI G H, GAO Q. Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution. Agricultural Water Management, 2019, 212: 328-337.
doi: 10.1016/j.agwat.2018.09.010
|
[5] |
LI Y X, CHEN J, TIAN L B, SHEN Z Y, AMBY D B, LIU F L, GAO Q, WANG Y. Seedling-stage deficit irrigation with nitrogen application in three-year field study provides guidance for improving maize yield, water and nitrogen use efficiencies. Plants (Basel, Switzerland), 2022, 11(21): 3007.
|
[6] |
李玉玺, 王语, 张渝鹏, 朱冠亚, 高强, 王寅. 苗期干旱胁迫和施氮对东北风沙土玉米生长、产量及氮素利用的影响. 吉林农业大学学报. https://doi.org/10.13327/j.jjlau.2021.1821.
|
|
LI Y X, WANG Y, ZAHNG Y P, ZHU G Y, GAO Q, WANG Y. Effects of seedling-drought stress and nitrogen application on maize plant growth, grain yield and nitrogen use efficiency on aeolian sandy soil in Northeast China. Journal of Jilin Agricultural University. https://doi.org/10.13327/j.jjlau.2021.1821. (in Chinese)
|
[7] |
徐昆, 朱秀芳, 刘莹, 郭锐, 陈令仪. 气候变化下干旱对中国玉米产量的影响. 农业工程学报, 2020, 36(11): 149-158.
|
|
XU K, ZHU X F, LIU Y, GUO R, CHEN L Y. Effects of drought on maize yield under climate change in China. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 149-158. (in Chinese)
|
[8] |
|
|
LI X F, SHAO J Y, YU W Z, LIU P, ZHAO B, ZHANG J W, REN B Z. Combined effects of high temperature and drought on yield and photosynthetic characteristics of summer maize. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529. doi: 10.3864/j.issn.0578-1752.2022.18.004. (in Chinese)
|
[9] |
ZHOU G Y, ZHOU X H, NIE Y Y, BAI S H, ZHOU L Y, SHAO J J, CHENG W S, WANG J W, HU F Q, FU Y L. Drought-induced changes in root biomass largely result from altered root morphological traits: evidence from a synthesis of global field trials. Plant, Cell & Environment, 2018, 41(11): 2589-2599.
|
[10] |
SHARP R E, POROYKO V, HEJLEK L G, SPOLLEN W G, SPRINGER G K, BOHNERT H J, NGUYEN H T. Root growth maintenance during water deficits: physiology to functional genomics. Journal of Experimental Botany, 2004, 55(407): 2343-2351.
doi: 10.1093/jxb/erh276
pmid: 15448181
|
[11] |
LI G H, ZHAO B, DONG S T, ZHANG J W, LIU P, LU W P. Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize. Agricultural Water Management, 2020, 227: 105834.
doi: 10.1016/j.agwat.2019.105834
|
[12] |
CHEN J, WANG P, MA Z M, LYU X D, LIU T T, SIDDIQUE K H M. Optimum water and nitrogen supply regulates root distribution and produces high grain yields in spring wheat (Triticum aestivum L.) under permanent raised bed tillage in arid northwest China. Soil and Tillage Research, 2018, 181: 117-126.
doi: 10.1016/j.still.2018.04.012
|
[13] |
张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004.
|
|
ZHANG X Y, WANG Y, CHEN J, CHEN A J, WANG L Y, GUO X Y, NIU Y L, ZHANG X Y, CHEN L D, GAO Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Scientia Agricultura Sinica, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004. (in Chinese)
|
[14] |
LYNCH J P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. The New Phytologist, 2019, 223(2): 548-564.
doi: 10.1111/nph.2019.223.issue-2
|
[15] |
LYNCH J P. Root biology in the 21st century: Challenges and opportunities. Annals of Botany, 2021, 128(1): i-ii.
|
[16] |
LYNCH J P. Harnessing root architecture to address global challenges. The Plant Journal: for Cell and Molecular Biology, 2022, 109(2): 415-431.
doi: 10.1111/tpj.v109.2
|
[17] |
SHEN J B, LI C J, MI G H, LI L, YUAN L X, JIANG R F, ZHANG F S. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. Journal of Experimental Botany, 2013, 64(5): 1181-1192.
doi: 10.1093/jxb/ers342
pmid: 23255279
|
[18] |
ZHANG H, FORDE B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 1998, 279(5349): 407-409.
doi: 10.1126/science.279.5349.407
|
[19] |
LI H B, ZHANG F S, SHEN J B. Contribution of root proliferation in nutrient-rich soil patches to nutrient uptake and growth of maize. Pedosphere, 2012, 22(6): 776-784.
doi: 10.1016/S1002-0160(12)60063-0
|
[20] |
HODGE A, ROBINSON D, GRIFFITHS B S, FITTER A H. Nitrogen capture by plants grown in N-rich organic patches of contrasting size and strength. Journal of Experimental Botany, 1999, 50(336): 1243-1252.
doi: 10.1093/jxb/50.336.1243
|
[21] |
HODGE A, STEWART J, ROBINSON D, GRIFFITHS B S, FITTER A H. Spatial and physical heterogeneity of N supply from soil does not influence N capture by two grass species. Functional Ecology, 2000, 14(5): 645-653.
doi: 10.1046/j.1365-2435.2000.t01-1-00470.x
|
[22] |
FARLEY R A, FITTER A H. Temporal and spatial variation in soil resources in a deciduous woodland. Journal of Ecology, 1999, 87(4): 688-696.
doi: 10.1046/j.1365-2745.1999.00390.x
|
[23] |
JING J Y, ZHANG F S, RENGEL Z, SHEN J B. Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crops Research, 2012, 133: 176-185.
doi: 10.1016/j.fcr.2012.04.009
|
[24] |
MA Q H, ZHANG F S, RENGEL Z, SHEN J B. Localized application of NH4+-N plus P at the seedling and later growth stages enhances nutrient uptake and maize yield by inducing lateral root proliferation. Plant and Soil, 2013, 372(1/2): 65-80.
doi: 10.1007/s11104-013-1735-8
|
[25] |
YU P, WHITE P J, LI C J. New insights to lateral rooting: differential responses to heterogeneous nitrogen availability among maize root types. Plant Signaling & Behavior, 2015, 10(10): e1013795.
|
[26] |
JING J Y, GAO W, CHENG L Y, WANG X, DUAN F Y, YUAN L X, RENGEL Z, ZHANG F S, LI H G, CAHILL J F, SHEN J B. Harnessing root-foraging capacity to improve nutrient-use efficiency for sustainable maize production. Field Crops Research, 2022, 279: 108462.
doi: 10.1016/j.fcr.2022.108462
|
[27] |
CHEN Z, REN W, YI X, LI Q, CAI H G, ALI F, YUAN L X, MI G H, PAN Q C, CHEN F J. Local nitrogen application increases maize post-silking nitrogen uptake of responsive genotypes via enhanced deep root growth. Journal of Integrative Agriculture, 2023, 22(1): 235-250.
doi: 10.1016/j.jia.2022.07.003
|
[28] |
LI X Y, WANG Y, FENG G Z, XU Z, MENG F C, GAO Q. Differential fertilizer nitrogen fates in maize cropping system among three soil textures based on 15N. Field Crops Research, 2023, 291: 108780.
doi: 10.1016/j.fcr.2022.108780
|
[29] |
TENORIO F A M, MCLELLAN E L, EAGLE A J, CASSMAN K G, ANDERSEN D, KRAUSNICK M, OAKLUND R, THORBURN J, GRASSINI P. Benchmarking impact of nitrogen inputs on grain yield and environmental performance of producer fields in the western US Corn Belt. Agriculture, Ecosystems & Environment, 2020, 294: 106865.
|
[30] |
MI G H, CHEN F J, WU Q P, LAI N W, YUAN L X, ZHANG F S. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Science China Life Sciences, 2010, 53(12): 1369-1373.
doi: 10.1007/s11427-010-4097-y
|
[31] |
CAI F, ZHANG Y S, MI N, MING H Q, ZHANG S J, ZHANG H, ZHAO X L. Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree. Agricultural Water Management, 2020, 241: 106379.
doi: 10.1016/j.agwat.2020.106379
|
[32] |
GUO Y F, CHEN F J, ZHANG F S, MI G H. Auxin transport from shoot to root is involved in the response of lateral root growth to localized supply of nitrate in maize. Plant Science, 2005, 169(5): 894-900.
doi: 10.1016/j.plantsci.2005.06.007
|
[33] |
LI H B, WANG X, RENGEL Z, MA Q H, ZHANG F S, SHEN J B. Root over-production in heterogeneous nutrient environment has no negative effects on Zea mays shoot growth in the field. Plant and Soil, 2016, 409(1): 405-417.
doi: 10.1007/s11104-016-2963-5
|
[34] |
YU P, LI X X, YUAN L X, LI C J. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment. Physiologia Plantarum, 2014, 150(1): 133-144.
doi: 10.1111/ppl.2014.150.issue-1
|
[35] |
HODGE A. Plastic plants and patchy soils. Journal of Experimental Botany, 2006, 57(2): 401-411.
doi: 10.1093/jxb/eri280
pmid: 16172138
|
[36] |
CUI Z L, YUE S C, WANG G L, MENG Q F, WU L, YANG Z P, ZHANG Q, LI S Q, ZHANG F S, CHEN X P. Closing the yield gap could reduce projected greenhouse gas emissions: A case study of maize production in China. Global Change Biology, 2013, 19(8): 2467-2477.
doi: 10.1111/gcb.12213
pmid: 23553871
|
[37] |
|
|
WANG Y, FENG G Z, ZHANG T S, RU T J, YUAN Y, GAO Q. Effects of mixed application of controlled-release N fertilizer and common urea on grain yield, N uptake and soil N balance in continuous spring maize production. Scientia Agricultura Sinica, 2016, 49(3): 518-528. doi: 10.3864/j.issn.0578-1752.2016.03.010. (in Chinese)
|
[38] |
米国华, 伍大利, 陈延玲, 夏婷婷, 冯国忠, 李前, 石东峰, 苏效坡, 高强. 东北玉米化肥减施增效技术途径探讨. 中国农业科学, 2018, 51(14): 2758-2770. doi: 10.3864/j.issn.0578-1752.2018.14.013.
|
|
MI G H, WU D L, CHEN Y L, XIA T T, FENG G Z, LI Q, SHI D F, SU X P, GAO Q. The ways to reduce chemical fertilizer input and increase fertilizer use efficiency in maize in northeast China. Scientia Agricultura Sinica, 2018, 51(14): 2758-2770. doi: 10.3864/j.issn.0578-1752.2018.14.013. (in Chinese)
|