中国农业科学 ›› 2024, Vol. 57 ›› Issue (18): 3507-3521.doi: 10.3864/j.issn.0578-1752.2024.18.001

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

冬小麦淀粉糊化性状的全基因组关联分析

商航(), 程宇坤, 任毅, 耿洪伟()   

  1. 新疆农业大学农学院/新疆农业大学优质专用麦类作物工程技术研究中心,乌鲁木齐 830052
  • 收稿日期:2024-03-11 接受日期:2024-04-26 出版日期:2024-09-16 发布日期:2024-09-29
  • 通信作者:
    耿洪伟,E-mail:
  • 联系方式: 商航,E-mail:1773180483@qq.com。
  • 基金资助:
    新疆维吾尔自治区乌昌石国家自主创新示范区科技发展计划(2022LQ03017); 新疆青年科技拔尖人才专项(2022TSYCCX0079); 新疆小麦产业技术体系(XJARS-01-02)

Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat

SHANG Hang(), CHENG YuKun, REN Yi, GENG HongWei()   

  1. College of Agronomy, Xinjiang Agricultural University/Special High Quality Triticeae Crops Engineering and Technology Research Center, Xinjiang Agricultural University, Urumqi 830052
  • Received:2024-03-11 Accepted:2024-04-26 Published:2024-09-16 Online:2024-09-29

摘要:

【目的】淀粉是小麦籽粒的主要成分,在加工过程中起着重要作用。而淀粉的糊化特性则是评估其品质的重要指标。深入研究淀粉糊化特性的遗传变异,为提升小麦的品质提供依据。【方法】通过对205份冬小麦品种(系)的糊化温度、峰值时间、峰值黏度、低谷黏度、最终黏度、衰减值和回生值7个淀粉糊化性状进行表型测定,利用90K芯片进行全基因组关联分析,并对挖掘出的稳定且显著的位点进行单倍型分析。【结果】糊化温度等7个性状在不同环境间均表现出丰富的变异,衰减值的变异系数最大(29.31%—31.14%)。各性状在基因型、环境、基因型×环境间均呈现出极显著差异,广义遗传力为0.69—0.86。通过全基因组关联分析,共发现198个位点,这些位点与7个性状呈现出显著的关联,分布在除6D染色体外的其他20个连锁群。在2个及2个以上的环境中均稳定存在的位点有58个,涉及糊化温度(10个)、峰值时间(5个)、峰值黏度(12个)、低谷黏度(10个)、最终黏度(7个)、衰减值(4个)和回生值(10个)等所有7个性状,能解释遗传变异的5.54%—22.21%,发现新位点有21个。通过对多环境下存在且表型贡献率高的多效应位点进行单倍型分析,位于4A染色体的Kukri_c17417_407位点发掘到与峰值黏度和衰减值等性状显著相关的Hap1(占比66.84%)、Hap2(16.84%)、Hap3(9.70%)和Hap4(6.63%)等4个单倍型,其中,Hap2是高峰值黏度和高衰减值单倍型(P<0.0001)。含有单倍型Hap2的品种(系)在不同生态区中分布频率由高到低为黄淮冬麦区>国外品种>西南冬麦区>长江中下游冬麦区>北部冬麦区。有11个位点为一因多效位点,其中,最终黏度、回生值、峰值时间和低谷黏度等性状相关联的多效应位点均有3个。对位于1B、2A、3A、3B、4A、4B、5B和6B上的Jagger_c4026_328等11个稳定遗传的位点进行候选基因的挖掘,筛选到11个可能与小麦淀粉糊化性状相关的候选基因。【结论】RVA参数具有较高的遗传力,不同环境间的小麦淀粉RVA参数均表现较大差异。检测到58个与淀粉糊化性状显著关联的稳定位点,在4A染色体鉴定到与峰值黏度和衰减值等性状显著相关的4个不同单倍型,筛选出11个与淀粉糊化相关的候选基因,可为分子标记辅助优质小麦育种提供帮助。

关键词: 冬小麦, 淀粉糊化, SNP标记, GWAS, 单倍型, 候选基因

Abstract:

【Objective】 Starch is the main component of wheat kernel and plays an important role in processing. The gelatinization characteristic of starch is an important index to evaluate its quality. The genetic variation of starch gelatinization was studied to provide basis for improving wheat quality. 【Method】 Seven starch gelatinization traits, including gelatinization temperature, peak time, peak viscosity, trough viscosity, final viscosity, decay value and recovery value, were phenotypically determined in 205 winter wheat varieties. Genome-wide association analysis was performed using 90K chip, and haplotype analysis was performed on the stable and significant sites found. 【Result】 The seven characteristics, such as pasting temperature, showed abundant variation in different environments, and the coefficient of variation of attenuation value was the largest (29.31%-31.14%). There were significant differences among genotype, environment and genotype × environment, and the generalized heritability was 0.69-0.86. Through genome-wide association analysis, we found 198 loci that showed significant associations with seven traits. It was distributed in 20 other linked groups except 6D chromosome. There were 58 sites that were stable in 2 or more environments, involving all 7 traits, such as pasting temperature (10), peak time (5), peak viscosity (12), trough viscosity (10), final viscosity (7), break down (4) and set back (10), which could explain 5.54%-22.21% of genetic variation, twenty-one new sites were identified. By haplotype analysis of multiple effector sites that exist in multiple environments and have high phenotypic contribution, Four haplotypes, Hap1 (66.84%), Hap2 (16.84%), Hap3 (9.70%) and Hap4 (6.63%), were found at Kukri_c17417_407 on chromosome 4A, which were significantly related to peak viscosity and break down. Where Hap2 is the peak viscosity and high break down. (P<0.0001). The distribution frequency of varieties (lines) containing haplotype Hap2 in different ecological regions was from high to low as Huanghuai winter wheat region>foreign varieties>Southwest winter wheat region>Middle and lower reaches of Yangtze River winter wheat region>Northern winter wheat region. There were 11 single cause multieffect sites, among which there were 3 multiple effect sites associated with final viscosity, set back, peak time and trough viscosity. Jagger_c4026_328 and other 11 stable genetic loci located on 1B, 2A, 3A, 3B, 4A, 4B, 5B and 6B were mined, and 11 candidate genes that might be related to wheat starch gelatinization traits were screened. 【Conclusion】 In this study, RVA parameters had high heritability, and the RVA parameters of wheat starch were different in different environments. In this study, RVA parameters had high heritability, and the RVA parameters of wheat starch were different in different environments. 58 stable loci were detected that were significantly associated with starch gelatinization traits, and 4 different haplotypes were identified on chromosome 4A that were significantly associated with peak viscosity and break down, and 11 candidate genes related to starch gelatinization were screened, which could provide help for marker-assisted high-quality wheat breeding.

Key words: winter wheat, starch gelatinization, SNP marker, GWAS, haplotype, candidate genes