中国农业科学 ›› 2022, Vol. 55 ›› Issue (1): 96-110.doi: 10.3864/j.issn.0578-1752.2022.01.009
李帅帅1(),郭俊杰1,刘文波1,韩春龙2,贾海飞2,凌宁1,郭世伟1(
)
收稿日期:
2020-12-26
接受日期:
2021-04-02
出版日期:
2022-01-01
发布日期:
2022-01-07
通讯作者:
郭世伟
作者简介:
李帅帅,E-mail: 基金资助:
LI ShuaiShuai1(),GUO JunJie1,LIU WenBo1,HAN ChunLong2,JIA HaiFei2,LING Ning1,GUO ShiWei1(
)
Received:
2020-12-26
Accepted:
2021-04-02
Online:
2022-01-01
Published:
2022-01-07
Contact:
ShiWei GUO
摘要:
【目的】探究不同轮作体系对土壤磷素有效性的影响,评估不同轮作体系土壤磷素活化潜力,为农田磷素高效利用提供科学依据。【方法】试验于2018—2020年在江苏省如皋市农业科学研究所开展,设置水稻-小麦(R-W)、水稻-油菜(R-O)、水稻-包菜(R-C)、水稻-闲田(R-F)4个轮作模式,每种轮作模式下设置3种施肥处理,分别为不施肥处理(CK)、不施磷处理(NK)、氮磷钾肥处理(NPK)。通过分析旱季和稻季成熟期不同施肥条件下地上部作物吸磷量、土壤磷组分含量、土壤微生物量及碱性磷酸酶活性等,明确不同水旱轮作体系下土壤磷素平衡及有效性变化规律,并探究其主要影响因素。【结果】NK处理下土壤磷素的严重失衡导致不同轮作体系土壤有效磷的补充存在差异。在NK处理下,R-O轮作可以保持较高的磷素输出以及促进土壤有效磷的补充。具体表现为NK处理下旱季R-O轮作体系下土壤活性磷相对含量较其他轮作体系低5.7%—7.3%,土壤中等活性磷和稳定性磷相对含量分别较其他轮作体系高4.2%—6.4%和0.9%—1.9%。相比之下,NK处理下稻季土壤中等活性磷相对含量较其他轮作体系高0.5%—3.0%,活性磷和稳定性磷相对含量则分别较其他轮作体系低0—1.5%和0.2%—2.3%。NK处理下,R-O轮作土壤微生物量碳磷比在旱季和稻季均相对较小,且在稻季时显著低于R-W轮作。土壤微生物量氮磷比也具有类似的规律。R-O轮作土壤碱性磷酸酶在旱季和稻季均保持较高活性。路径分析模型表明,磷素携出量(-0.53)和碱性磷酸酶(-0.51)分别对旱季和稻季土壤有效磷含量的贡献最高。【结论】在土壤磷素相对亏缺时,水稻-油菜轮作可以通过在旱季释放更多的碱性磷酸酶和调节稻季的土壤微生物量碳磷比,进而促进微生物活化非活性态磷库以补充活性态磷库,以保证在不影响磷素输出的情况下维持土壤有效磷含量的相对稳定。
李帅帅, 郭俊杰, 刘文波, 韩春龙, 贾海飞, 凌宁, 郭世伟. 不同施肥模式下轮作制度引起的土壤磷素有效性变化及其影响因素[J]. 中国农业科学, 2022, 55(1): 96-110.
LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies[J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
表1
不同轮作体系下周年磷表观平衡及磷肥回收率"
施肥处理 Fertilization treatment | 轮作体系 Rotation system | 磷肥总投入量 Total P2O5 input (kg·hm-2) | 2019年旱季磷携出量 P2O5 removal in dry season 2019 (kg·hm-2) | 2019年稻季磷携出量 P2O5 removal in rice season 2019 (kg·hm-2) | 磷携出总量 Total P2O5 removal (kg·hm-2) | 土壤磷盈余 P2O5 surplus (kg·hm-2) | 磷肥回收率 Precovery (%) |
---|---|---|---|---|---|---|---|
CK | R-W | 0 | 34.9±8.3a | 66.1±16.7a | 101.1±10.5a | -101.1±10.5a | — |
R-O | 0 | 41.2±6.0a | 52.4±10.2a | 93.6±6.5ab | -93.6±6.5ab | — | |
R-C | 0 | 15.4±4.4b | 65.1±3.2a | 80.5±7.6b | -80.5±7.6b | — | |
R-F | 0 | — | 54.4±1.1a | 54.4±1.1c | -54.4±1.1c | — | |
NK | R-W | 0 | 69.5±3.8a | 77.8±9.5bc | 147.3±10.6a | -147.3±10.6a | — |
R-O | 0 | 69.7±21.7a | 73.5±6.4c | 143.3±26.2ab | -143.3±26.2ab | — | |
R-C | 0 | 47.5±10.0a | 99.9±10.9ab | 147.3±9.9a | -147.3±9.9a | — | |
R-F | 0 | — | 109.7±19.8a | 109.7±19.8b | -109.7±19.8b | — | |
NPK | R-W | 120 | 72.5±1.8b | 90.1±0.5b | 162.6±1.7b | -42.6±1.7b | 12.8±7.5c |
R-O | 120 | 98.9±6.7a | 83.5±10.5b | 182.4±5.5a | -62.4±5.5a | 32.7±6.2a | |
R-C | 150 | 71.2±13.8b | 129.3±2.6a | 200.5±11.2a | -50.5±11.2ab | 35.5±12.0a | |
R-F | 60 | — | 122.4±31.1a | 122.4±31.1c | -62.4±31.1ab | 21.2±4.9ab | |
轮作 Rotation | 13.8*** | 9.5*** | 20.4*** | 4.9*** | |||
施肥 Fertilization | 55.6*** | 38.4*** | 100.8*** | 96.2** | |||
轮作×施肥 Rotation×Fertilization | 1.5ns | 2.7* | 2.6* | 3.4* |
表2
不同轮作体系下磷含量及有效性"
施肥处理 Fertilization treatment | 轮作体系 Rotation system | 2019年旱季 Dry season in 2019 | 2019年稻季 Rice season in 2019 | 2020年旱季 Dry season in 2020 | 2020年稻季 Rice season in 2020 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
全磷 TP (g·kg-1) | 有效磷 AP (mg·kg-1) | 磷活化 系数 PAC(%) | 全磷 TP (g·kg-1) | 有效磷 AP (mg·kg-1) | 磷活化 系数 PAC (%) | 全磷 TP (g·kg-1) | 有效磷 AP (mg·kg-1) | 磷活化 系数 PAC (%) | 全磷 TP (g·kg-1) | 有效磷 AP (mg·kg-1) | 磷活化 系数 PAC (%) | |||||
CK | R-W | 1.09±0.06a | 51.7±4.6a | 4.7±0.4ab | 0.89±0.06a | 39.8±3.3a | 4.5±0.6a | 0.87±0.02a | 46.8±6.4a | 5.4±0.6a | 0.93±0.20ab | 46.1±7.9a | 5.0±0.4a | |||
R-O | 0.92±0.05b | 37.0±3.7b | 4.0±0.3b | 0.91±0.04a | 28.7±1.9b | 3.2±0.1b | 0.86±0.17a | 38.7±4.6a | 4.6±0.5a | 0.85±0.09b | 34.8±3.7a | 4.1±0.8a | ||||
R-C | 1.00±0.07ab | 52.8±7.2a | 5.3±0.6a | 0.91±0.06a | 35.8±5.0ab | 4.0±0.8ab | 0.92±0.03a | 46.3±8.5a | 5.1±1.1a | 1.07±0.02a | 44.2±8.8a | 4.1±0.8a | ||||
R-F | 1.08±0.07a | 54.1±13.8a | 5.0±0.8ab | 0.93±0.12a | 35.7±9.3ab | 3.8±0.5ab | 0.88±0.10a | 42.4±8.3a | 4.8±0.7a | 0.97±0.10ab | 44.7±8.4a | 4.6±0.5a | ||||
NK | R-W | 1.02±0.07a | 56.6±3.6a | 5.6±0.4a | 0.93±0.11a | 43.3±0.8a | 4.7±0.6a | 0.74±0.13a | 41.1±5.1a | 5.6±0.4a | 0.90±0.14a | 39.0±3.7a | 4.5±1.2a | |||
R-O | 0.92±0.01a | 41.3±10.0b | 4.7±0.9a | 0.97±0.03a | 44.2±3.0a | 4.6±0.5a | 0.75±0.14a | 28.6±3.3b | 4.0±1.2a | 0.81±0.10a | 33.5±3.9a | 4.1±0.6a | ||||
R-C | 1.02±0.07a | 57.1±9.2a | 5.6±0.6a | 1.05±0.05a | 51.6±9.1a | 4.9±0.7a | 0.86±0.09a | 42.5±7.8a | 4.9±0.8a | 0.84±0.11a | 46.1±12.4a | 5.4±0.9a | ||||
R-F | 1.01±0.06a | 60.2±6.7a | 6.0±0.8a | 1.05±0.08a | 47.4±4.3a | 4.5±0.1a | 0.85±0.22a | 39.4±2.8a | 4.9±1.8a | 0.96±0.10a | 39.0±4.4a | 4.1±0.9a | ||||
NPK | R-W | 1.02±0.07a | 56.3±1.2ab | 5.5±0.3ab | 0.95±0.03a | 57.1±5.7a | 6.0±0.7a | 0.81±0.12a | 43.4±5.5a | 5.4±0.5a | 0.77±0.13a | 45.3±1.8a | 6.0±1.2a | |||
R-O | 0.95±0.07a | 50.1±6.8b | 5.3±0.6b | 0.97±0.02a | 51.4±7.2a | 5.0±0.5a | 0.85±0.11a | 33.4±8.1a | 4.0±1.5a | 0.84±0.03a | 38.8±3.2a | 4.6±0.2a | ||||
R-C | 1.04±0.09a | 65.4±10.0a | 6.3±0.6a | 0.99±0.11a | 58.0±11.8a | 5.8±0.5a | 0.87±0.09a | 42.2±12.6a | 4.9±1.6a | 0.86±0.22a | 43.8±14.0a | 5.1±0.8a | ||||
R-F | 1.05±0.04a | 58.6±7.0ab | 5.6±0.5ab | 0.98±0.07a | 50.1±11.1a | 5.1±1.0a | 0.91±0.04a | 44.3±6.0a | 4.8±0.7a | 0.78±0.08a | 47.1±4.6a | 6.1±0.9a | ||||
轮作 Rotation | 6.9** | 8.3** | 1.9ns | 1.5ns | 1.6ns | 3.7* | 1.1ns | 4.3* | 2.2ns | 0.9ns | 2.9ns | 1.8ns | ||||
施肥 Fertilization | 1.1ns | 3.6* | 5.7** | 4.4* | 22.0*** | 24.1*** | 1.6ns | 1.9ns | 0.07ns | 3.9* | 1.1ns | 5.1* | ||||
轮作×施肥 Rotation × Fertilization | 0.6ns | 0.5ns | 0.9ns | 0.4ns | 0.6ns | 0.7ns | 0.2ns | 0.3ns | 0.1ns | 0.9ns | 0.4ns | 1.4ns |
表3
不同磷组分含量占比"
时期 Season | 施肥处理 Fertilization treatment | 轮作制度 Rotation system | 不同活性磷组分 Different active phosphorus fraction | 不同形态磷组分 Different forms phosphorus fraction | ||||||
---|---|---|---|---|---|---|---|---|---|---|
活性磷 Labile P (%) | 中等活性磷 Moderately labile P (%) | 稳定性磷 Stable P (%) | 有机磷 Organic P (%) | 无机磷 Inorganic P (%) | 残余态磷 Residual P (%) | |||||
2019年旱季 Dry season in 2019 | CK | R-W | 15.9±1.1b | 65.5±1.7a | 18.6±1.7b | 10.4±1.3a | 77.7±2.8a | 12.0±2.0ab | ||
R-O | 13.0±1.0c | 63.6±2.0a | 23.3±2.5a | 10.0±1.0a | 75.4±2.8a | 14.5±2.0a | ||||
R-C | 13.3±1.5c | 63.0±3.9a | 23.7±3.1a | 9.7±1.5a | 76.0±4.0a | 14.3±2.6a | ||||
R-F | 19.4±0.7a | 63.2±2.0a | 17.4±1.4b | 11.4±0.6a | 79.2±1.1a | 9.3±0.8b | ||||
NK | R-W | 16.8±3.2a | 66.5±3.6b | 16.7±1.1a | 7.4±2.6a | 83.4±2.6a | 9.3±1.0a | |||
R-O | 9.5±1.2b | 72.9±1.7a | 17.6±0.5a | 6.5±0.5a | 84.9±0.5a | 8.7±0.2a | ||||
R-C | 15.6±2.2a | 68.7±4.3ab | 15.7±2.9a | 6.1±2.2a | 84.9±2.9a | 9.0±3.5a | ||||
R-F | 15.2±1.4a | 66.8±3.0ab | 18.0±1.7a | 6.6±0.3a | 82.6±1.6a | 10.9±1.8a | ||||
NPK | R-W | 15.2±0.9ab | 69.5±1.8a | 15.4±1.9ab | 7.1±0.5ab | 85.1±1.5ab | 7.8±1.0a | |||
R-O | 11.6±1.4b | 68.8±2.2a | 19.6±3.6a | 8.8±0.8a | 80.3±3.6b | 10.9±3.3a | ||||
R-C | 18.3±3.8a | 68.0±7.0a | 13.7±3.3b | 4.0±0.8c | 88.6±4.6a | 7.3±3.9a | ||||
R-F | 13.1±2.2b | 72.1±1.1a | 14.9±1.5ab | 6.1±1.4b | 86.7±2.1a | 7.2±1.3a | ||||
轮作Rotation | 12.0*** | 0.5ns | 4.4* | 3.6* | 2.1ns | 1.6ns | ||||
施肥 Fertilization | 1.1ns | 10.9*** | 14.8*** | 33.4*** | 29.7*** | 11.4*** | ||||
轮作×施肥 Rotation × Fertilization | 5.0** | 1.6ns | 3.0* | 2.4ns | 2.3ns | 2.1ns | ||||
2019年稻季 Rice season in 2019 | CK | R-W | 15.8±0.1a | 69.3±0.4a | 14.9±0.6a | 7.6±0.7b | 85.4±0.6a | 6.9±0.5a | ||
R-O | 12.3±2.4a | 71.2±3.4a | 16.5±1.4a | 10.2±1.4a | 81.7±2.4c | 8.1±1.3a | ||||
R-C | 14.9±3.1a | 68.8±2.2a | 16.3±1.4a | 9.5±0.8a | 82.4±0.5bc | 8.1±1.1a | ||||
R-F | 15.1±2.1a | 68.7±1.6a | 16.2±1.3a | 7.8±0.1b | 84.7±0.8ab | 7.5±0.6a | ||||
NK | R-W | 15.0±3.0a | 68.7±1.5a | 16.4±2.1a | 5.4±0.5ab | 86.6±1.4a | 8.0±1.1a | |||
R-O | 13.4±2.3a | 71.6±0.9a | 14.9±1.5a | 5.9±0.1a | 86.6±1.4a | 7.4±1.3a | ||||
R-C | 13.7±1.0a | 71.1±3.8a | 15.2±3.7a | 4.6±0.8b | 86.4±4.0a | 9.0±4.1a | ||||
R-F | 13.5±0.6a | 69.3±0.2a | 17.2±0.5a | 5.2±0.6ab | 84.4±0.5a | 10.4±1.0a | ||||
NPK | R-W | 17.8±1.9a | 68.4±2.7a | 13.8±1.1a | 6.9±0.3ab | 86.1±1.2ab | 7.0±1.0a | |||
R-O | 15.4±0.9a | 69.4±2.5a | 15.2±3.2a | 5.0±1.9bc | 86.8±2.4ab | 8.2±2.9a | ||||
R-C | 17.7±4.7a | 68.4±2.6a | 13.9±2.1a | 3.9±0.4c | 89.0±0.5a | 7.0±0.9a | ||||
R-F | 15.1±2.3a | 67.6±0.6a | 17.3±2.7a | 7.1±0.9a | 83.8±2.7b | 9.0±1.9a | ||||
轮作Rotation | 1.8ns | 1.8ns | 1.6ns | 2.2ns | 1.7ns | 1.3ns | ||||
施肥 Fertilization | 3.9* | 2.0ns | 0.8ns | 58.2*** | 8.3** | 1.2ns | ||||
轮作×施肥 Rotation × Fertilization | 0.4ns | 0.3ns | 0.8ns | 7.5*** | 2.9* | 0.7ns |
表4
不同轮作体系下土壤微生物学特征"
时期 Season | 施肥处理 Fertilization treatment | 轮作制度 Rotation system | 微生物量碳MBC (mg·kg-1) | 微生物量氮MBN (mg·kg-1) | 微生物量磷MBP (mg·kg-1) | 微生物量 碳氮比 MBC/MBN | 微生物量 碳磷比 MBC/MBP | 微生物量 氮磷比MBN/MBP | 碱性磷酸酶 ALP (μg·g-1·h-1) |
---|---|---|---|---|---|---|---|---|---|
2019年旱季 Dry season in 2019 | CK | R-W | 639.9±81.2ab | 59.9±13.7bc | 18.9±3.1a | 11.0±2.1b | 34.1±3.4b | 3.1±0.3c | 277.3±61.4c |
R-O | 590.3±52.1b | 67.7±2.1b | 13.5±2.5b | 8.7±1.0bc | 44.2±5.4b | 5.1±1.1b | 441.4±59.9ab | ||
R-C | 744.7±54.9a | 45.1±1.9c | 21.1±1.6a | 16.5±1.1a | 35.4±3.4b | 2.1±0.2c | 386.5±93.4bc | ||
R-F | 646.8±110.1ab | 84.9±9.4a | 10.1±0.3b | 7.7±0.9c | 64.2±8.6a | 8.4±1.1a | 459.6±85.7a | ||
NK | R-W | 1174.1±67.4a | 96.4±15.7ab | 21.8±3.5a | 12.3±1.3a | 55.1±11.7a | 4.6±1.4a | 231.6±19.6a | |
R-O | 1157.0±94.0a | 99.9±0.1a | 15.8±4.8a | 11.6±0.9a | 77.5±23.7a | 6.7±2.1a | 259.4±41.7a | ||
R-C | 1190.4±85.4a | 84.7±37.9b | 15.7±4.7a | 14.0±0.4a | 77.8±14.5a | 5.5±1.1a | 257.7±84.0a | ||
R-F | 1206.4±78.4a | 93.5±18.6ab | 15.3±2.8a | 13.2±2.6a | 80.2±12.5a | 6.1±0.4a | 258.4±45.0a | ||
NPK | R-W | 1380.1±77.9b | 121.3±7.3a | 17. 5±1.7a | 11.4±0.8b | 79.4±6.3c | 7.0±1.1a | 250.9±39.6a | |
R-O | 1657.1±16.3a | 120.1±3.1a | 13.8±1.4b | 13.8±0.3ab | 120.4±10.9b | 8.7±0.8a | 301.2±30.4a | ||
R-C | 1487.5±75.3b | 112.2±11.7ab | 9.5±2.9c | 13.4±1.9ab | 162.2±38.4a | 12.3±3.7a | 238.4±98.4a | ||
R-F | 1398.5±74.2b | 96.5±12.5b | 9.2±0.2c | 14.6±1.6a | 151.7±9.6ab | 10.5±1.3a | 289.8±22.0a | ||
轮作Rotation | 2.6ns | 3.2* | 14.0*** | 10.9*** | 12.9*** | 7.6** | 4.0* | ||
施肥 Fertilization | 425.7*** | 69.2*** | 10.3** | 9.3** | 90.1*** | 34.8*** | 20.1*** | ||
轮作×施肥 Rotation × Fertilization | 5.0** | 4.8** | 4.1** | 8.7*** | 4.1** | 5.0** | 1.4ns | ||
2019年稻季 Rice season in 2019 | CK | R-W | 742.7±13.6a | 87.9±5.7a | 14.4±4.4a | 8.5±0.4a | 55.3±18.4a | 6.6±2.3a | 291.6±67.5a |
R-O | 810.6±55.6a | 76.8±7.5ab | 12.6±2.4a | 10.6±1.1a | 66.3±15.1a | 6.3±1.5a | 338.5±40.1a | ||
R-C | 679.2±105.8a | 71.2±25.1ab | 15.7±7.6a | 10.7±5.4a | 53.1±32.4a | 5.0±1.9a | 308.5±50.3a | ||
R-F | 781.5±92.1a | 54.0±7.7b | 13.1±2.1a | 14.8±3.9a | 61.5±16.9a | 4.2±0.5a | 310.2±32.1a | ||
NK | R-W | 395.2±69.5a | 45.1±1.3b | 15.1±4.8c | 8.8±1.7a | 28.1±10.9a | 3.2±1.0a | 254.3±48.0a | |
R-O | 328.9±119.2a | 54.4±19.0ab | 27.0±1.7b | 6.0±0.3ab | 12.0±3.8b | 2.0±0.6b | 276.3±21.4a | ||
R-C | 221.7±104.1a | 78.2±10.0a | 38.1±5.9a | 3.0±1.8c | 6.2±3.8b | 2.1±0.2b | 241.5±99.1a | ||
R-F | 214.8±106.3a | 41.6±10.4b | 40.8±2.6a | 5.0±1.6bc | 5.2±2.6b | 1.0±0.3b | 229.3±31.9a | ||
NPK | R-W | 740.4±42.1b | 59.9±16.5a | 12.5±1.9c | 12.9±3.1a | 59.9±7.7a | 4.7±0.7a | 263.5±70.1a | |
R-O | 656.6±22.6b | 78.3±6.4a | 32.3±7.7b | 8.4±0.7a | 21.0±4.1b | 2.5±0.6b | 237.3±21.6a | ||
R-C | 743.3±86.5b | 71.4±19.8a | 40.7±4.6b | 11.1±3.5a | 18.6±4.4b | 1.8±0.4bc | 226.2±38.1a | ||
R-F | 907.2±51.0a | 80.9±8.6a | 56.0±2.9a | 11.2±0.7a | 16.2±1.0b | 1.4±0.2c | 178.1±25.9b | ||
轮作Rotation | 2.2ns | 2.2ns | 42.3*** | 1.7ns | 4.9** | 9.6*** | 1.3ns | ||
施肥 Fertilization | 138.8*** | 7.3** | 72.9*** | 17.7*** | 36.8*** | 35.1*** | 9.2** | ||
轮作×施肥 Rotation × Fertilization | 4.1** | 3.8** | 13.0*** | 3.0* | 2.4ns | 0.7ns | 0.6ns |
[1] |
BALEMI T, NEGISHO K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: A review. Journal of Soil Science and Plant Nutrition, 2012(ahead).doi: 10.4067/s0718-95162012005000015.
doi: 10.4067/s0718-95162012005000015 |
[2] | 马进川. 我国农田磷素平衡的时空变化与高效利用途径[D]. 北京: 中国农业科学院, 2018. |
MA J C. Temporal and spatial variation of phosphorus balance and solutions to improve phosphorus use efficiency in Chinese arable land[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese) | |
[3] |
LUEDERS T, KINDLER R, MILTNER A, FRIEDRICH M W, KAESTNER M. Identification of bacterial micropredators distinctively active in a soil microbial food web. Applied and Environmental Microbiology, 2006, 72(8): 5342-5348. doi: 10.1128/AEM.00400-06.
doi: 10.1128/AEM.00400-06 |
[4] |
BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology & Biotechnology, 2012, 28(4): 1327-1350. doi: 10.1007/s11274-011-0979-9.
doi: 10.1007/s11274-011-0979-9 |
[5] |
ZHANG H Z, SHI L L, WEN D Z, YU K L. Soil potential labile but not occluded phosphorus forms increase with forest succession. Biology and Fertility of Soils, 2016, 52(1): 41-51. doi: 10.1007/s00374-015-1053-9.
doi: 10.1007/s00374-015-1053-9 |
[6] |
MENEZES-BLACKBURN D, GILES C, DARCH T, GEORGE T S, BLACKWELL M, STUTTER M, SHAND C, LUMSDON D, COOPER P, WENDLER R, BROWN L, ALMEIDA D S, WEARING C, ZHANG H, HAYGARTH P M. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant and Soil, 2018, 427(1): 5-16. doi: 10.1007/s11104-017-3362-2.
doi: 10.1007/s11104-017-3362-2 |
[7] | 范明生, 江荣风, 张福锁, 吕世华, 刘学军. 水旱轮作系统作物养分管理策略. 应用生态学报, 2008, 19(2): 424-432. |
FAN M S, JIANG R F, ZHANG F S, LÜ S H, LIU X J. Nutrient management strategy of paddy rice-upland crop rotation system. Chinese Journal of Applied Ecology, 2008, 19(2): 424-432. (in Chinese) | |
[8] |
POWERS S M, BRUULSEMA T W, BURT T P, CHAN N L, ELSER J J, HAYGARTH P M, HOWDEN N J K, JARVIE H P, YANG L, PETERSON H M, SHARPLEY A N, SHEN J B, WORRALL F, ZHANG F S. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 2016, 9(5): 353-357. doi: 10.1038/NGEO2693.
doi: 10.1038/NGEO2693 |
[9] |
FLESSA H, FISCHER W R. Plant-induced changes in the redox potentials of rice rhizospheres. Plant and Soil, 1992, 143(1): 55-60. doi: 10.1007/BF00009128.
doi: 10.1007/BF00009128 |
[10] |
LINDSAY W L, NORVELL W A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 1978, 42(3): 421-428. doi: 10.2136/sssaj1978.03615995004200030009x.
doi: 10.2136/sssaj1978.03615995004200030009x |
[11] | 刘学军, 吕世华, 张福锁, 毛达如. 水肥状况对土壤剖面中锰的移动和水稻吸锰的影响. 土壤学报, 1999, 36(3): 369-376. |
LIU X J, LÜ S H, ZHANG F S, MAO D R. Effect of water and fertilization on movement of manganese in soils and on its uptake by rice. Acta Pedologica Sinica, 1999, 36(3): 369-376. (in Chinese) | |
[12] | 鲁如坤, 蒋柏藩, 牟润生. 磷肥对水稻和旱作的肥效及其后效的研究. 土壤学报, 1965, 2(2): 152-160. |
LU R K, JIANG P F, MU Y S. Studies on the methods of application of phosphatic fertilizer in relation to the yield of crops. Acta Pedologica Sinica, 1965, 2(2): 152-160. (in Chinese) | |
[13] |
FAN Y X, ZHONG X J, LIN F, LIU C, YANG L M, WANG M H, CHEN G S, CHEN Y, YANG Y S. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 2019, 337: 246-255. doi: 10.1016/j.geoderma.2018.09.028.
doi: 10.1016/j.geoderma.2018.09.028 |
[14] |
PII Y, MIMMO T, TOMASI N, TERZANO R, CESCO S, CRECCHIO C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 2015, 51(4): 403-415. doi: 10.1007/s00374-015-0996-1.
doi: 10.1007/s00374-015-0996-1 |
[15] |
BÜNEMANN E K, KELLER B, HOOP D, JUD K, BOIVIN P, FROSSARD E. Increased availability of phosphorus after drying and rewetting of a grassland soil: Processes and plant use. Plant and Soil, 2013, 370(1): 511-526. doi: 10.1007/s11104-013-1651-y.
doi: 10.1007/s11104-013-1651-y |
[16] |
ROMANYÀ J, ROVIRA P. Organic and inorganic P reserves in rain-fed and irrigated calcareous soils under long-term organic and conventional agriculture. Geoderma, 2009, 151(3/4): 378-386. doi: 10.1016/j.geoderma.2009.05.009.
doi: 10.1016/j.geoderma.2009.05.009 |
[17] |
RICHARDSON A E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 2001, 28(9): 897. doi: 10.1071/pp01093.
doi: 10.1071/pp01093 |
[18] |
DELUCA T H, GLANVILLE H C, HARRIS M, EMMETT B A, PINGREE M R A, DE SOSA L L, CERDÁ-MORENO C, JONES D L. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biology and Biochemistry, 2015, 88: 110-119. doi: 10.1016/j.soilbio.2015.05.016.
doi: 10.1016/j.soilbio.2015.05.016 |
[19] |
ROSLING A, MIDGLEY M G, CHEEKE T, URBINA H, FRANSSON P, PHILLIPS R P. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytologist, 2016, 209(3): 1184-1195. doi: 10.1111/nph.13720.
doi: 10.1111/nph.13720 |
[20] |
PISTOCCHI C, MÉSZÁROS É, TAMBURINI F, FROSSARD E, BÜNEMANN E K. Biological processes dominate phosphorus dynamics under low phosphorus availability in organic horizons of temperate forest soils. Soil Biology and Biochemistry, 2018, 126: 64-75. doi: 10.1016/j.soilbio.2018.08.013.
doi: 10.1016/j.soilbio.2018.08.013 |
[21] |
TANG X, SHI X, MA Y, HAO X. Phosphorus efficiency in a long-term wheat-rice cropping system in China. The Journal of Agricultural Science, 2011, 149(3): 297-304. doi: 10.1017/s002185961000081x.
doi: 10.1017/s002185961000081x |
[22] |
YADVINDER-SINGH, DOBERMANN A, BIJAY-SINGH, BRONSON K F, KHIND C S. Optimal phosphorus management strategies for wheat-rice cropping on a loamy sand. Soil Science Society of America Journal, 2000, 64(4): 1413-1422. doi: 10.2136/sssaj2000.6441413x.
doi: 10.2136/sssaj2000.6441413x |
[23] |
HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi: 10.2136/sssaj1982.03615995004600050017x.
doi: 10.2136/sssaj1982.03615995004600050017x |
[24] | MOIR J, TIESSEN H. Characterization of available P by sequential extraction//Soil Sampling and Methods of Analysis. 2nd ed. CRC Press, 2007. |
[25] |
MALTAIS-LANDRY G, SCOW K, BRENNAN E, TORBERT E, VITOUSEK P. Higher flexibility in input N: P ratios results in more balanced phosphorus budgets in two long-term experimental agroecosystems. Agriculture, Ecosystems & Environment, 2016, 223: 197-210. doi: 10.1016/j.agee.2016.03.007.
doi: 10.1016/j.agee.2016.03.007 |
[26] | 孙博, 李帅帅, 周毅, 张莹, 陈健, 刘田, 郭俊杰, 凌宁, 郭世伟. 不同轮作模式下优化施肥对水稻产量及磷素积累与分配的影响. 南京农业大学学报, 2020, 43(4): 658-666. |
SUN B, LI S S, ZHOU Y, ZHANG Y, CHEN J, LIU T, GUO J J, LING N, GUO S W. Effects of optimized fertilization on rice yield and accumulation and distribution of phosphorus under different rotation systems. Journal of Nanjing Agricultural University, 2020, 43(4): 658-666. (in Chinese) | |
[27] | 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000. |
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese) | |
[28] |
CROSS A F, SCHLESINGER W H. A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 1995, 64(3/4): 197-214. doi: 10.1016/0016-7061(94)00023-4.
doi: 10.1016/0016-7061(94)00023-4 |
[29] |
BROOKES P C, POWLSON D S, JENKINSON D S. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 1982, 14(4): 319-329. doi: 10.1016/0038-0717(82)90001-3.
doi: 10.1016/0038-0717(82)90001-3 |
[30] |
WU J, JOERGENSEN R G, POMMERENING B, CHAUSSOD R, BROOKES P C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169. doi: 10.1016/0038-0717(90)90046-3.
doi: 10.1016/0038-0717(90)90046-3 |
[31] |
BROOKES P C, LANDMAN A, PRUDEN G, JENKINSON D S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17(6): 837-842. doi: 10.1016/0038-0717(85)90144-0.
doi: 10.1016/0038-0717(85)90144-0 |
[32] |
NANNIPIERI P, GIAGNONI L, LANDI L, RENELLA G. Role of phosphatase enzymes in soil//Soil Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 215-243. doi: 10.1007/978-3-642-15271-9_9.
doi: 10.1007/978-3-642-15271-9_9 |
[33] |
BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1): 27-37. doi: 10.1007/s11104-013-1696-y.
doi: 10.1007/s11104-013-1696-y |
[34] |
黄晶, 张杨珠, 徐明岗, 高菊生. 长期施肥下红壤性水稻土有效磷的演变特征及对磷平衡的响应. 中国农业科学, 2016, 49(6): 1132-1141. doi: 10.3864/j.issn.0578-1752.2016.06.009.
doi: 10.3864/j.issn.0578-1752.2016.06.009 |
HUANG J, ZHANG Y Z, XU M G, GAO J S. Evolution characteristics of soil available phosphorus and its response to soil phosphorus balance in paddy soil derived from red earth under long-term fertilization. Scientia Agricultura Sinica, 2016, 49(6): 1132-1141. doi: 10.3864/j.issn.0578-1752.2016.06.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.06.009 |
|
[35] |
LU S, LEPO J E, SONG H X, GUAN C Y, ZHANG Z H. Increased rice yield in long-term crop rotation regimes through improved soil structure, rhizosphere microbial communities, and nutrient bioavailability in paddy soil. Biology and Fertility of Soils, 2018, 54(8): 909-923. doi: 10.1007/s00374-018-1315-4.
doi: 10.1007/s00374-018-1315-4 |
[36] |
WEAND M P, ARTHUR M A, LOVETT G M, SIKORA F, WEATHERS K C. The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry, 2010, 97(2): 159-181. doi: 10.1007/s10533-009-9364-2.
doi: 10.1007/s10533-009-9364-2 |
[37] |
ZHANG H Z, SHI L L, LU H B, SHAO Y H, LIU S R, FU S L. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. Science of the Total Environment, 2020, 732: 139295. doi: 10.1016/j.scitotenv.2020.139295.
doi: 10.1016/j.scitotenv.2020.139295 |
[38] |
WANG Y L, ALMVIK M, CLARKE N, EICH-GREATOREX S, ØGAARD A F, KROGSTAD T, LAMBERS H, CLARKE J L. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits. AoB PLANTS, 2015, 7(10.1093): aobpla. doi: 10.1093/aobpla/plv097.
doi: 10.1093/aobpla/plv097 |
[39] |
VERMA S, SUBEHIA S K, SHARMA S P. Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers. Biology and Fertility of Soils, 2005, 41(4): 295-300. doi: 10.1007/s00374-004-0810-y.
doi: 10.1007/s00374-004-0810-y |
[40] |
ZHU W B, ZHAO X, WANG S Q, WANG Y. Inter-annual variation in P speciation and availability in the drought-rewetting cycle in paddy soils. Agriculture, Ecosystems & Environment, 2019, 286: 106652. doi: 10.1016/j.agee.2019.106652.
doi: 10.1016/j.agee.2019.106652 |
[41] |
FAN Y X, LIN F, YANG L M, ZHONG X J, WANG M H, ZHOU J C, CHEN Y, YANG Y S. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem. Biology and Fertility of Soils, 2018, 54(1): 149-161. doi: 10.1007/s00374-017-1251-8.
doi: 10.1007/s00374-017-1251-8 |
[42] |
YANG K, ZHU J J, GU J C, YU L Z, WANG Z Q. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation. Annals of Forest Science, 2015, 72(4): 435-442. doi: 10.1007/s13595-014-0444-7.
doi: 10.1007/s13595-014-0444-7 |
[43] |
HEUCK C, WEIG A, SPOHN M. Soil microbial biomass C: N: P stoichiometry and microbial use of organic phosphorus. Soil Biology and Biochemistry, 2015, 85: 119-129. doi: 10.1016/j.soilbio.2015.02.029.
doi: 10.1016/j.soilbio.2015.02.029 |
[44] |
YUAN H Z, LIU S L, RAZAVI B S, ZHRAN M, WANG J R, ZHU Z K, WU J S, GE T D. Differentiated response of plant and microbial C: N: P stoichiometries to phosphorus application in phosphorus-limited paddy soil. European Journal of Soil Biology, 2019, 95: 103122. doi: 10.1016/j.ejsobi.2019.103122.
doi: 10.1016/j.ejsobi.2019.103122 |
[45] |
TISCHER A, POTTHAST K, HAMER U. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 2014, 175(1): 375-393. doi: 10.1007/s00442-014-2894-x.
doi: 10.1007/s00442-014-2894-x |
[46] |
HE Z L, WU J, O’DONNELL A G, SYERS J K. Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biology and Fertility of Soils, 1997, 24(4): 421-428. doi: 10.1007/s003740050267.
doi: 10.1007/s003740050267 |
[47] |
WANG J P, WU Y H, ZHOU J, BING H J, SUN H Y. Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development. Biology and Fertility of Soils, 2016, 52(6): 825-839. doi: 10.1007/s00374-016-1123-7.
doi: 10.1007/s00374-016-1123-7 |
[48] |
ACUÑA J J, DURÁN P, LAGOS L M, OGRAM A, DE LA LUZ MORA M, JORQUERA M A. Bacterial alkaline phosphomonoesterase in the rhizospheres of plants grown in Chilean extreme environments. Biology and Fertility of Soils, 2016, 52(6): 763-773. doi: 10.1007/s00374-016-1113-9
doi: 10.1007/s00374-016-1113-9 |
[49] | 袁佳慧. 太湖稻麦轮作农田土壤磷素生物有效性研究[D]. 哈尔滨: 东北农业大学, 2018. |
YUAN J H. Availability of soil P in A rice-wheat cropping rotation in Taihu lake region[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese) |
[1] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[2] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[3] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[4] | 万华琴,辜旭,何红梅,汤逸帆,申建华,韩建刚,朱咏莉. 沼液中HCO3-对水稻生长的类CO2施肥效应[J]. 中国农业科学, 2022, 55(22): 4445-4457. |
[5] | 米国华,霍跃文,曾爱军,李刚华,王秀,张福锁. 作物养分管理的农机农艺结合技术研究进展[J]. 中国农业科学, 2022, 55(21): 4211-4224. |
[6] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[7] | 韩冬梅,黄石连,欧阳思颖,张乐,卓侃,吴振先,李建光,郭栋梁,王静. 提升龙眼果实耐贮性的果期病害防治与养分优化管理[J]. 中国农业科学, 2022, 55(21): 4279-4293. |
[8] | 侯慧芝,张绪成,尹嘉德,方彦杰,王红丽,于显枫,马一凡,张国平,雷康宁. 旱地化肥分层和深施对春小麦水肥利用及产量的影响[J]. 中国农业科学, 2022, 55(17): 3289-3302. |
[9] | 景建元,袁亮,张水勤,李燕婷,赵秉强. 腐殖酸-尿素复合物配施尿素在不同施肥土壤上的NH3挥发特征[J]. 中国农业科学, 2022, 55(14): 2786-2796. |
[10] | 徐芳蕾,张杰,李阳,张伟伟,薄其飞,李世清,岳善超. 施肥方式对黄土高原旱作春玉米农田土壤氨挥发的影响[J]. 中国农业科学, 2022, 55(12): 2360-2371. |
[11] | 路鹏,李文海,牛金璨,Batbayar Javkhlan,张树兰,杨学云. 不同有机碳水平下塿土磷的有效性及无机磷形态转化[J]. 中国农业科学, 2022, 55(1): 111-122. |
[12] | 王从,孙会峰,徐春花,王站付,张继宁,张鲜鲜,陈春宏,周胜. 施肥方式对设施菜地氨挥发的影响[J]. 中国农业科学, 2022, 55(1): 123-133. |
[13] | 刘彦伶,李渝,张艳,张雅蓉,黄兴成,张萌,张文安,蒋太明. 长期施用磷肥和有机肥黄壤微生物量磷特征[J]. 中国农业科学, 2021, 54(6): 1188-1198. |
[14] | 雷豪杰,李贵春,柯华东,魏崃,丁武汉,徐驰,李虎. 滴灌施肥对两种典型作物系统土壤N2O排放的影响及其调控差异[J]. 中国农业科学, 2021, 54(4): 768-779. |
[15] | 任嘉欣,刘京,陈轩敬,张跃强,张勇,王洁,石孝均. 长期施肥紫色土有效磷变化及其对稻麦轮作产量的影响[J]. 中国农业科学, 2021, 54(21): 4601-4610. |
|