中国农业科学 ›› 2022, Vol. 55 ›› Issue (1): 123-133.doi: 10.3864/j.issn.0578-1752.2022.01.011
王从1,2(),孙会峰1,2,徐春花3,王站付3,张继宁1,2,张鲜鲜1,2,陈春宏4,周胜1,2(
)
收稿日期:
2020-12-25
接受日期:
2021-02-25
出版日期:
2022-01-01
发布日期:
2022-01-07
通讯作者:
周胜
作者简介:
王从,E-mail: 基金资助:
WANG Cong1,2(),SUN HuiFeng1,2,XU ChunHua3,WANG ZhanFu3,ZHANG JiNing1,2,ZHANG XianXian1,2,CHEN ChunHong4,ZHOU Sheng1,2(
)
Received:
2020-12-25
Accepted:
2021-02-25
Online:
2022-01-01
Published:
2022-01-07
Contact:
Sheng ZHOU
摘要:
【目的】针对我国设施菜地氨(NH3)挥发过高的问题,研究不同施肥方式下设施菜地NH3挥发特征,分析各施肥方式下影响设施菜地NH3挥发的重要因子,为以减氮增效为目标的设施菜地肥料管理模式制定提供相关科学依据。【方法】以长江中下游地区典型设施菜地为研究对象,基于1次基肥和2次追肥的施肥方式,设置了不施氮处理(Control)、常规施氮处理(CF)、20%减氮缓释肥处理(SF)、20%减氮有机/无机肥配施处理(OF)、20%减氮复合微生物菌肥/无机肥配施处理(MF)和20%减氮水肥一体化处理(IM),共计6个田间试验处理。除Control处理外,其余各处理氮磷钾的全季施用比例均保持一致。使用通气法对不同施肥方式下的菜地NH3挥发进行了原位监测,并同步分析不同施肥方式下可能影响菜地土壤NH3挥发的相关因素。【结果】不同施肥方式处理下的菜地NH3挥发动态基本一致,NH3挥发峰值均出现在肥料施用后。基肥施用阶段,除IM处理在基肥施用1 d后NH3挥发即达到峰值外,其余处理均在基肥施用后3 d达到NH3挥发峰值,峰值范围为0.12—0.26 kg NH3·hm-2·h-1。在追肥阶段,各处理NH3挥发峰值出现时间均有不同程度提前,各处理的NH3挥发通量在追肥-Ⅰ阶段的峰值范围为0.08—0.19 kg NH3·hm-2·h-1,追肥-Ⅱ阶段的峰值范围为0.13—0.18 kg NH3·hm-2·h-1。NH3挥发累积排放量由高至低依次为CF、MF、OF、SF、IM、Control。与CF施肥处理相比,SF和IM处理分别降低菜地累积NH3挥发量24.2%和42.4%(P<0.05),OF和MF处理分别降低10.1%和8.3%(P>0.05)NH3挥发累积量。此外,由NH3挥发引起的氮肥损失率,由高至低依次为MF、OF、CF、SF、IM。与CF处理相比,MF处理始终具有较高的肥料NH3-N损失率,而IM处理下则始终低于CF处理。与CF处理相比,SF和OF处理在基肥阶段的肥料NH3-N损失率较低,但在追肥阶段的肥料NH3-N损失率则均高于CF处理。【结论】与CF处理相比,SF和IM处理可显著降低设施菜地NH3挥发量。从不同施肥阶段来看,IM处理在基肥和追肥施用阶段均可显著降低由NH3挥发引起的氮肥损失率,而SF处理对菜地NH3挥发的减缓作用主要是在基肥施用阶段。因此,缓释氮肥施用以及水肥一体化技术在减缓设施菜地NH3挥发和农田减氮增效方面,具有重要的推广意义。
王从,孙会峰,徐春花,王站付,张继宁,张鲜鲜,陈春宏,周胜. 施肥方式对设施菜地氨挥发的影响[J]. 中国农业科学, 2022, 55(1): 123-133.
WANG Cong,SUN HuiFeng,XU ChunHua,WANG ZhanFu,ZHANG JiNing,ZHANG XianXian,CHEN ChunHong,ZHOU Sheng. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation[J]. Scientia Agricultura Sinica, 2022, 55(1): 123-133.
表1
试验施肥处理设置"
试验处理 Treatment | 基肥 Basal fertilizer (kg·hm-2) | 追肥-Ⅰ Topdressing-Ⅰ (kg·hm-2) | 追肥-Ⅱ Topdressing-Ⅱ (kg·hm-2) | 总施肥量 Total amount (kg·hm-2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | |
Control | — | 96 | 96 | — | — | — | — | — | — | — | 96 | 96 |
CF | 120 | 120 | 120 | 30 | — | — | 50 | — | — | 200 | 120 | 120 |
SF | 96 | 96 | 96 | 24 | — | — | 40 | — | — | 160 | 96 | 96 |
OF | 96 | 96 | 96 | 24 | — | — | 40 | — | — | 160 | 96 | 96 |
MF | 96 | 96 | 96 | 24 | — | — | 40 | — | — | 160 | 96 | 96 |
IM | 96 | 84 | 72 | 24 | 4.5 | 9 | 40 | 7.5 | 15 | 160 | 96 | 96 |
表2
不同施肥阶段NH3挥发引起的氮肥损失率"
处理 Treatment | 基肥氮损失率 NH3-induced N loss from basal fertilizer (%) | 追肥-Ⅰ氮损失率 NH3-induced N loss from topdressing - Ⅰ (%) | 追肥-Ⅱ氮损失率 NH3-induced N loss from topdressing - Ⅱ (%) | 全季氮损失率 Seasonal NH3 volatilization-induced N loss (%) |
---|---|---|---|---|
CF | 11.9±1.1ab* | 18.3±3.6ab | 18.8±2.4a | 15.0±0.7a |
SF | 9.1±0.9bc | 19.2±4.3ab | 19.8±1.6a | 14.1±0.6a |
OF | 11.3±0.2ab | 21.5±1.0a | 23.8±5.4a | 16.7±1.6a |
MF | 13.1±1.3a | 20.2±2.3ab | 22.5±4.6a | 17.1±1.3a |
IM | 6.8±0.9c | 8.4±0.9c | 14.3±0.7a | 10.0±0.8b |
[1] | 徐虹, 张晓勇, 毕晓辉, 方小珍, 郑伟巍, 冯银厂, 姬亚芹. 中国PM2.5中水溶性硫酸盐和硝酸盐的时空变化特征. 南开大学学报(自然科学版), 2013, 46(6): 32-40. |
XU H, ZHANG X Y, BI X H, FANG X Z, ZHENG W W, FENG Y C, JI Y Q. The spatial-temporal characteristics of water-soluble sulphates and nitrates in PM2.5 in China. Acta Scientiarum Natrualium Universitatis Nankaiensis, 2013, 46(6): 32-40. (in Chinese) | |
[2] |
薛文博, 许艳玲, 唐晓龙, 雷宇, 王金南. 中国氨排放对PM2.5污染的影响. 中国环境科学, 2016, 36(12): 3531-3539. doi: 10.3969/j.issn.1000-6923.2016.12.002.
doi: 10.3969/j.issn.1000-6923.2016.12.002 |
XUE W B, XU Y L, TANG X L, LEI Y, WANG J N. Impacts of ammonia emission on PM2.5 pollution in China. China Environmental Science, 2016, 36(12): 3531-3539. doi: 10.3969/j.issn.1000-6923.2016.12.002. (in Chinese)
doi: 10.3969/j.issn.1000-6923.2016.12.002 |
|
[3] |
许中坚, 刘广深, 俞佳栋. 氮循环的人为干扰与土壤酸化. 地质地球化学, 2002, 30(2): 74-78. doi: 10.3969/j.issn.1672-9250.2002.02.013.
doi: 10.3969/j.issn.1672-9250.2002.02.013 |
XU Z J, LIU G S, YU J D. Soil acidification and nitrogen cycle disturbed by man-made factors. Geology-Geochemistry, 2002, 30(2): 74-78. doi: 10.3969/j.issn.1672-9250.2002.02.013. (in Chinese)
doi: 10.3969/j.issn.1672-9250.2002.02.013 |
|
[4] | 赵雄飞. 大气氮排放与沉降的定位观测及区域模拟研究[D]. 南京: 南京大学, 2019. |
ZHAO X F. Positioning observation and regional simulation of atmospheric nitrogen emission and deposition[D]. Nanjing: Nanjing University, 2019. (in Chinese) | |
[5] |
刘文竹, 王晓燕, 樊彦波. 大气氮沉降及其对水体氮负荷估算的研究进展. 环境污染与防治, 2014, 36(5): 88-93, 101. doi: 10.15985/j.cnki.1001-3865.2014.05.019.
doi: 10.15985/j.cnki.1001-3865.2014.05.019 |
LIU W Z, WANG X Y, FAN Y B. A review of atmospheric nitrogen deposition and its estimated contributions to nitrogen input of waters. Environmental Pollution & Control, 2014, 36(5): 88-93, 101. doi: 10.15985/j.cnki.1001-3865.2014.05.019. (in Chinese)
doi: 10.15985/j.cnki.1001-3865.2014.05.019 |
|
[6] |
GALLOWAY J N, DENTENER F J, CAPONE D G, BOYER E W, HOWARTH R W, SEITZINGER S P, ASNER G P, CLEVELAND C C, GREEN P A, HOLLAND E A, KARL D M, MICHAELS A F, PORTER J H, TOWNSEND A R, VÖOSMARTY C J. Nitrogen cycles: past, present, and future. Biogeochemistry, 2004, 70(2): 153-226. doi: 10.1007/s10533-004-0370-0.
doi: 10.1007/s10533-004-0370-0 |
[7] |
GAO Z L, MA W Q, ZHU G D, ROELCKE M. Estimating farm-gate ammonia emissions from major animal production systems in China. Atmospheric Environment, 2013, 79: 20-28. doi: 10.1016/j.atmosenv.2013.06.025.
doi: 10.1016/j.atmosenv.2013.06.025 |
[8] | 中华人民共和国农业部. 中国农业年鉴. 北京: 中国农业出版社, 2015: 15-16. |
Ministry of Agriculture of the PRC. China Agricultural Organization Catalogue. Beijing: China Agricultural Press, 2015: 15-16. (in Chinese) | |
[9] | 朱兆良, 张绍林, 尹斌, 颜晓元. 太湖地区单季晚稻产量-氮肥施用量反应曲线的历史比较. 植物营养与肥料学报, 2010, 16(1): 1-5. |
ZHU Z L, ZHANG S L, YIN B, YAN X Y. Historical comparison on the response curves of rice yield-nitrogen application rate in Tai-lake Region. Plant Nutrition and Fertilizer Science, 2010, 16(1): 1-5. (in Chinese) | |
[10] |
XING G X, ZHU Z L. An assessment of N loss from agricultural fields to the environment in China. Nutrient Cycling in Agroecosystems, 2000, 57(1): 67-73. doi: 10.1023/A:1009717603427.
doi: 10.1023/A:1009717603427 |
[11] |
张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924. doi: 10.3321/j.issn:0564-3929.2008.05.018.
doi: 10.3321/j.issn:0564-3929.2008.05.018 |
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. doi: 10.3321/j.issn:0564-3929.2008.05.018. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2008.05.018 |
|
[12] | 曹兵, 贺发云, 徐秋明, 蔡贵信. 露地蔬菜的氮肥效应与氮素去向. 核农学报, 2008, 22(3): 343-347. |
CAO B, HE F Y, XU Q M, CAI G X. Nitrogen use efficiency and fate of N fertilizers applied to open field vegetables. Journal of Nuclear Agricultural Sciences, 2008, 22(3): 343-347. (in Chinese) | |
[13] | 朱坚, 石丽红, 田发祥, 纪雄辉. 典型双季稻田基施碳酸氢铵和尿素的氨挥发损失研究. 中国土壤与肥料, 2015(2): 83-88. |
ZHU J, SHI L H, TIAN F X, JI X H. Ammonia volatilization loss from typical double-cropping paddy field with basal application of ammonium bicarbonate and urea. Soil and Fertilizer Sciences in China, 2015(2): 83-88. (in Chinese) | |
[14] |
ZHOU F, CIAIS P, HAYASHI K, GALLOWAY J, KIM D G, YANG C L, LI S Y, LIU B, SHANG Z Y, GAO S S. Re-estimating NH3 emissions from Chinese cropland by a new nonlinear model. Environmental Science & Technology, 2016, 50(2): 564-572. doi: 10.1021/acs.est.5b03156.
doi: 10.1021/acs.est.5b03156 |
[15] |
龚巍巍, 张宜升, 何凌燕, 栾胜基. 菜地氨挥发损失及影响因素原位研究. 环境科学, 2011, 32(2): 345-350. doi: 10.13227/j.hjkx.2011.02.023.
doi: 10.13227/j.hjkx.2011.02.023 |
GONG W W, ZHANG Y S, HE L Y, LUAN S J. In-situ measurement on volatilization loss of ammonia in the vegetable field and its influencing factors. Environmental Science, 2011, 32(2): 345-350. doi: 10.13227/j.hjkx.2011.02.023. (in Chinese)
doi: 10.13227/j.hjkx.2011.02.023 |
|
[16] |
谢梓豪, 樊品镐, 武华, 程琨, 潘根兴. 基于氨挥发因子方法的中国农田氨排放量估算. 环境科学学报, 2020, 40(11): 4180-4188. doi: 10.13671/j.hjkxxb.2020.0183.
doi: 10.13671/j.hjkxxb.2020.0183 |
XIE Z H, FAN P G, WU H, CHENG K, PAN G X. Deriving volatile factors and estimating direct ammonia emissions for crop cultivation in China. Acta Scientiae Circumstantiae, 2020, 40(11): 4180-4188. doi: 10.13671/j.hjkxxb.2020.0183. (in Chinese)
doi: 10.13671/j.hjkxxb.2020.0183 |
|
[17] | 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20(4): 783-795. |
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese) | |
[18] | 王朝辉, 刘学军, 巨晓棠, 张福锁. 田间土壤氨挥发的原位测定——通气法. 植物营养与肥料学报, 2002, 8(2): 205-209. |
WANG Z H, LIU X J, JU X T, ZHANG F S. Field in situ determination of ammonia volatilization from soil: Venting method. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205-209. (in Chinese) | |
[19] | 赵洁, 王莉. 分光光度法快速测定硝、铵态氮的可行性研究. 现代农业科技, 2011(6): 42, 45. |
ZHAO J, WANG L. Feasibility study on NO3--N, NH4+-N determination by spectrophotometry method. Modern Agricultural Science and Technology, 2011(6): 42, 45. (in Chinese) | |
[20] |
郝小雨, 高伟, 王玉军, 金继运, 黄绍文, 唐继伟, 张志强. 有机无机肥料配合施用对日光温室土壤氨挥发的影响. 中国农业科学, 2012, 45(21): 4403-4414. doi: 10.3864/j.issn.0578-1752.2012.21.009.
doi: 10.3864/j.issn.0578-1752.2012.21.009 |
HAO X Y, GAO W, WANG Y J, JIN J Y, HUANG S W, TANG J W, ZHANG Z Q. Effects of combined application of organic manure and chemical fertilizers on ammonia volatilization from greenhouse vegetable soil. Scientia Agricultura Sinica, 2012, 45(21): 4403-4414. doi: 10.3864/j.issn.0578-1752.2012.21.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.21.009 |
|
[21] | 李银坤, 武雪萍, 武其甫, 吴会军. 水氮用量对设施栽培蔬菜地土壤氨挥发损失的影响. 植物营养与肥料学报, 2016, 22(4): 949-957. |
LI Y K, WU X P, WU Q F, WU H J. Effects of irrigation and nitrogen application on ammonia volatilization loss from vegetable fields under greenhouse cultivation. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 949-957. (in Chinese) | |
[22] |
王欢, 郑西来, 辛佳. 土壤氨挥发的影响因素及其与脲酶活性的关系研究. 安徽农学通报, 2016, 22(9): 74-79. doi: 10.16377/j.cnki.issn1007-7731.2016.09.037.
doi: 10.16377/j.cnki.issn1007-7731.2016.09.037 |
WANG H, ZHENG X L, XIN J. Influencing factors on ammonia volatilization and its relations with urease activity. Anhui Agricultural Science Bulletin, 2016, 22(9): 74-79. doi: 10.16377/j.cnki.issn1007-7731.2016.09.037. (in Chinese)
doi: 10.16377/j.cnki.issn1007-7731.2016.09.037 |
|
[23] |
SIGURDARSON J J, SVANE S, KARRING H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Reviews in Environmental Science and Bio/Technology, 2018, 17(2): 241-258. doi: 10.1007/s11157-018-9466-1.
doi: 10.1007/s11157-018-9466-1 |
[24] |
SUN L Y, WU Z, MA Y C, LIU Y L, XIONG Z Q. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China. Atmospheric Environment, 2018, 181: 97-105. doi: 10.1016/j.atmosenv.2018.02.050.
doi: 10.1016/j.atmosenv.2018.02.050 |
[25] |
XIE W M, LI S J, SHI W M, ZHANG H L, FANG F, WANG G X, ZHANG L M. Quantitatively ranking the influencing factors of ammonia volatilization from paddy soils by grey relational entropy. Environmental Science and Pollution Research, 2020, 27(2): 2319-2327.
doi: 10.1007/s11356-019-06952-8 |
[26] | 李世清, 李生秀. 影响土壤尿素水解速率的一些因子. 植物营养与肥料学报, 1999, 5(2): 156-162. |
LI S Q, LI S X. Some factors affecting urea hydrolysisrates in soils. Plant Nutrition and Fertilizer Science, 1999, 5(2): 156-162. (in Chinese) | |
[27] |
贺发云, 尹斌, 金雪霞, 曹兵, 蔡贵信. 南京两种菜地土壤氨挥发的研究. 土壤学报, 2005, 42(2): 253-259. doi: 10.3321/j.issn:0564-3929.2005.02.012.
doi: 10.3321/j.issn:0564-3929.2005.02.012 |
HE F Y, YIN B, JIN X X, CAO B, CAI G X. Ammonia volatilization from urea applied to two vegetable fields in Nanjing suburbs. Acta Pedologica Sinica, 2005, 42(2): 253-259. doi: 10.3321/j.issn:0564-3929.2005.02.012. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2005.02.012 |
|
[28] |
CASTELLANO-HINOJOSA A, GONZÁLEZ-LÓPEZ J, VALLEJO A, BEDMAR E J. Effect of urease and nitrification inhibitors on ammonia volatilization and abundance of N-cycling genes in an agricultural soil. Journal of Plant Nutrition and Soil Science, 2020, 183(1): 99-109. doi: 10.1002/jpln.201900038.
doi: 10.1002/jpln.201900038 |
[29] |
CANTARELLA H, OTTO R, SOARES J R, SILVA A G D B. Agronomic efficiency of NBPT as a urease inhibitor: A review. Journal of Advanced Research, 2018, 13: 19-27. doi: 10.1016/j.jare.2018.05.008.
doi: 10.1016/j.jare.2018.05.008 |
[30] |
SILVA A G B, SEQUEIRA C H, SERMARINI R A, OTTO R. Urease inhibitor NBPT on ammonia volatilization and crop productivity: A meta-analysis. Agronomy Journal, 2017, 109(1): 1-13. doi: 10.2134/agronj2016.04.0200.
doi: 10.2134/agronj2016.04.0200 |
[31] |
马芬, 杨荣全, 郭李萍. 控制氮肥施用引起的活性氮气体排放: 脲酶/硝化抑制剂研究进展与展望. 农业环境科学学报, 2020, 39(4): 908-922. doi: 10.11654/jaes.2020-0129.
doi: 10.11654/jaes.2020-0129 |
MA F, YANG R Q, GUO L P. Decrease the emission of active nitrogen gases in nitrogen fertilizer application: research progresses and perspectives of urease/nitrification inhibitors. Journal of Agro-Environment Science, 2020, 39(4): 908-922. doi: 10.11654/jaes.2020-0129. (in Chinese)
doi: 10.11654/jaes.2020-0129 |
|
[32] | 陈惠哲, 朱德峰, 林贤青, 张玉屏. 微生物肥对水稻产量及氮肥利用的影响. 核农学报, 2010, 24(5): 1051-1055. |
CHEN H Z, ZHU D F, LIN X Q, ZHANG Y P. Effect of microbial fertilizer on yield and nitrogen use efficiency in rice. Acta Agriculturae Nucleatae Sinica, 2010, 24(5): 1051-1055. (in Chinese) | |
[33] |
ZHANG T, LIU H B, LUO J F, WANG H Y, ZHAI L M, GENG Y C, ZHANG Y T, LI J G, LEI Q L, BASHIR M A, WU S X, LINDSEY S. Long-term manure application increased greenhouse gas emissions but had no effect on ammonia volatilization in a Northern China upland field. Science of the Total Environment, 2018, 633: 230-239. doi: 10.1016/j.scitotenv.2018.03.069.
doi: 10.1016/j.scitotenv.2018.03.069 |
[34] |
武星魁, 姜振萃, 陆志新, 路广, 徐永辉, 施卫明, 闵炬. 有机肥部分替代化肥氮对叶菜产量和环境效应的影响. 中国生态农业学报(中英文), 2020, 28(3): 349-356. doi: 10.13930/j.cnki.cjea.190761.
doi: 10.13930/j.cnki.cjea.190761 |
WU X K, JIANG Z C, LU Z X, LU G, XU Y H, SHI W M, MIN J. Effects of the partial replacement of chemical fertilizer with manure on the yield and nitrogen emissions in leafy vegetable production. Chinese Journal of Eco-Agriculture, 2020, 28(3): 349-356. doi: 10.13930/j.cnki.cjea.190761. (in Chinese)
doi: 10.13930/j.cnki.cjea.190761 |
|
[35] |
张明中, 韩桂琪, 徐卫红, 刘俊, 王崇力, 杨芸, 张进忠, 王正银, 谢德体. 专用缓释肥氨挥发特性及对茄子产量、品质的影响. 中国蔬菜, 2013(24): 37-45. doi: 10.3969/j.issn.1000-6346.2013.24.009.
doi: 10.3969/j.issn.1000-6346.2013.24.009 |
ZHANG M Z, HAN G Q, XU W H, LIU J, WANG C L, YANG Y, ZHANG J Z, WANG Z Y, XIE D T. Characteristics of ammonia volatilization of special slow-release fertilizer and effects of slow- release fertilizers on eggplant quality and yield. China Vegetables, 2013(24): 37-45. doi: 10.3969/j.issn.1000-6346.2013.24.009. (in Chinese)
doi: 10.3969/j.issn.1000-6346.2013.24.009 |
|
[36] |
王崇力, 韩桂琪, 徐卫红, 杨芸, 熊仕娟, 谢文文, 张进忠, 王正银, 谢德体. 专用缓释肥的土壤氨挥发特性及其对辣椒氮磷钾吸收利用的影响. 中国生态农业学报, 2014, 22(2): 143-150.
doi: 10.3724/SP.J.1011.2014.30947 |
WANG C L, HAN G Q, XU W H, YANG Y, XIONG S J, XIE W W, ZHANG J Z, WANG Z Y, XIE D T. Characteristics of soil ammonia volatilization and the absorption and utilization of nitrogen, phosphorus and potassium of pepper under slow-release fertilizer application. Chinese Journal of Eco-Agriculture, 2014, 22(2): 143-150. (in Chinese)
doi: 10.3724/SP.J.1011.2014.30947 |
|
[37] | 吴振宇. 新型缓释尿素养分释放特性及环境效应研究[D]. 合肥: 安徽大学, 2017. |
WU Z Y. Study on nutrient release characteristics and environmental effects of a new slow-release urea[D]. Hefei: Anhui University, 2017. (in Chinese) | |
[38] | 王远, 许纪元, 潘云枫, 赵冬青, 杨东平, 巨昇容, 闵炬, 施卫明. 长江下游地区水肥一体化对设施番茄氮肥利用率及氨挥发的影响. 土壤学报. 2021. https://kns.cnki.net/kcms/detail/32.1119.P.20201105.1519.002.html. |
WANG Y, XU J Y, PAN Y F, ZHAO D Q, YANG D P, JU S R, MIN J, SHI W M, Effects of fertigation on nitrogen use efficiency and ammonia volatilization in greenhouse tomato cultivation in lower reaches of the Yangtze River. Acta Pedologica Sinica, 2021. https://kns.cnki.net/kcms/detail/32.1119.P.20201105.1519.002.html. (in Chinese) | |
[39] |
杜建军, 苟春林, 崔英德, 曲东. 保水剂对氮肥氨挥发和氮磷钾养分淋溶损失的影响. 农业环境科学学报, 2007, 26(4): 1296-1301. doi: 10.3321/j.issn:1672-2043.2007.04.019.
doi: 10.3321/j.issn:1672-2043.2007.04.019 |
DU J J, GOU C L, CUI Y D, QU D. Effects of water retaining agent on ammonia volatilization and nutrient leaching loss from N, P and K fertilizers. Journal of Agro-Environment Science, 2007, 26(4): 1296-1301. doi: 10.3321/j.issn:1672-2043.2007.04.019. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2007.04.019 |
|
[40] |
宋勇生, 范晓晖. 稻田氨挥发研究进展. 生态环境, 2003, 12(2): 240-244. doi: 10.16258/j.cnki.1674-5906.2003.02.029.
doi: 10.16258/j.cnki.1674-5906.2003.02.029 |
SONG Y S, FAN X H. Summanry of research on ammonia volatilization in paddy soil. Ecology and Environment, 2003, 12(2): 240-244. doi: 10.16258/j.cnki.1674-5906.2003.02.029. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2003.02.029 |
|
[41] | 朱文博. 化肥配施有机肥对稻田氮素归趋的影响[D]. 沈阳: 沈阳农业大学, 2020. |
ZHU W B. Effects of chemical nitrogen fertilizer and organic fertilizer on nitrogen fate in paddy field[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese) | |
[42] |
SOMMER S G, SCHJOERRING J K, DENMEAD O T. Ammonia emission from mineral fertilizers and fertilized crops//Advances in Agronomy. Amsterdam: Elsevier, 2004: 557-622. doi: 10.1016/s0065-2113(03)82008-4.
doi: 10.1016/s0065-2113(03)82008-4 |
[43] | 魏玉云. 热带地区砖红壤上不同土壤pH和含水量对尿素氨挥发的影响研究[D]. 海口: 华南热带农业大学, 2006. |
WEI Y Y. Study on the volatilization difference of ammonia from latosols with different soil pH and different soil water content[D]. Haikou: South China University of Tropical Agriculture, 2006. (in Chinese) | |
[44] |
FAN C H, LI B, XIONG Z Q. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China. The Science of the Total Environment, 2018, 612: 480-489. doi: 10.1016/j.scitotenv.2017.08.159.
doi: 10.1016/j.scitotenv.2017.08.159 |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 伊英杰,韩坤,赵斌,刘国利,林佃旭,陈国强,任昊,张吉旺,任佰朝,刘鹏. 长期不同施肥措施冬小麦-夏玉米轮作体系周年氨挥发损失的差异[J]. 中国农业科学, 2022, 55(23): 4600-4613. |
[3] | 徐芳蕾,张杰,李阳,张伟伟,薄其飞,李世清,岳善超. 施肥方式对黄土高原旱作春玉米农田土壤氨挥发的影响[J]. 中国农业科学, 2022, 55(12): 2360-2371. |
[4] | 赵欣周,张世春,李颖,郑益旻,赵洪亮,谢立勇. 辽河平原玉米田不同施肥下的土壤氨挥发特征[J]. 中国农业科学, 2020, 53(18): 3741-3751. |
[5] | 马林,柏兆海,王选,曹玉博,马文奇,张福锁. 中国农牧系统养分管理研究的意义与重点[J]. 中国农业科学, 2018, 51(3): 406-416. |
[6] | 曹玉博,邢晓旭,柏兆海,王选,胡春胜,马林. 农牧系统氨挥发减排技术研究进展[J]. 中国农业科学, 2018, 51(3): 566-580. |
[7] | 蒋一飞,张砚铭,杨明,虞娜,张玉玲,邹洪涛,张玉龙. 不同材料包膜氮肥氮素挥发特征及对油菜产量的影响[J]. 中国农业科学, 2018, 51(12): 2348-2356. |
[8] | 朱新玉,朱波. 不同施肥方式对紫色土农田土壤动物主要类群的影响[J]. 中国农业科学, 2015, 48(5): 911-920. |
[9] | 邢晓鸣,李小春,丁艳锋,王绍华,刘正辉,唐设,丁承强,李刚华,魏广彬. 缓控释肥组配对机插常规粳稻群体物质生产和产量的影响[J]. 中国农业科学, 2015, 48(24): 4892-4902. |
[10] | 董文旭, 胡春胜, 陈素英, 秦树平, 张玉铭. 保护性耕作对冬小麦-夏玉米农田氮肥氨挥发损失的影响[J]. 中国农业科学, 2013, 46(11): 2278-2284. |
[11] | 曾希柏, 王亚男, 王玉忠, 林志灵, 李莲芳, 白玲玉, 苏世鸣, 沈灵凤. 不同施肥模式对设施菜地细菌群落结构及丰度的影响[J]. 中国农业科学, 2013, 46(1): 69-79. |
[12] | 郝小雨, 高伟, 王玉军, 金继运, 黄绍文, 唐继伟, 张志强. 有机无机肥料配合施用对日光温室土壤氨挥发的影响[J]. 中国农业科学, 2012, 45(21): 4403-4414. |
[13] | 吕静, 李丹, 孙建兵, 倪吾钟. 低分子量聚乳酸包膜尿素的缓释特性及其减少氨挥发的作用[J]. 中国农业科学, 2012, 45(2): 283-291. |
[14] | 林超文,罗春燕,庞良玉、黄晶晶,涂仕华. 不同雨强和施肥方式对紫色土养分损失的影响[J]. 中国农业科学, 2011, 44(9): 1847-1854. |
[15] | 聂胜委,陈源泉,隋鹏,高旺盛,黄坚雄,李媛媛,熊杰,史学朋,吴雪梅,孙自广 . 玉米与不同植物间作对田间氨挥发的影响 [J]. 中国农业科学, 2011, 44(3): 634-640 . |
|