中国农业科学 ›› 2021, Vol. 54 ›› Issue (16): 3381-3392.doi: 10.3864/j.issn.0578-1752.2021.16.002
李敏(),苏慧,李阳阳,李金鹏,李金才,朱玉磊(),宋有洪()
收稿日期:
2021-01-11
接受日期:
2021-03-03
出版日期:
2021-08-16
发布日期:
2021-08-24
通讯作者:
朱玉磊,宋有洪
作者简介:
李敏,E-mail: 基金资助:
LI Min(),SU Hui,LI YangYang,LI JinPeng,LI JinCai,ZHU YuLei(),SONG YouHong()
Received:
2021-01-11
Accepted:
2021-03-03
Online:
2021-08-16
Published:
2021-08-24
Contact:
YuLei ZHU,YouHong SONG
摘要:
【目的】分析不同基因型小麦的耐热性,筛选耐热鉴定指标,建立可靠的耐热评价模型,为耐热小麦品种的选育提供理论支撑。【方法】以黄淮海麦区大面积推广的20个小麦品种为试验材料,采用田间试验,设置高温(花后第14—20天,连续7 d高温处理)和自然条件2种处理,在灌浆后期测定小麦穗部冠层温度、旗叶叶绿素相对含量(SPAD)、丙二醛(MDA)含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性;收获晾干后测定单穗粒重、千粒重和产量。根据高温处理和自然条件生长下各项指标的耐热系数,采用主成分分析、隶属函数法、聚类分析和逐步回归分析方法对小麦耐热性进行综合评价。【结果】高温处理下各性状变异幅度为-14.89%—15.09%。通过对9个性状指标的相关分析,发现各指标之间存在显著或极显著相关性。通过主成分分析将9个单项指标转换为3个相互独立的综合指标,其贡献率分别为55.970%、15.530%和12.171%,代表了全部数据83.670%的信息量。利用隶属函数法计算综合耐热评价值(D),并对其进行聚类分析,按照耐热性强弱将20个小麦品种划分为3类,第一类耐热型8个品种;第二类中等耐热型7个品种;第三类高温敏感型5个品种。通过逐步回归方程建立了小麦耐热性的评价数学模型:D=-4.801+0.834X4+2.913X7+0.303X6+2.937X8- 1.409X1-0.524X3+0.876X9(R2=0.986),利用建立的最优回归方程预测供试材料的耐热性,预测值(VP)与D值基本一致,表明SOD活性(X4)、单穗粒重(X7)、CAT活性(X6)、千粒重(X8)、冠层温度(X1)、MDA含量(X3)和产量(X9)这7个指标可用于小麦耐热性品种的鉴定。【结论】采用多元统计分析方法对小麦耐热性评价是可行的;20个小麦品种被分为3类(耐热型、中等耐热型和高温敏感型);高温处理下,SOD活性、单穗粒重、CAT活性、千粒重、冠层温度、MDA含量和产量可以作为小麦耐热性的鉴定指标。
李敏, 苏慧, 李阳阳, 李金鹏, 李金才, 朱玉磊, 宋有洪. 黄淮海麦区小麦耐热性分析及其鉴定指标的筛选[J]. 中国农业科学, 2021, 54(16): 3381-3392.
LI Min, SU Hui, LI YangYang, LI JinPeng, LI JinCai, ZHU YuLei, SONG YouHong. Analysis of Heat Tolerance of Wheat with Different Genotypes and Screening of Identification Indexes in Huang-Huai-Hai Region[J]. Scientia Agricultura Sinica, 2021, 54(16): 3381-3392.
表1
灌浆期高温处理对小麦主要性状的影响"
性状 Trait | 对照均值±标准差 Control mean±SD | 高温处理后的平均值±标准差 Mean±SD after HT stress | 变幅 Range (%) |
---|---|---|---|
冠层温度Canopy temperature (℃) | 29.08±0.65b | 29.98±1.26a | 3.09 |
叶绿素相对含量SPAD | 24.37±9.56a | 21.80±7.68b | -10.55 |
丙二醛含量MDA content (μmol·g-1) | 37.21±8.59b | 42.82±9.89a | 15.09 |
超氧化物歧化酶活性SOD activity (U·g-1·FW) | 166.89±8.23a | 142.09±13.68b | -14.86 |
过氧化物酶活性POD activity (μ·g-1·min-1) | 147.63±18.94a | 135.53±16.24b | -8.19 |
过氧化氢酶活性CAT activity (μ·g-1·min-1) | 26.53±9.05a | 22.58±7.37b | -14.89 |
单穗粒重Seed weight per plant (g) | 1.75±0.16a | 1.70±0.16b | -2.83 |
千粒重Thousand-grain weight (g) | 50.88±3.28a | 48.45±2.97b | -4.76 |
产量Yield (kg·hm-2) | 9331.64±645.20a | 8784.26±726.29b | -5.87 |
表2
不同小麦品种各单项指标的耐热系数"
品种名称Variety | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|
中麦895 Zhongmai 895 | 1.005 | 0.957 | 1.120 | 0.954 | 0.938 | 0.942 | 0.988 | 0.975 | 0.986 |
新科麦169 Xinkemai 169 | 1.054 | 0.803 | 1.183 | 0.744 | 0.907 | 0.889 | 0.960 | 0.943 | 0.918 |
中麦175 Zhongmai 175 | 1.005 | 0.957 | 1.091 | 0.937 | 0.948 | 0.958 | 0.985 | 0.972 | 0.977 |
郑麦136 Zhengmai 136 | 1.002 | 0.957 | 1.091 | 0.920 | 0.932 | 0.972 | 0.982 | 0.972 | 0.997 |
良星99 Liangxing 99 | 1.073 | 0.916 | 1.204 | 0.747 | 0.879 | 0.854 | 0.976 | 0.963 | 0.888 |
淮麦33 Huaimai 33 | 1.009 | 0.963 | 1.066 | 0.909 | 0.950 | 0.935 | 0.968 | 0.959 | 0.953 |
安农0711 Annong 0711 | 1.016 | 0.943 | 1.071 | 0.908 | 0.916 | 0.964 | 0.903 | 0.940 | 0.943 |
华成3366 Huacheng 3366 | 1.066 | 0.866 | 1.207 | 0.743 | 0.854 | 0.705 | 0.950 | 0.934 | 0.839 |
周麦27 Zhoumai 27 | 1.062 | 0.888 | 1.208 | 0.754 | 0.922 | 0.856 | 0.950 | 0.953 | 0.877 |
洛旱22 Luohan 22 | 1.007 | 0.966 | 1.108 | 0.885 | 0.922 | 0.962 | 0.990 | 0.952 | 0.953 |
洛旱19 Luohan 19 | 1.009 | 0.966 | 1.116 | 0.890 | 0.966 | 0.900 | 0.987 | 0.959 | 0.978 |
百农207 Bainong 207 | 1.024 | 0.921 | 1.247 | 0.846 | 0.945 | 0.949 | 0.985 | 0.936 | 0.942 |
洛麦26 Luomai 26 | 1.027 | 0.936 | 1.137 | 0.847 | 0.954 | 0.860 | 0.978 | 0.921 | 0.971 |
新麦36 Xinmai 36 | 1.064 | 0.824 | 1.219 | 0.799 | 0.866 | 0.889 | 0.947 | 0.939 | 0.898 |
丰德存麦5号 Fengdecunmai 5 | 1.005 | 0.960 | 1.074 | 0.906 | 0.946 | 0.905 | 0.987 | 0.964 | 0.971 |
丰德存麦21号 Fengdecunmai 21 | 1.002 | 0.959 | 1.088 | 0.894 | 0.949 | 0.942 | 0.978 | 0.973 | 0.989 |
丰德存麦1号 Fengdecunmai 1 | 1.027 | 0.667 | 1.269 | 0.740 | 0.939 | 0.573 | 0.974 | 0.931 | 0.942 |
郑麦369 Zhengmai 369 | 1.045 | 0.889 | 1.173 | 0.902 | 0.945 | 0.727 | 0.987 | 0.941 | 0.945 |
周麦36 Zhoumai 36 | 1.062 | 0.857 | 1.295 | 0.834 | 0.845 | 0.654 | 0.984 | 0.968 | 0.957 |
郑麦366 Zhengmai 366 | 1.048 | 0.944 | 1.084 | 0.872 | 0.869 | 0.783 | 0.971 | 0.956 | 0.956 |
平均值Average | 1.031 | 0.907 | 1.153 | 0.852 | 0.920 | 0.861 | 0.971 | 0.953 | 0.941 |
标准差STDEV | 0.026 | 0.075 | 0.072 | 0.072 | 0.037 | 0.114 | 0.021 | 0.016 | 0.040 |
变异系数CV(%) | 2.489 | 8.274 | 6.249 | 8.464 | 4.021 | 13.270 | 2.153 | 1.693 | 4.281 |
表3
各性状主成分的特征向量及贡献率"
主成分 Principle factor | CI1 | CI2 | CI3 | |
---|---|---|---|---|
特征值 Eigen value | 5.037 | 1.398 | 1.095 | |
贡献率 Contribution ratio (%) | 55.970 | 15.530 | 12.171 | |
累计贡献率 Cumulative contribution ratio (%) | 55.970 | 71.500 | 83.670 | |
特征向量 Eigen vector | X1 | -0.397 | -0.115 | 0.293 |
X2 | 0.351 | -0.305 | 0.265 | |
X3 | -0.364 | 0.335 | 0.057 | |
X4 | 0.405 | -0.004 | 0.054 | |
X5 | 0.303 | 0.220 | -0.553 | |
X6 | 0.318 | -0.421 | -0.029 | |
X7 | 0.170 | 0.663 | 0.263 | |
X8 | 0.256 | 0.070 | 0.678 | |
X9 | 0.368 | 0.333 | -0.052 |
表4
各参试材料综合指标值、权重、u(Xj)、D值及综合评价"
材料名称 Material name | CI1 | CI2 | CI3 | u(X1) | u(X2) | u(X3) | D值 D value | VP值 VP value | 综合评价 Comprehensive valuation |
---|---|---|---|---|---|---|---|---|---|
中麦895 Zhongmai 895 | 2.620 | 0.530 | 0.740 | 0.993 | 0.625 | 0.644 | 0.874 | 0.885 | 耐热型Heat tolerance type |
新科169 Xinkemai 169 | -2.100 | -0.320 | -0.490 | 0.287 | 0.478 | 0.352 | 0.332 | 0.354 | 高温敏感型 Heat sensitive type |
中麦175 Zhongmai 175 | 2.610 | 0.190 | 0.400 | 0.991 | 0.566 | 0.563 | 0.850 | 0.863 | 耐热型 Heat tolerance type |
郑麦136 Zhengmai 136 | 2.670 | 0.160 | 0.520 | 1.000 | 0.561 | 0.591 | 0.859 | 0.865 | 耐热型Heat tolerance type |
良星99 Liangxing 99 | -2.110 | -0.460 | 1.660 | 0.286 | 0.454 | 0.862 | 0.401 | 0.388 | 中等耐热型Medium heat tolerance type |
淮麦33 Huaimai 33 | 1.960 | -0.650 | -0.330 | 0.894 | 0.421 | 0.390 | 0.733 | 0.732 | 耐热型 Heat tolerance type |
安农0711 Annong 0711 | 0.620 | -3.090 | -1.420 | 0.694 | 0.000 | 0.131 | 0.483 | 0.475 | 中等耐热型Medium heat tolerance type |
华成3366 Huacheng 3366 | -4.020 | -1.170 | 0.330 | 0.000 | 0.332 | 0.546 | 0.141 | 0.144 | 高温敏感型 Heat sensitive type |
周麦27 Zhoumai 27 | -2.150 | -0.980 | 0.060 | 0.280 | 0.364 | 0.482 | 0.325 | 0.294 | 高温敏感型 Heat sensitive type |
洛旱22 Luohan 22 | 1.590 | -0.030 | 0.060 | 0.839 | 0.528 | 0.482 | 0.729 | 0.744 | 耐热型 Heat tolerance type |
洛旱19 Luohan 19 | 2.030 | 0.610 | -0.320 | 0.904 | 0.639 | 0.392 | 0.781 | 0.755 | 耐热型 Heat tolerance type |
百农207 Bainong 207 | -0.070 | 0.570 | -0.880 | 0.590 | 0.632 | 0.259 | 0.550 | 0.541 | 中等耐热型Medium heat tolerance type |
洛麦26 Luomai 26 | 0.300 | 0.300 | -1.750 | 0.646 | 0.585 | 0.052 | 0.548 | 0.527 | 中等耐热型Medium heat tolerance type |
新麦36 Xinmai 36 | -2.710 | -1.120 | 0.080 | 0.196 | 0.340 | 0.487 | 0.265 | 0.300 | 高温敏感型 Heat sensitive type |
丰德存麦5号 Fengdecunmai 5 | 2.240 | 0.280 | 0.110 | 0.936 | 0.582 | 0.494 | 0.806 | 0.808 | 耐热型 Heat tolerance type |
丰德存麦21号 Fengdecunmai 21 | 2.480 | 0.130 | 0.270 | 0.972 | 0.556 | 0.532 | 0.831 | 0.821 | 耐热型 Heat tolerance type |
丰德存麦1号 Fengdecunmai 1 | -3.250 | 2.700 | -1.970 | 0.115 | 1.000 | 0.000 | 0.263 | 0.273 | 高温敏感型 Heat sensitive type |
郑麦369 Zhengmai 369 | -0.340 | 1.190 | -0.490 | 0.550 | 0.739 | 0.352 | 0.556 | 0.550 | 中等耐热型Medium heat tolerance type |
周麦36 Zhoumai 36 | -2.260 | 1.610 | 2.240 | 0.263 | 0.812 | 1.000 | 0.472 | 0.466 | 中等耐热型Medium heat tolerance type |
郑麦366 Zhengmai 366 | -0.100 | -0.460 | 1.190 | 0.586 | 0.454 | 0.751 | 0.585 | 0.593 | 中等耐热型Medium heat tolerance type |
权重Index weight | 0.669 | 0.186 | 0.145 |
表5
聚类结果中不同耐热类型小麦品种各性状的表现特征"
类型 Type | 对照 CK | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
冠层温度 Canopy temperature (℃) | MDA | SOD | CAT | 单穗粒重 Seed weight per plant (g) | 千粒重 Thousand-grain weight (g) | 产量 Yield (kg·hm-2) | |||||
耐热型 Heat tolerance type | 28.51±0.39c | 35.61±7.95c | 166.14±9.81b | 23.86±7.99c | 1.76±0.16b | 50.61±2.29a | 9095.68±649.98c | ||||
中等耐热型 Medium heat tolerance type | 29.25±0.37b | 37.18±9.63b | 168.07±3.33a | 28.03±10.78b | 1.71±0.19c | 51.02±4.81a | 9464.97±826.48a | ||||
高温敏感型 Heat sensitive type | 29.77±0.50a | 39.81±9.34a | 166.45±11.52b | 28.68±8.91a | 1.80±0.12a | 51.09±2.67a | 9329.20±159.35b | ||||
类型 Type | 高温 HT | ||||||||||
冠层温度 Canopy temperature (℃) | MDA | SOD | CAT | 单穗粒重 Seed weight per plant (g) | 千粒重 Thousand-grain weight (g) | 产量 Yield (kg·hm-2) | |||||
耐热型 Heat tolerance type | 28.67±0.43c | 38.92±8.43c | 151.49±9.68a | 22.29±6.96b | 1.73±0.16a | 48.90±2.49a | 8844.82±678.65b | ||||
中等耐热型 Medium heat tolerance type | 30.48±0.60b | 43.34±10.19b | 142.92±8.62b | 23.30±9.34a | 1.66±0.21b | 48.25±4.03ab | 8907.94±944.92a | ||||
高温敏感型 Heat sensitive type | 31.39±0.60a | 48.34±10.75a | 125.89±10.35c | 22.02±6.37c | 1.72±0.10a | 48.02±2.44b | 8792.64±484.80c |
表6
高温处理对不同品种小麦产量的影响"
材料名称 Material name | 对照产量 Control yield (kg·hm-2) | 高温产量 High temperature yield (kg·hm-2) | 产量下降比例 Relative grain yield reduction (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 平均值Mean | 2019 | 2020 | 平均值Mean | 2019 | 2020 | 平均值Mean | |||
中麦895 Zhongmai 895 | 9500.40 | 8004.30 | 8752.35 | 9338.74 | 7592.14 | 8465.44 | 1.70 | 5.15 | 3.43 | ||
新科麦169 Xinkemai 169 | 9548.16 | 8067.18 | 8807.67 | 8754.46 | 7349.12 | 8051.79 | 8.31 | 8.90 | 8.61 | ||
中麦175 Zhongmai 175 | 8611.46 | 4707.63 | 6659.54 | 8359.98 | 4513.02 | 6436.50 | 2.92 | 4.13 | 3.53 | ||
郑麦136 Zhengmai 136 | 9262.52 | 9014.63 | 9138.57 | 9220.45 | 8726.40 | 8973.43 | 0.45 | 3.20 | 1.83 | ||
良星99 Liangxing 99 | 9013.11 | 8108.28 | 8560.69 | 7990.59 | 7126.55 | 7558.57 | 11.34 | 12.11 | 11.73 | ||
淮麦33 Huaimai 33 | 9761.52 | 7498.83 | 8630.17 | 9267.07 | 7031.30 | 8149.18 | 5.07 | 6.23 | 5.65 | ||
安农0711 Annong 0711 | 8934.77 | 7338.49 | 8136.63 | 8394.50 | 6941.92 | 7668.21 | 6.05 | 5.40 | 5.73 | ||
华成3366 Huacheng 3366 | 9412.04 | 7193.99 | 8303.01 | 7874.91 | 6553.64 | 7214.27 | 16.33 | 8.90 | 12.62 | ||
周麦27 Zhoumai 27 | 9311.52 | 8014.61 | 8663.06 | 8168.85 | 6931.15 | 7550.00 | 12.27 | 13.52 | 12.90 | ||
洛旱22 Luohan 22 | 8272.62 | 8235.92 | 8254.27 | 7879.23 | 7299.77 | 7589.50 | 4.76 | 11.37 | 8.06 | ||
洛旱19 Luohan 19 | 9833.82 | 8351.24 | 9092.53 | 9587.08 | 7922.40 | 8754.74 | 2.51 | 5.14 | 3.82 | ||
百农207 Bainong 207 | 8389.31 | 7102.16 | 7745.73 | 7876.61 | 6807.27 | 7341.94 | 6.11 | 4.15 | 5.13 | ||
洛麦26 Luomai 26 | 10750.55 | 8034.18 | 9392.36 | 10386.07 | 7172.79 | 8779.43 | 3.39 | 10.72 | 7.06 | ||
新麦36 Xinmai 36 | 9684.89 | 8172.29 | 8928.59 | 8689.86 | 7325.29 | 8007.58 | 10.27 | 10.36 | 10.32 | ||
丰德存麦5号 Fengdecunmai 5 | 8194.86 | 7755.06 | 7974.96 | 7931.76 | 7124.55 | 7528.15 | 3.21 | 8.13 | 5.67 | ||
丰德存麦21号 Fengdecunmai 21 | 9328.23 | 8963.82 | 9146.03 | 9174.25 | 8635.60 | 8904.92 | 1.65 | 3.66 | 2.66 | ||
丰德存麦1号 Fengdecunmai 1 | 9656.01 | 7700.74 | 8678.38 | 9083.05 | 7264.86 | 8173.95 | 5.93 | 5.66 | 5.80 | ||
郑麦369 Zhengmai 369 | 9121.54 | 8148.73 | 8635.14 | 8591.11 | 7607.83 | 8099.47 | 5.82 | 6.64 | 6.23 | ||
周麦36 Zhoumai 36 | 10200.53 | 8243.04 | 9221.78 | 9727.32 | 7252.42 | 8489.87 | 4.64 | 12.02 | 8.33 | ||
郑麦366 Zhengmai 366 | 9844.97 | 7540.83 | 8692.90 | 9389.41 | 7135.29 | 8262.35 | 4.63 | 5.38 | 5.00 | ||
平均值Mean | 9331.64 | 7809.80 | 8570.72 | 8784.26 | 7215.67 | 7999.96 | 5.87 | 7.54 | 6.70 |
[1] |
DAVIDSON D. Gaps in agricultural climate adaptation research. Nature Climate Change, 2016, 6(5):433-435.
doi: 10.1038/nclimate3007 |
[2] | Intergovernmental Panel on Climate Change. IPCC-SR15, Global Warming of 1.5℃. [2021-03-03]. http://www.ipcc.ch/report/sr15/. |
[3] |
CHALLINOR A J, WATSON J, LOBELL D B, HOWDEN S M, CHHETRI N B. A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 2014, 4(4):287-291.
doi: 10.1038/nclimate2153 |
[4] |
HALL A, COX P, HUNTINGFORD C, KLEIN S. Progressing emergent constraints on future climate change. Nature Climate Change, 2019, 9(4):269-278.
doi: 10.1038/s41558-019-0436-6 |
[5] | 吴进东, 李金才, 魏凤珍, 王成雨, 张一, 武文明. 花后渍水高温交互效应对冬小麦旗叶光合特性及产量的影响. 作物学报, 2012, 38(6):1071-1079. |
WU J D, LI J C, WEI F Z, WANG C Y, ZHANG Y, WU W M. Effect of interaction of water logging and high temperature after anthesis on photosynthetic characteristics of flag leaf and yield in winter wheat. Acta Agronomica Sinica, 2012, 38(6):1071-1079. (in Chinese) | |
[6] |
BERGKAMP B, IMPA S M, ASEBEDO A R, FRITZ A K, JAGADISH S V K. Prominent winter wheat varieties response to post-flowering heat stress under controlled chambers and field based heat tents. Field Crops Research, 2018, 222:143-152.
doi: 10.1016/j.fcr.2018.03.009 |
[7] | 刘萍, 郭文善, 浦汉春, 封超年, 朱新开, 彭永欣. 灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响. 中国农业科学, 2005, 38(12):2403-2407. |
LIU P, GUO W S, PU H C, FENG C N, ZHU X K, PENG Y X. Effects of high temperature during grain filling period on antioxidant enzymes and lipid peroxidation in flag leaves of wheat. Scientia Agricultura Sinica, 2005, 38(12):2403-2407. (in Chinese) | |
[8] | 卞晓波, 陈丹丹, 王强盛, 王绍华. 花后开放式增温对小麦产量及品质的影响. 中国农业科学, 2012, 45(8):1489-1498. |
BIAN X B, CHEN D D, WANG Q S, WANG S H. Effects of different day and night temperature enhancements on wheat grain yield and quality after anthesis under free air controlled condition. Scientia Agricultura Sinica, 2012, 45(8):1489-1498. (in Chinese) | |
[9] | 郭天财, 王晨阳, 朱云集, 王化岑, 李九星, 周继泽. 后期高温对冬小麦根系及地上部衰老的影响. 作物学报, 1998, 24(6):957-962. |
GUO T C, WANG C Y, ZHU Y J, WANG H C, LI J X, ZHOU J Z. Effects of high temperature on the senescence of root and top-partial of wheat plant in the later stage. Acta Agronomica Sinica, 1998, 24(6):957-962. (in Chinese) | |
[10] |
AYENEH A, GINKEL M V, REYNOLDS M P, AMMAR K. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research, 2002, 79(2/3):173-184.
doi: 10.1016/S0378-4290(02)00138-7 |
[11] | BARAKAT M N, AL-DOSS A A, ELSHAFEI A A, MOUSTAFA K A. Identification of new microsatellite marker linked to the grain filling rate as indicator for heat tolerance genes in F2 wheat population. Australian Journal of Crop Science, 2011, 5(2):104-110. |
[12] | 陈冬梅, 马永安, 刘保华, 苏玉环, 王雪香. 小麦耐热种质资源的鉴定与筛选. 河北农业科学, 2017, 21(4):64-69. |
CHEN D M, MA Y A, LIU B H, SU Y H, WANG X X. Appraisal and screening of heat resistant wheat germplasm resources. Journal of Hebei Agricultural Sciences, 2017, 21(4):64-69. (in Chinese) | |
[13] | 王小波, 关攀锋, 辛明明, 汪永法, 陈希勇, 赵爱菊. 小麦种质资源耐热性评价. 中国农业科学, 2019, 52(23):4191-4200. |
WANG X B, GUAN P F, XIN M M, WANG Y F, CHEN X Y, ZHAO A J. Evaluation of heat tolerance in wheat germplasm resources. Scientia Agricultura Sinica, 2019, 52(23):4191-4200. (in Chinese) | |
[14] | 张嵩午, 王长发, 冯佰利, 张宾, 郝彦宾. 冠层温度多态性小麦的性状特征. 生态学报, 2002, 22(9):1414-1419. |
ZHANG S W, WANG C F, FENG B L, ZHANG B, HAO Y B. The specific characteristics of wheat with polymorphic canopy temperature. Acta Ecologica Sinica, 2002, 22(9):1414-1419. (in Chinese) | |
[15] | 张嵩午, 刘党校. 小麦冠温的多态性及其与品质变异的关联. 中国农业科学, 2007, 40(8):1630-1637. |
ZHANG S W, LIU D X. Polymorphism of wheat canopy temperature and its relationship with kernel quality differentiation. Scientia Agricultura Sinica, 2007, 40(8):1630-1637. (in Chinese) | |
[16] | 王晶, 黄伟雄, 李敏, 许秀敏, 梁旭霞, 黄泓耀. 多元统计分析在小麦粉产地溯源中的应用. 中国食品卫生杂志, 2018, 30(1):68-73. |
WANG J, HUANG W X, LI M, XU X M, LIANG X X, HUANG H Y. The application of multivariate data analysis to determine the geographical origin of wheat flour. Chinese Journal of Food Hygiene, 2018, 30(1):68-73. (in Chinese) | |
[17] | 汪明华, 李佳佳, 陆少奇, 邵文韬, 程安东, 张文明, 王晓波, 邱丽娟. 大豆品种耐高温特性的评价方法及耐高温种质筛选与鉴定. 植物遗传资源学报, 2019, 20(4):891-902. |
WANG M H, LI J J, LU S Q, SHAO W T, CHENG A D, ZHANG W M, WANG X B, QIU L J. Construction of evaluation standard for tolerance to high-temperature and screening of heat-tolerant germplasm resources in soybean. Journal of Plant Genetic Resources, 2019, 20(4):891-902. (in Chinese) | |
[18] | 任茂, 张文英. 棉花品种耐热性分析及鉴定指标筛选. 核农学报, 2018, 32(4):788-794. |
REN M, ZHANG W Y. Evaluation of heat tolerance and screening the index for the assessment of heat tolerance in upland cotton. Journal of Nuclear Agricultural Sciences, 2018, 32(4):788-794. (in Chinese) | |
[19] | 付丽军, 李聪晓, 苏胜宇, 李玉华, 周禹. 黄瓜苗期耐热种质筛选与耐热性评价体系构建. 植物生理学报, 2020, 56(7):1593-1604. |
FU L J, LI C X, SU S Y, LI Y H, ZHOU Y. Screening of cucumber germplasms in seedling stage and the construction of evaluation system for heat tolerance. Plant Physiology Journal, 2020, 56(7):1593-1604. (in Chinese) | |
[20] | 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2015: 274-287. |
LI H S. Principles and Techniques for Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2015: 274-287. (in Chinese) | |
[21] |
ALMESELMANI M, DESHMUKH P S, SAIRAM R K. Protective role of antioxidant enzymes under high temperature stress. Plant Science, 2006, 171(3):382-388.
doi: 10.1016/j.plantsci.2006.04.009 |
[22] | 李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014, 47(15):2927-2939. |
LI C H, YAO X D, JU B T, ZHU M Y, WANG H Y, ZHANG H J, AO X, YU C M, XIE F T, SONG S H. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes. Scientia Agricultura Sinica, 2014, 47(15):2927-2939. (in Chinese) | |
[23] | 武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰. 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015, 48(13):2497-2507. |
WU X L, LIANG H Y, YANG F, LIU W G, SHE Y H, YANG W Y. Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean. Scientia Agricultura Sinica, 2015, 48(13):2497-2507. (in Chinese) | |
[24] |
SALEM M A, KAKANI V G, KOTI S, REDDY K R. Pollen-based screening of soybean genotypes for high temperatures. Crop Science, 2007, 47(1):219-231
doi: 10.2135/cropsci2006.07.0443 |
[25] | 于康珂, 刘源, 李亚明, 孙宁宁, 詹静, 尤东玲, 牛丽, 李潮海, 刘天学. 玉米花期耐高温品种的筛选与综合评价. 玉米科学, 2016, 24(2):62-71. |
YU K K, LIU Y, LI Y M, SUN N N, ZHAN J, YOU D L, NIU L, LI C H, LIU T X. Screening and comprehensive evaluation of heat tolerance of maize hybrids in flowering stage. Journal of Maize Sciences, 2016, 24(2):62-71. (in Chinese) | |
[26] |
SONG G C, CHEN Q Z, TANG C M. The effects of high-temperature stress on the germination of pollen grains of upland cotton during square development. Euphytica, 2014, 200(2):175-186.
doi: 10.1007/s10681-014-1141-1 |
[27] | 徐如强, 孙其信, 张树榛. 春小麦耐热性的筛选方法与指标. 华北农学报, 1997, 12(3):22-29. |
XU R Q, SUN Q X, ZHANG S Z. Screening methods and indices of heat tolerance in spring wheat. Acta Agriculturae Boreali-Sinica, 1997, 12(3):22-29. (in Chinese) | |
[28] | 陈希勇, 孙其信, 孙长征. 春小麦耐热性表现及其评价. 中国农业大学学报, 2000, 5(1):43-49. |
CHEN X Y, SUN Q X, SUN C Z. Performance and evaluation of spring wheat heat tolerance. Journal of China Agricultural University, 2000, 5(1):43-49. (in Chinese) | |
[29] | 耿晓丽, 张月伶, 臧新山, 赵月, 张金波, 尤明山, 倪中福, 姚颖垠, 辛明明, 彭惠茹, 孙其信. 北方冬麦区与黄淮北片优良小麦品种(系)耐热性评价. 麦类作物学报, 2017, 36(2):172-181. |
GENG X L, ZHANG Y L, ZANG X S, ZHAO Y, ZHANG J B, YOU M S, NI Z F, YAO Y Y, XIN M M, PENG H R, SUN Q X. Evaluation the thermotolerance of the wheat (Triticum aestivum L.) cultivars and advanced lines collected from the northern china and north area of Huanghuai Winter Wheat regions. Journal of Triticeae Crops, 2016, 36(2):172-181. (in Chinese) | |
[30] |
BHUSAL N, SHARMA P, SAREEN S, SARIAL A K. Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress. Biologia Plantarum, 2018, 62(7):721-731.
doi: 10.1007/s10535-018-0811-6 |
[31] |
DIAS A S, LIDON F C. Evolution of grain filling rate and duration in bread and durum wheat, under heat stress after an-thesis. Journal of Agronomy and Crop Science, 2009, 195(2):137-147.
doi: 10.1111/jac.2009.195.issue-2 |
[32] |
LV X K, HAN J, LIAO Y C, LIU Y. Effect of phosphorus and potassium foliage application post-anthesis on grain filling and hormonal changes of wheat. Field Crops Research, 2017, 214:83-93.
doi: 10.1016/j.fcr.2017.09.001 |
[33] |
KUMAR R R, GOSWAMI S, GUPTA R, VERMA P, SINGH K, SINGH J P, KUMAR M, SHARMA S K, PATHAK H, RAI R D. The Stress of Suicide: Temporal and spatial expression of putative heat shock protein 70 protect the cells from heat injury in wheat (Triticum aestivum L.). Journal of Plant Growth Regulation, 2015, 35(1):65-82.
doi: 10.1007/s00344-015-9508-7 |
[34] | 靳路真, 王洋, 张伟, 邱红梅, 陈健, 候云龙, 马晓萍, 王跃强, 谢甫绨. (大豆品种系)耐热性鉴定及分级评鉴. 中国油料作物学报, 2016, 38(1):77-87. |
JIN L Z, WANG Y, ZHANG W, QIU H M, CHEN J, HOU Y L, MA X P, WANG Y Q, XIE F T. Grading evaluation on heat-tolerance in soybean and identification of heat -tolerant cultivars. Chinese Journal of Oil Crop Sciences, 2016, 38(1):77-87. (in Chinese) | |
[35] | 胡江龙, 郭林涛, 王友华, 周治国. 棉花渍害恢复的生理指示指标探讨[J]. 中国农业科学, 2013, 46(21):4446-4453. |
HU J L, GUO L T, WANG Y H, ZHOU Z G. Physiological indicator of cotton plant in recovery from waterlogging damage. Scientia Agricultura Sinica, 2013, 46(21):4446-4453. (in Chinese) |
[1] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[2] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[3] | 王秀秀,邢爱双,杨茹,何守朴,贾银华,潘兆娥,王立如,杜雄明,宋宪亮. 陆地棉种质资源表型性状综合评价[J]. 中国农业科学, 2022, 55(6): 1082-1094. |
[4] | 卞能飞, 孙东雷, 巩佳莉, 王幸, 邢兴华, 金夏红, 王晓军. 花生烘烤食用品质评价及指标筛选[J]. 中国农业科学, 2022, 55(4): 641-652. |
[5] | 伊英杰,韩坤,赵斌,刘国利,林佃旭,陈国强,任昊,张吉旺,任佰朝,刘鹏. 长期不同施肥措施冬小麦-夏玉米轮作体系周年氨挥发损失的差异[J]. 中国农业科学, 2022, 55(23): 4600-4613. |
[6] | 沈倩,张思平,刘瑞华,刘绍东,陈静,葛常伟,马慧娟,赵新华,杨国正,宋美珍,庞朝友. 棉花出苗期耐冷综合评价体系的构建及耐冷指标筛选[J]. 中国农业科学, 2022, 55(22): 4342-4355. |
[7] | 杜金霞,李奕莎,李美霖,陈文浛,张木清. 甘蔗不同基因型对白条病抗性的评价[J]. 中国农业科学, 2022, 55(21): 4118-4130. |
[8] | 胡馨, 张职亮, 张飞, 邓波, 房伟民. 大花型茶专用菊杂交后代株系的综合评价与筛选[J]. 中国农业科学, 2022, 55(20): 4036-4051. |
[9] | 刘丰,蒋佳丽,周琴,蔡剑,王笑,黄梅,仲迎鑫,戴廷波,曹卫星,姜东. 美国软麦籽粒品质变化趋势及对我国弱筋小麦标准达标度分析[J]. 中国农业科学, 2022, 55(19): 3723-3737. |
[10] | 韩守威,司纪升,余维宝,孔令安,张宾,王法宏,张海林,赵鑫,李华伟,孟鈺. 山东省冬小麦产量差与氮肥利用效率差形成机理解析[J]. 中国农业科学, 2022, 55(16): 3110-3122. |
[11] | 孟雨,温鹏飞,丁志强,田文仲,张学品,贺利,段剑钊,刘万代,冯伟. 基于热红外图像的小麦品种抗旱性鉴定与评价[J]. 中国农业科学, 2022, 55(13): 2538-2551. |
[12] | 解斌,安秀红,陈艳辉,程存刚,康国栋,周江涛,赵德英,李壮,张艳珍,杨安. 不同苹果砧木对持续低磷的响应及适应性评价[J]. 中国农业科学, 2022, 55(13): 2598-2612. |
[13] | 徐晓,任根增,赵欣蕊,常金华,崔江慧. 中国高粱地方品种和育成品种穗部表型性状精准鉴定及综合评价[J]. 中国农业科学, 2022, 55(11): 2092-2108. |
[14] | 范文静,刘明,赵鹏,张强强,吴德祥,郭鹏宇,朱晓亚,靳容,张爱君,唐忠厚. 甘薯苗期耐低氮基因型筛选及不同氮效率类型综合评价[J]. 中国农业科学, 2022, 55(10): 1891-1902. |
[15] | 刘秋员,周磊,田晋钰,程爽,陶钰,邢志鹏,刘国栋,魏海燕,张洪程. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选[J]. 中国农业科学, 2021, 54(7): 1397-1409. |
|