中国农业科学 ›› 2021, Vol. 54 ›› Issue (16): 3393-3405.doi: 10.3864/j.issn.0578-1752.2021.16.003
收稿日期:
2021-02-03
接受日期:
2021-05-02
出版日期:
2021-08-16
发布日期:
2021-08-24
通讯作者:
胡健
作者简介:
李昕芫,E-mail: 基金资助:
LI XinYuan(),LOU JinXiu,LIU QingYuan,HU Jian(
),ZHANG YingJun
Received:
2021-02-03
Accepted:
2021-05-02
Online:
2021-08-16
Published:
2021-08-24
Contact:
Jian HU
摘要:
【目的】紫花苜蓿(Medicago sativa L.)被誉为牧草之王,近年来,中国东北和华北地区种植面积不断扩大,但紫花苜蓿质量与产量仍不足以满足中国畜牧业发展的需求。本研究旨在分析中国东北和华北地区紫花苜蓿根瘤菌遗传多样性,为紫花苜蓿高效固氮根瘤菌的筛选与应用提供参考。【方法】采用表面消毒和平板划线法从根瘤中分离纯化根瘤菌单菌落;使用BOX-PCR方法对供试菌株进行基因型划分;选取代表菌株进行持家基因(atpD、glnII和rpoB)和共生基因(nifH和nodC)的系统发育分析。【结果】从中国东北和华北19个采样地共分离纯化了499株根瘤菌,BOX-PCR可将供试菌株分为37种BOX型,BOX型存在显著的地理分布现象,同时寄主品种对根瘤菌基因型具有一定的选择作用。97.60%(487/499)的根瘤菌为Sinorhizobium meliloti。其余12株分别为S. adhaerens、Mesorhizobium huakuii、Rhizobium loessense、R. mesosinicum、R. vignae、Mesorhizobium sp.和Phyllobacterium sp.,这12株根瘤菌仅在中国东北地区发现,华北地区根瘤菌均为S. meliloti。3个持家基因在紫花苜蓿根瘤菌种间系统发育分析结果一致,但其揭示优势种S. meliloti的种内多样性存在差异。共生基因系统发育结果显示,在根瘤菌属间和属内发生了共生基因的水平转移现象。nifH在S.meliloti种内显示出比nodC更丰富多样性。【结论】中国东北和华北地区紫花苜蓿根瘤菌具有较丰富的遗传多样性,且根瘤菌存在显著的地理分布特征和寄主选择现象。
李昕芫, 娄金秀, 刘清源, 胡健, 张英俊. 中国东北和华北地区紫花苜蓿根瘤菌遗传多样性研究[J]. 中国农业科学, 2021, 54(16): 3393-3405.
LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China[J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
表1
本文供试的紫花苜蓿根瘤菌菌株信息"
采样地 Sampling site | 省份 Province | 区域 Region | 采样时间 Sampling date (Y.M) | 寄主品种 Host cultivar | 菌株数量 No. of strains |
---|---|---|---|---|---|
五河Wuhe | 安徽Anhui | 华北North | 2016.1 | 未知Unknown | 58 |
沧州Cangzhou | 河北Hebei | 华北North | 2017.5 | 中苜1号、中苜3号、甘农3号 Zhongmu1, Zhongmu3, Gannong3 | 32 |
衡水Hengshui | 河北Hebei | 华北North | 2017.5 | 中苜1号、WL363 Zhongmu1, WL363 | 48 |
新乡Xinxiang | 河南Henan | 华北North | 2017.5 | M343、M354 | 58 |
荥阳Xingyang | 河南Henan | 华北North | 2017.5 | 三得利 Sandeli | 20 |
郑州Zhengzhou | 河南Henan | 华北North | 2017.5 | 劲能5010 Jinneng5010 | 32 |
齐齐哈尔Qiqihar | 黑龙江Heilongjiang | 东北Northeast | 2015.9 | 806 | 11 |
白城Baicheng | 吉林Jilin | 东北Northeast | 2017.5 | 公农5号 Gongnong5 | 59 |
前郭Qianguo | 吉林Jilin | 东北Northeast | 2015.9 | 敖汉 Aohan | 9 |
通榆Tongyu | 吉林Jilin | 东北Northeast | 2015.9 | 东苜1号 Dongmu1 | 16 |
延边Yanbian | 吉林Jilin | 东北Northeast | 2015.9 | 公农1号 Gongnong1 | 4 |
凤城Fengcheng | 辽宁Liaoling | 东北Northeast | 2016.6 | 未知 Unknown | 6 |
建平Jianping | 辽宁Liaoning | 东北Northeast | 2016.6 | 未知 Unknown | 12 |
辽阳Liaoyang | 辽宁Liaoning | 东北Northeast | 2016.6 | 龙牧、WL319 Longmu, WL319 | 34 |
沈阳Shenyang | 辽宁Liaoning | 东北Northeast | 2016.6 | 公农1号 Gonglong1 | 32 |
特尼河Turney river | 内蒙古Inner Mongolia | 东北Northeast | 2016.1 | 未知 Unknown | 7 |
谢尔塔拉Cher tara | 内蒙古Inner Mongolia | 东北Northeast | 2015.9 | 未知 Unknown | 9 |
胶州Jiaozhou | 山东Shandong | 华北North | 2017.6 | 三得利、中苜3号 Sandeli, Zhongmu3 | 24 |
聊城Liaocheng | 山东Shandong | 华北North | 2017.6 | 三得利、WL363 Sandeli, WL363 | 28 |
总计 Total | 499 |
表2
紫花苜蓿根瘤菌BOX型种类及其分布"
BOX型 BOX type | 菌株数 No. of strains | 占比 Percentage (%) | 比对序列号 Accession No. | 菌种 Species | 采样地b Sampling site | 区域 Region |
---|---|---|---|---|---|---|
1 | 38 | 7.62 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城、凤城、黑龙江(5)b、建平(6)、辽阳(21)、前郭、沈阳、五河(2) Baicheng, Fengcheng, Heilongjiang (5), Jianping (6), Liaoyang (21), Qianguo, Shenyang, Wuhe (2) | NE、N |
2 | 2 | 0.40 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城、五河 Baicheng, Wuhe | NE、N |
3 | 1 | 0.20 | EF549450 (91.34) a | 中慢生根瘤菌属 Mesorhizobium sp. | 白城 Baicheng | NE |
4 | 1 | 0.20 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 辽阳 Liaoyang | NE |
5 | 6 | 1.20 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城、前郭、特尼河、通榆(2)、五河 Baicheng, Qianguo, Turney river, Tongyu (2), Wuhe | NE、N |
6 | 1 | 0.20 | KF206625 (100) | 黄土根瘤菌 Rhizobium loessense | 白城 Baicheng | NE |
7 | 93 | 18.64 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城(2)、沧州、衡水(28)、新乡(23)、荥阳、郑州(13)、辽阳(10)、前郭(2)、聊城(3)、沈阳(7)、五河(3) Baicheng (2), Cangzhou, Hengshui (28), Xinxiang (23), Xingyang, Zhengzhou (13), Liaoyang (10), Qianguo (2), Liaocheng (3), Shenyang (7), Wuhe (3) | NE、N |
8 | 2 | 0.40 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城、沈阳 Baicheng, Shenyang | NE |
9 | 3 | 0.60 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城、郑州、齐齐哈尔 Baicheng, Zhengzhou, Qiqihar | NE、N |
10 | 1 | 0.20 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城 Baicheng | NE |
11 | 1 | 0.20 | KF206625 (100) | 黄土根瘤菌 Rhizobium loessense | 白城 Baicheng | NE |
12 | 4 | 0.80 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城、聊城(3) Baicheng, Liaocheng (3) | NE、N |
13 | 15 | 3.00 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城(5)、建平、通榆(4)、谢尔塔拉(4)、延边 Baicheng (5), Jianping, Tongyu (4), Cher tara (4), Yanbian | NE |
14 | 8 | 1.60 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城、前郭、通榆(3)、五河(2)、延边 Baicheng, Qianguo, Tongyu (3), Wuhe (2), Yanbian | NE、N |
15 | 1 | 0.20 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城 Baicheng | NE |
16 | 2 | 0.40 | KP251033 (100) | 华癸根瘤菌 Mesorhizobium huakuii | 通榆 Tongyu | NE |
17 | 1 | 0.20 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 前郭 Qianguo | NE |
18 | 15 | 3.00 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 齐齐哈尔(3)、沈阳、特尼河(3)、五河(6)、谢尔塔拉(2) Qiqihar (3), Shenyang, Turney river (3), Wuhe (6), Cher tara (2) | NE、N |
19 | 36 | 7.20 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 沧州、衡水(5)、新乡(2)、荥阳(2)、郑州(5)、前郭、胶州(12)、通榆(2)、五河(4)、延边(2) Cangzhou, Hengshui (5), Xinxiang (2), Xingyang (2), Zhengzhou (5), Qianguo, Jiaozhou (12), Tongyu (2), Wuhe (4), Yanbian (2) | NE、N |
20 | 13 | 2.60 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 齐齐哈尔、沈阳(8)、通榆 、五河(3) Qiqihar, Shenyang (8), Tongyu, Wuhe (3) | NE、N |
21 | 1 | 0.20 | AM418747 (99.67) | 附着剑菌 Sinorhizobium adhaerens | 沈阳 Shenyang | NE |
OX型 BOX type | 菌株数 No. of strains | 占比 Percentage (%) | 比对序列号 Accession No. | 菌种 Species | 采样地b Sampling site | 区域 Region |
22 | 58 | 11.62 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城(35)、凤城(2)、齐齐哈尔、建平(4)、前郭、沈阳(8)、五河(5)、谢尔塔拉(2) Baicheng (35), Fengcheng (2), Qiqihar, Jianping (4), Qianguo, Shenyang (8), Wuhe (5), Cher tara (2) | NE、N |
23 | 141 | 28.26 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 凤城(3)、沧州(25)、衡水(14)、新乡(20)、荥阳(14)、郑州(12)、辽阳(2)、胶州(12)、聊城(20)、沈阳、通榆(2)、五河(15)、谢尔塔拉 Fengcheng (3), Cangzhou (25), Hengshui (14), Xinxiang (20), Xingyang (14), Zhengzhou (12), Liaoyang (2), Jiaozhou (12), Liaocheng (20), Shenyang, Tongyu (2), Wuhe (15), Cher tara | NE、N |
24 | 8 | 1.60 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 五河 Wuhe | N |
25 | 3 | 0.60 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 荥阳(2)、前郭 Xingyang (2), Qianguo | NE、N |
26 | 1 | 0.20 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 五河 Wuhe | N |
27 | 4 | 0.80 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 特尼河(3)、五河 Turney river (3), Wuhe | NE、N |
28 | 6 | 1.20 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 荥阳、建平、五河(4) Xingyang, Jianping, Wuhe (4) | NE、N |
29 | 3 | 0.60 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 白城(2)、谢尔塔拉 Baicheng (2), Cher tara | NE |
30 | 1 | 0.20 | EU120727 (98.01) | 华中根瘤菌 Rhizobium mesosinicum | 沈阳 Shenyang | NE |
31 | 2 | 0.40 | AM418747 (99.67) | 附着剑菌 Sinorhizobium adhaerens | 沈阳 Shenyang | NE |
32 | 1 | 0.20 | KF580979 (92.72) | 芸苔叶杆菌 Phyllobacterium brassicacearum | 沈阳 Shenyang | NE |
33 | 19 | 3.81 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 沧州(4)、新乡(11)、郑州、聊城(2) Cangzhou (4), Xinxiang (11), Zhengzhou, Liaocheng (2) | N |
34 | 2 | 0.40 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 新乡 Xinxiang | N |
35 | 1 | 0.20 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 沧州 Cangzhou | N |
36 | 1 | 0.20 | KF206603 (99.33) | 绿豆根瘤菌 Rhizobium vignae | 白城 Baicheng | NE |
37 | 2 | 0.40 | - | 草木樨中华根瘤菌 Sinorhizobium meliloti | 五河 Wuhe | N |
表3
栽培品种对紫花苜蓿根瘤菌基因型的影响"
采样地 Sampling site | 品种a Cultivar | 菌株数 No. of strains | BOX型b BOX type |
---|---|---|---|
新乡 Xinxiang | M343 | 37 | BOX7(4)b、BOX19(2)、BOX23(23)、BOX33(9)、BOX34(2) |
M354 | 21 | BOX7(19)、BOX33(2) | |
沧州 Cangzhou | 中苜1号Zhongmu1 | 12 | BOX7、BOX23(9)、BOX33、BOX35 |
中苜3号Zhongmu3 | 16 | BOX19、BOX23(12)、BOX33(3) | |
甘农3号Gannong3 | 4 | BOX23(4) | |
胶州 Jiaozhou | 三得利Sandeli | 12 | BOX19(8)、BOX23(4) |
中苜3号Zhongmu3 | 12 | BOX19(4)、BOX23(8) | |
衡水 Hengshui | 中苜1号Zhongmu1 | 31 | BOX7(28)、BOX23(3) |
WL363 | 17 | BOX 19(5)、BOX23(11)、BOX33 | |
辽阳 Liaoyang | 龙牧Nongmu | 13 | BOX1(11)、BOX7、BOX23 |
WL319 | 21 | BOX1(10)、BOX7(9)、BOX4、BOX23 |
[1] | 徐丽君, 徐大伟, 逄焕成, 辛晓平, 金东艳, 唐雪娟, 郭明英. 中国苜蓿属植物适宜性区划. 草业科学, 2017, 11(11):2347-2358. |
XU L J, XU D W, PANG H C, XIN X P, JIN D Y, TANG X J, GUO M Y. Chinese alfalfa habitat suitability regionalization. Pratacultural Science, 2017, 11(11):2347-2358. (in Chinese) | |
[2] | 郭婷, 薛彪, 白娟, 孙启忠. 刍议中国牧草产业发展现状: 以苜蓿、燕麦为例. 草业科学, 2019, 36(5):1466-1474. |
GUO T, XUE B, BAI J, SUN Q Z. Discussion of the present situation of China’s forage grass industry development: An example using alfalfa and oats. Pratacultural Science, 2019, 36(5):1466-1474. (in Chinese) | |
[3] | 刘鹏, 田颖哲, 钟永嘉, 廖红. 酸性土壤上花生高效根瘤菌的分离及应用. 中国农业科学, 2019, 52(19):3393-3403. |
LIU P, TIAN Y Z, ZHONG Y J, LIAO H. Isolation and application of effective rhizobium strains in peanut on acidic soils. Scientia Agricultura Sinica, 2019, 52(19):3393-3403. (in Chinese) | |
[4] | 苗阳阳, 师尚礼, 康文娟. 赤霉素对根瘤菌运移、定殖及苜蓿幼苗生长的影响. 中国农业科学, 2017, 50(23):4545-4557. |
MIAO Y Y, SHI S L, KANG W J. Effects of gibberellin on migration and colonization of rhizobia and seedling growth of alfalfa. Scientia Agricultura Sinica, 2017, 50(23):4545-4557. (in Chinese) | |
[5] | 管凤贞, 邱宏端, 陈济琛, 林新坚. 根瘤菌菌剂的研究与开发现状. 生态学杂志, 2012, 31(3):755-759. |
GUAN F Z, QIU H D, CHEN J C, LIN X J. Rhizobium inoculants: Research progress and development status. Chinese Journal of Ecology, 2012, 31(3):755-759. (in Chinese) | |
[6] | 张荣娟. 中国西部苜蓿根瘤菌的生物地理分布及其抗逆机理研究[D]. 北京: 中国农业大学, 2011. |
ZHANG R J. Biogeography and stress adaptation mechanisms of Sinorhizobium associated with Medicago in Western China[D]. Beijing: China Agricultural University, 2011. (in Chinese) | |
[7] |
KANG W J, SHI, S L, XU L. Diversity and symbiotic divergence of endophytic and non-endophytic rhizobia of Medicago sativa. Annals of Microbiology, 2018, 68:247-260.
doi: 10.1007/s13213-018-1333-3 |
[8] | 张小甫. 甘肃不同生态区域苜蓿根瘤菌筛选菌株常规鉴定与分子鉴定[D]. 兰州: 甘肃农业大学, 2008. |
ZHANG X F. Identification of alfalfa rhizobium strains and analysis of genetic diversity in different ecological regions in Gansu[D]. Lanzhou: Gansu Agricultural University, 2008. (in Chinese) | |
[9] | 冯春生. 西北地区天蓝苜蓿根瘤菌系统发育研究[D]. 杨凌: 西北农林科技大学, 2008. |
FENG C S. Phylogeny of rhizobia isolated from Medicago lupulina in Northwest of China[D]. Yangling: Northwest Agricultural and Forestry University, 2008. (in Chinese) | |
[10] | 位秀丽, 付芸芸, 韦革宏. 西北部分重金属矿区天蓝苜蓿根瘤菌生理生化特性及16S rDNA PCR-RFLP分析. 干旱地区农业研究, 2009, 27(2):223-226. |
WEI X L, FU Y Y, WEI G H. Physiological and biochemical characters and 16S rDNA PCR-RFLP of rhizobia isolated from Medicago lupulina in mining regions of Northwest China. Agricultural Research in the Arid Areas, 2009, 27(2):223-226. (in Chinese) | |
[11] | 葛勇. 川西高寒地区苜蓿和无翅山黧豆根瘤菌遗传多样性及系统发育地位研究[D]. 成都: 四川农业大学, 2013. |
GE Y. Genetic diversity and phylogeny of rhizobia isolated from Medicago and Lathyrus in the west plateau of Sichuan, China[D]. Chengdu: Sichuan Agricultural University, 2013. (in Chinese) | |
[12] |
STEFAN A, CAUWENBERGHE J V, ROSU C M, STEDEL C. LABROU N, FLEMETAKIS E, EFROSE R C. Genetic diversity and structure of Rhizobium leguminosarum populations associated with clover plants are influenced by local environmental variables. Systematic and Applied Microbiology, 2018, 41(3):251-259.
doi: 10.1016/j.syapm.2018.01.007 |
[13] |
WANG X L, CUI W J. FENG X Y, ZHONG Z M, LI Y, CHEN W X, CHEN W F, SHAO X M, TIAN C F. Rhizobia inhabiting nodules and rhizosphere soils of alfalfa: A strong selection of facultative microsymbionts. Soil Biology and Biochemistry, 2018, 116:340-350.
doi: 10.1016/j.soilbio.2017.10.033 |
[14] | VERSALOVIC J, SCHNEIDER M, DE BRUIJN F J, LUPSKI J R. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, 1994, 5:25-40. |
[15] |
VINUESA P, SILVA C, WERNER D, MARTINEZ-ROMERO E. Population genetics and phylogenetic inference in bacterial molecular systematics: The roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Molecular Phylogenetics and Evolution, 2005, 34(1):29-54.
doi: 10.1016/j.ympev.2004.08.020 |
[16] |
VINUESA P, ROJAS-JIMENEZ K, CONTRERAS-MOREIRA B, MAHNA S K, PRASAD B N, MOE H, SELVARAJU S B, THIERFELDER H, WERNER D. Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic Continent. Applied and Environmental Microbiology, 2008, 74(22):6987-6996.
doi: 10.1128/AEM.00875-08 |
[17] |
SARITA S, SHARMA P K, PRIEFER U B, PRELL J. Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiology Ecology, 2005, 54(1):1-11.
doi: 10.1016/j.femsec.2005.02.015 |
[18] |
YAO Y, WANG R, LU J K, SUI X H, WANG E T, CHEN W X. Genetic diversity and evolution of Bradyrhizobium populations nodulating Erythrophleum fordii, an evergreen tree indigenous to the southern subtropical region of China. Applied Environmental Microbiology, 2014, 80(19):6184-6194.
doi: 10.1128/AEM.01595-14 |
[19] |
LIU J, WANG E T, CHEN W X. Diverse rhizobia associated with woody legumes Wisteria sinensis, Cercis racemosa and Amorpha fruticosa grown in the temperate zone of China. Systematic and Applied Microbiology, 2005, 28(5):465-477.
doi: 10.1016/j.syapm.2005.02.004 |
[20] |
ZHANG X X, GUO H J, JIAO J, ZHANG P, XIONG H Y, CHEN W X, TIAN C F. Pyrosequencing of rpoB uncovers a significant biogeographical pattern of rhizobial species in soybean rhizosphere. Journal of Biogeography, 2017, 44(7):1491-1499.
doi: 10.1111/jbi.2017.44.issue-7 |
[21] |
XIONG H Y, ZHANG X X, GUO H J, JI Y Y, LI Y, WANG X L, ZHAO W, MO F Y, CHEN J C, YANG T, ZONG X X, CHEN W X, TIAN C F. The epidemicity of facultative microsymbionts in faba bean rhizosphere soils. Soil Biology and Biochemistry, 2017, 115:243-252.
doi: 10.1016/j.soilbio.2017.08.032 |
[22] |
BROWN S P, GRILLO M A, PODOWSKI J C, HEATH K D. Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Microbiome, 2020, 8:139.
doi: 10.1186/s40168-020-00915-9 |
[23] |
WAGNER M R, LUNDBERG D S, DEL RIO T G, TRINGE S G, DANGL J, MITCHELL-OLDS T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications, 2016, 7:12151.
doi: 10.1038/ncomms12151 |
[24] |
PORTER S S, CHANG P L, CONOW C A, DUNHAM J P, FRIESEN M L. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. The ISME Journal, 2017, 11(1):248-262.
doi: 10.1038/ismej.2016.88 |
[25] |
TALEBI M B, BAHAR M, SAEIDI G, MENGONI A, BAZZICALUPO M. Diversity of Sinorhizobium strains nodulating Medicago sativa from different Iranian regions. FEMS Microbiology Letters, 2008, 288(1):40-46.
doi: 10.1111/fml.2008.288.issue-1 |
[26] |
SILVA C, KAN F L, MARTÃNEZ-ROMERO E. Population genetic structure of Sinorhizobium meliloti and S. medicae isolated from nodules of Medicago spp. in Mexico. FEMS Microbiology Ecology, 2007, 60(3):477-489.
doi: 10.1111/fem.2007.60.issue-3 |
[27] | LING J, WANG H, WU P, LI T, TANG Y, NASEER N, ZHENG H M, MASSON-BOIVIN C, ZHONG Z T, ZHU J. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48):13875-13880. |
[28] |
XIE J B, DU Z L, BAI L Q, TIAN C F, ZHANG J Z, XIE J Y, WANG T S, LIU X M, CHEN X, CHENG Q, CHEN S F, LI J L. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: Organization, evolution and expression of the nitrogen fixation genes. PLoS Genetics, 2014, 10(3):e1004231.
doi: 10.1371/journal.pgen.1004231 |
[29] | TIAN C F, ZHOU Y J, ZHANG Y M, LI Q Q, ZHANG Y Z, LI D F, WANG S, WANG J, GILBERT L B, LI R Y, CHEN W X. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(22):8629-8634. |
[30] | TORO N, MARTINEZ-ABARCA F, MOLINA-SANCHEZ M D, GARCIA-RODRIGUEZ F M, NISA-MARTINEZ RAFAEL. Contribution of mobile group II introns to Sinorhizobium meliloti genome evolution. Frontier in Microbiology, 2018, 9:627. |
[31] |
ACOSTA J L, EGUIARTE L E, SANTAMARIA R I, BUSTOS P, VINUESA P, MARTINEZ-ROMERO E, DAVILA G, GONZALEZ V. Genomic lineages of Rhizobium etli revealed by the extent of nucleotide polymorphisms and low recombination. BMC Evolutionary Biology, 2011, 11:1-13
doi: 10.1186/1471-2148-11-1 |
[32] | EPSTEIN B, ABOU-SHANAB R A I, TAYLOR M R, GUHLIN J, BURGHARDT L T, NELSON M, SADOWSKY M J, TIFFIN P. Genome-wide association analyses in the model rhizobium Ensifer meliloti. mSphere, 2018, 3(5):e00386-e00418. |
[33] |
WANG S W, HAO B H, LI J R, GU H L, PENG J L, XIE F L, ZHAO X Y, FRECH C, CHEN N S, MA B G, LI Y G. Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics. BMC Genomics, 2014, 15(1):440.
doi: 10.1186/1471-2164-15-440 |
[34] |
REMIGI P, ZHU J, YOUNG J P W, MASSON-BOIVIN C. Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends in Microbiology, 2016, 24(1):63-75.
doi: 10.1016/j.tim.2015.10.007 |
[35] |
REJILI M, OFF K, BRACHMANN A, MARIN M. Bradyrhizobium hipponense sp. nov., isolated from Lupinus angustifolius growing in the northern region of Tunisia. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(10):5539-5550.
doi: 10.1099/ijsem.0.004445 |
[1] | 吴月,隋新华,戴良香,郑永美,张智猛,田云云,于天一,孙学武,孙棋棋,马登超,吴正锋. 慢生根瘤菌及其与花生共生机制研究进展[J]. 中国农业科学, 2022, 55(8): 1518-1528. |
[2] | 姜朋, 张鹏, 姚金保, 吴磊, 何漪, 李畅, 马鸿翔, 张旭. 宁麦系列小麦品种的性状特点及相关基因位点分析[J]. 中国农业科学, 2022, 55(2): 233-247. |
[3] | 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析[J]. 中国农业科学, 2022, 55(19): 3697-3709. |
[4] | 李晓川,王朝海,周平,马维,吴瑞,宋治豪,梅艳. 马铃薯品种(系)田间晚疫病抗性评价和全基因组遗传多样性分析[J]. 中国农业科学, 2022, 55(18): 3484-3500. |
[5] | 万映伶,朱梦婷,刘爱青,金亦佳,刘燕. 中国观赏芍药表型多样性解析与资源评价[J]. 中国农业科学, 2022, 55(18): 3629-3639. |
[6] | 胡光明,张琼,韩飞,李大卫,李作洲,汪志,赵婷婷,田华,刘小莉,钟彩虹. 猕猴桃属植物通用型SSR分子标记引物的筛选及应用[J]. 中国农业科学, 2022, 55(17): 3411-3425. |
[7] | 张云秀,蒋旭,尉春雪,蒋学乾,卢栋宇,龙瑞才,杨青川,王珍,康俊梅. 紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J]. 中国农业科学, 2022, 55(16): 3082-3092. |
[8] | 王璐伟,沈志军,李贺欢,潘磊,牛良,崔国朝,曾文芳,王志强,鲁振华. 基于SSR荧光标记的79份桃种质遗传多样性分析[J]. 中国农业科学, 2022, 55(15): 3002-3017. |
[9] | 陈旭,郝雅琼,聂兴华,杨海莹,刘松,王雪峰,曹庆芹,秦岭,邢宇. 板栗总苞和坚果主要性状与SSR标记的关联分析[J]. 中国农业科学, 2022, 55(13): 2613-2628. |
[10] | 徐晓,任根增,赵欣蕊,常金华,崔江慧. 中国高粱地方品种和育成品种穗部表型性状精准鉴定及综合评价[J]. 中国农业科学, 2022, 55(11): 2092-2108. |
[11] | 刘函西,吕浩,郭广雨,刘冬旭,石岩,孙志君,张泽鑫,张艳娇,文莹楠,王洁琦,刘春燕,陈庆山,辛大伟,王锦辉. 大豆根瘤菌HH103 rhcN突变对结瘤能力的影响[J]. 中国农业科学, 2021, 54(6): 1104-1111. |
[12] | 唐修君,樊艳凤,贾晓旭,葛庆联,陆俊贤,唐梦君,韩威,高玉时. 基于线粒体DNA D-loop区的肉鸡品种遗传多样性和起源分析[J]. 中国农业科学, 2021, 54(24): 5302-5315. |
[13] | 马琳,温红雨,王学敏,高洪文,庞永珍. 紫花苜蓿MsMAX2的克隆及功能研究[J]. 中国农业科学, 2021, 54(19): 4061-4069. |
[14] | 王富强,张建,温常龙,樊秀彩,张颖,孙磊,刘崇怀,姜建福. 基于KASP标记的葡萄品种鉴定[J]. 中国农业科学, 2021, 54(13): 2830-2842. |
[15] | 杨涛,黄雅婕,李生梅,任丹,崔进鑫,庞博,于爽,高文伟. 海岛棉种质资源表型性状的遗传多样性分析及综合评价[J]. 中国农业科学, 2021, 54(12): 2499-2509. |
|