中国农业科学 ›› 2022, Vol. 55 ›› Issue (4): 641-652.doi: 10.3864/j.issn.0578-1752.2022.04.002
卞能飞(),孙东雷,巩佳莉,王幸,邢兴华,金夏红,王晓军()
收稿日期:
2021-08-20
接受日期:
2021-10-15
出版日期:
2022-02-16
发布日期:
2022-02-23
通讯作者:
王晓军
作者简介:
卞能飞,E-mail: 基金资助:
BIAN NengFei(),SUN DongLei,GONG JiaLi,WANG Xing,XING XingHua,JIN XiaHong,WANG XiaoJun()
Received:
2021-08-20
Accepted:
2021-10-15
Online:
2022-02-16
Published:
2022-02-23
Contact:
XiaoJun WANG
摘要:
【目的】探索花生烘烤食用品质评价方法,筛选评价指标,建立预测模型,为花生食用品质育种提供依据。【方法】以51个不同品质类型花生品种(系)的籽仁为试验材料,测定烘烤籽仁的食味指标、外观指标、质构指标和营养指标等食用品质相关指标27项,运用相关分析、主成分分析对花生烘烤食用品质进行综合评价,通过聚类分析对51个花生品种(系)的烘烤食用品质进行分类,通过回归分析建立花生烘烤食用品质预测模型和鉴定指标的筛选。【结果】51个花生品种(系)27项指标的变异幅度不同,变异系数为5.86%—39.65%。各单项指标均存在与之显著或极显著相关的指标,175组相关系数达显著水平,140组达极显著水平。主成分分析将27个单项指标转换为5个相互独立的综合指标,其贡献率分别为35.70%、20.63%、10.07%、8.19%和6.38%,代表了全部数据80.97%的信息量。综合评价分析表明,51个花生品种(系)烘烤食用品质综合值F平均为0.76,徐花甜29的F最高(F=1.51),烘烤食用品质最好,徐花15号的F最低(F=0.03),烘烤食用品质最差。相关性分析结果表明,21项指标与F显著相关。对花生烘烤食用品质综合值F进行聚类分析,将51个品种(系)划分为3类,第一类属于烘烤食用品质较好,包含徐花甜29、冀花甜1号、临花16号和徐花甜30共4个品种;第二类属于烘烤食用品质一般,包含33个品种(系);第三类属于烘烤食用品质较差,包含14个品种(系)。采用逐步回归分析方法,建立花生烘烤食用品质预测模型为:Y=0.979+0.021X7+0.081X21+0.009X20-0.034X19-0.074X27(R2=0.953),筛选出5个烘烤食用品质鉴定指标,分别为百仁重、蔗糖含量、蛋白质含量、脂肪含量和山嵛酸含量。对不同类别花生特征分析可知,4个烘烤食用品质较好品种的百仁重中至高,蔗糖含量高,蛋白质含量中,脂肪含量低,山嵛酸含量低至中,根据预测模型,此类品种仍需进一步改良以提高蛋白质含量和降低山嵛酸含量。【结论】百仁重、蔗糖含量、蛋白质含量、脂肪含量和山嵛酸含量可作为鉴定花生烘烤品质的指标,可以确定优质烘烤花生品种应具备籽仁中大粒、高油酸、高蔗糖、高蛋白、低脂肪和低山嵛酸等性状。
卞能飞, 孙东雷, 巩佳莉, 王幸, 邢兴华, 金夏红, 王晓军. 花生烘烤食用品质评价及指标筛选[J]. 中国农业科学, 2022, 55(4): 641-652.
BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening[J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
表1
51个花生品种(系)的27项指标变异情况"
指标 Index | 极小值 Min | 极大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV (%) |
---|---|---|---|---|---|
X1 | 3.00 | 4.22 | 3.60 | 0.26 | 7.34 |
X2 | 2.67 | 3.89 | 3.44 | 0.27 | 7.71 |
X3 | 1.78 | 4.44 | 2.44 | 0.68 | 27.78 |
X4 | 2.00 | 3.89 | 2.93 | 0.40 | 13.80 |
X5 | 1.11 | 3.00 | 1.79 | 0.43 | 24.32 |
X6 | 1.00 | 3.22 | 1.69 | 0.43 | 25.27 |
X7 | 30.86 | 80.73 | 58.61 | 11.03 | 18.82 |
X8 | 69.97 | 145.83 | 109.89 | 17.45 | 15.88 |
X9 | 33.97 | 50.13 | 42.50 | 3.99 | 9.39 |
X10 | 12.08 | 19.27 | 15.91 | 1.82 | 11.46 |
X11 | 7.12 | 10.04 | 8.89 | 0.67 | 7.52 |
X12 | 1.49 | 2.24 | 1.81 | 0.20 | 10.94 |
X13 | 31.35 | 69.50 | 48.91 | 8.05 | 16.46 |
X14 | 105.64 | 258.63 | 158.94 | 30.77 | 19.36 |
X15 | 7.66 | 39.44 | 17.09 | 6.78 | 39.65 |
X16 | 17.38 | 38.50 | 23.29 | 4.28 | 18.37 |
X17 | 88.53 | 201.62 | 128.13 | 26.69 | 20.83 |
X18 | 7.41 | 29.04 | 14.35 | 4.82 | 33.59 |
X19 | 42.02 | 56.50 | 52.15 | 3.05 | 5.86 |
X20 | 18.05 | 27.04 | 22.50 | 1.99 | 8.84 |
X21 | 1.88 | 7.41 | 3.56 | 1.23 | 34.64 |
X22 | 28.07 | 80.83 | 42.97 | 15.31 | 35.63 |
X23 | 5.13 | 52.76 | 37.24 | 12.97 | 34.84 |
X24 | 5.16 | 13.38 | 10.82 | 1.96 | 18.15 |
X25 | 1.89 | 4.73 | 3.06 | 0.72 | 23.53 |
X26 | 1.12 | 1.94 | 1.52 | 0.22 | 14.22 |
X27 | 0.89 | 3.96 | 2.08 | 0.71 | 33.97 |
表2
27项指标的相关系数"
指标 Index | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 | X17 | X18 | X19 | X20 | X21 | X22 | X23 | X24 | X25 | X26 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X2 | -0.14 | |||||||||||||||||||||||||
X3 | 0.62** | -0.45** | ||||||||||||||||||||||||
X4 | 0.59** | -0.26 | 0.66** | |||||||||||||||||||||||
X5 | -0.33* | 0.17 | -0.46** | -0.51** | ||||||||||||||||||||||
X6 | -0.23 | -0.07 | -0.31* | -0.47** | 0.67** | |||||||||||||||||||||
X7 | 0.32* | 0.03 | 0.15 | 0.09 | -0.03 | 0.24 | ||||||||||||||||||||
X8 | 0.27 | 0.03 | 0.16 | 0.07 | -0.01 | 0.22 | 0.96** | |||||||||||||||||||
X9 | 0.28* | -0.04 | 0.21 | 0.07 | -0.04 | 0.19 | 0.90** | 0.98** | ||||||||||||||||||
X10 | 0.25 | -0.08 | 0.22 | 0.06 | -0.03 | 0.18 | 0.80** | 0.91** | 0.98** | |||||||||||||||||
X11 | 0.22 | 0.15 | 0.01 | 0.06 | 0.01 | 0.19 | 0.85** | 0.76** | 0.61** | 0.44** | ||||||||||||||||
X12 | 0.15 | -0.19 | 0.27 | 0.05 | -0.07 | 0.05 | 0.28* | 0.46** | 0.62** | 0.77** | -0.22 | |||||||||||||||
X13 | 0.34* | -0.14 | 0.43** | 0.37** | -0.31* | -0.17 | 0.25 | 0.12 | 0.06 | -0.03 | 0.36** | -0.25 | ||||||||||||||
X14 | 0.41** | -0.42** | 0.60** | 0.38** | -0.20 | 0.06 | 0.59** | 0.53** | 0.55** | 0.53** | 0.33* | 0.37** | 0.55** | |||||||||||||
X15 | 0.40** | -0.55** | 0.65** | 0.38** | -0.17 | 0.10 | 0.51** | 0.48** | 0.52** | 0.52** | 0.23 | 0.42** | 0.43** | 0.95** | ||||||||||||
X16 | 0.30* | -0.10 | 0.35* | 0.22 | -0.03 | -0.06 | 0.08 | 0.00 | -0.04 | -0.09 | 0.18 | -0.24 | 0.56** | 0.36** | 0.31* | |||||||||||
X17 | 0.42** | -0.55** | 0.70** | 0.35* | -0.28* | 0.01 | 0.44** | 0.45** | 0.52** | 0.54** | 0.17 | 0.46** | 0.37** | 0.82** | 0.85** | 0.40** | ||||||||||
X18 | 0.35* | -0.66** | 0.72** | 0.34* | -0.30* | -0.01 | 0.34* | 0.36** | 0.44** | 0.47** | 0.07 | 0.47** | 0.31* | 0.79** | 0.85** | 0.24 | 0.93** | |||||||||
X19 | -0.46** | 0.63** | -0.73** | -0.43** | 0.35* | 0.08 | -0.01 | 0.03 | -0.03 | -0.06 | 0.13 | -0.18 | -0.41** | -.64** | -0.73** | -0.25 | -0.710** | -0.75** | ||||||||
X20 | 0.06 | -0.14 | -0.10 | 0.02 | -0.09 | 0.11 | 0.20 | 0.18 | 0.19 | 0.18 | 0.16 | 0.10 | 0.15 | 0.25 | 0.20 | -0.09 | 0.14 | 0.16 | -0.26 | |||||||
X21 | 0.50** | -0.53** | 0.87** | 0.54** | -0.37** | -0.18 | 0.02 | 0.05 | 0.13 | 0.19 | -0.18 | 0.36** | 0.35* | 0.59** | 0.68** | 0.25 | 0.68** | 0.73** | -0.81** | -0.11 | ||||||
X22 | -0.41** | 0.39** | -0.32* | -0.34* | 0.50** | 0.21 | 0.07 | 0.13 | 0.07 | 0.05 | 0.18 | -0.11 | 0.02 | -0.18 | -0.23 | 0.09 | -0.26 | -0.35* | 0.49** | -0.26 | -0.34* | |||||
X23 | 0.42** | -0.41** | 0.35* | 0.37** | -0.49** | -0.21 | -0.07 | -0.11 | -0.05 | -0.01 | -0.20 | 0.17 | -0.01 | 0.20 | 0.26 | -0.09 | 0.29* | 0.38** | -0.50** | 0.30* | 0.37** | -0.99** | ||||
X24 | 0.37** | -0.30* | 0.24 | 0.30* | -0.46** | -0.20 | -0.07 | -0.15 | -0.10 | -0.08 | -0.17 | 0.07 | -0.06 | 0.12 | 0.16 | -0.12 | 0.15 | 0.24 | -0.39** | 0.19 | 0.25 | -0.97** | 0.95** | |||
X25 | 0.51** | -0.36** | 0.59** | 0.36** | -0.45** | -0.13 | 0.18 | 0.11 | 0.12 | 0.10 | 0.11 | 0.06 | 0.29* | 0.47** | 0.49** | 0.05 | 0.52** | 0.55** | -0.75** | 0.27 | 0.59** | -0.60** | 0.57** | 0.52** | ||
X26 | 0.51** | -0.32* | 0.53** | 0.41** | -0.45** | -0.13 | 0.29* | 0.27 | 0.29* | 0.29* | 0.18 | 0.21 | 0.24 | 0.46** | 0.46** | -0.03 | 0.52** | 0.53** | -0.63** | 0.46** | 0.51** | -0.55** | 0.57** | 0.44** | 0.91** | |
X27 | -0.17 | 0.044 | -0.06 | -0.13 | 0.06 | -0.15 | -0.77** | -0.83** | -0.82** | -0.79** | -0.60** | -0.44** | -0.16 | -0.38** | -0.32* | 0.00 | -0.32* | -0.25 | -0.14 | -0.23 | -0.02 | -0.10 | 0.07 | 0.12 | 0.07 | -0.18 |
表3
主成分的特征向量及贡献率"
主成分 Principle factor | 指标 Index | 主成分1 Principle factor 1 | 主成分2 Principle factor 2 | 主成分3 Principle factor 3 | 主成分4 Principle factor 4 | 主成分5 Principle factor 5 |
---|---|---|---|---|---|---|
特征向量Eigenvector | X1 | 0.21 | -0.05 | 0.02 | 0.24 | -0.11 |
X2 | -0.17 | 0.12 | -0.04 | 0.29 | -0.14 | |
X3 | 0.25 | -0.11 | 0.20 | -0.01 | -0.20 | |
X4 | 0.18 | -0.12 | 0.10 | 0.24 | -0.26 | |
X5 | -0.15 | 0.16 | 0.08 | -0.29 | 0.28 | |
X6 | -0.04 | 0.18 | -0.03 | -0.29 | 0.45 | |
X7 | 0.17 | 0.32 | -0.07 | 0.18 | 0.08 | |
X8 | 0.16 | 0.35 | -0.10 | 0.09 | -0.04 | |
X9 | 0.18 | 0.33 | -0.14 | 0.00 | -0.11 | |
X10 | 0.18 | 0.31 | -0.16 | -0.10 | -0.18 | |
X11 | 0.08 | 0.28 | 0.03 | 0.38 | 0.22 | |
X12 | 0.14 | 0.13 | -0.20 | -0.36 | -0.34 | |
X13 | 0.14 | -0.01 | 0.35 | 0.29 | 0.17 | |
X14 | 0.27 | 0.09 | 0.15 | -0.06 | 0.11 | |
X15 | 0.28 | 0.06 | 0.14 | -0.16 | 0.10 | |
X16 | 0.08 | -0.01 | 0.42 | 0.14 | 0.11 | |
X17 | 0.28 | 0.04 | 0.13 | -0.16 | 0.01 | |
X18 | 0.28 | -0.01 | 0.08 | -0.23 | 0.02 | |
X19 | -0.25 | 0.18 | -0.11 | 0.14 | -0.16 | |
X20 | 0.09 | 0.02 | -0.22 | 0.07 | 0.40 | |
X21 | 0.24 | -0.14 | 0.17 | -0.17 | -0.17 | |
X22 | -0.16 | 0.25 | 0.33 | -0.06 | -0.09 | |
X23 | 0.17 | -0.24 | -0.33 | 0.04 | 0.06 | |
X24 | 0.13 | -0.24 | -0.35 | 0.09 | 0.07 | |
X25 | 0.23 | -0.15 | -0.08 | 0.09 | 0.19 | |
X26 | 0.24 | -0.08 | -0.17 | 0.12 | 0.14 | |
X27 | -0.13 | -0.31 | 0.12 | -0.11 | 0.10 | |
特征值Eigenvalue | 9.64 | 5.57 | 2.72 | 2.212 | 1.72 | |
贡献率Contribution rate | 35.70 | 20.63 | 10.07 | 8.19 | 6.38 | |
累计贡献率Cumulative contribution rate | 35.70 | 56.32 | 66.40 | 74.59 | 80.97 |
表4
51个花生品种(系)综合值F"
编号 No. | 综合值F Comprehensive value (F) | 编号 No. | 综合值F Comprehensive value (F) | 编号 No. | 综合值F Comprehensive value (F) | ||
---|---|---|---|---|---|---|---|
1 | 0.72 | 18 | 1.17 | 35 | 0.80 | ||
2 | 0.86 | 19 | 0.83 | 36 | 1.06 | ||
3 | 1.08 | 20 | 0.46 | 37 | 0.56 | ||
4 | 0.89 | 21 | 0.61 | 38 | 0.48 | ||
5 | 0.89 | 22 | 0.79 | 39 | 0.34 | ||
6 | 1.07 | 23 | 0.92 | 40 | 1.18 | ||
7 | 0.90 | 24 | 1.09 | 41 | 0.89 | ||
8 | 1.11 | 25 | 0.37 | 42 | 1.49 | ||
9 | 0.67 | 26 | 0.53 | 43 | 0.84 | ||
10 | 0.70 | 27 | 0.73 | 44 | 0.16 | ||
11 | 0.63 | 28 | 0.86 | 45 | 0.35 | ||
12 | 0.44 | 29 | 0.66 | 46 | 0.10 | ||
13 | 1.11 | 30 | 0.36 | 47 | 0.27 | ||
14 | 1.01 | 31 | 0.66 | 48 | 0.20 | ||
15 | 0.03 | 32 | 1.37 | 49 | 1.04 | ||
16 | 0.81 | 33 | 0.68 | 50 | 1.51 | ||
17 | 0.79 | 34 | 0.69 | 51 | 1.25 |
表5
27项指标与综合值F相关性"
指标 Index | 相关系数 Correlation coefficients | 指标 Index | 相关系数 Correlation coefficients | 指标 Index | 相关系数 Correlation coefficients | ||
---|---|---|---|---|---|---|---|
X1 | 0.55** | X10 | 0.73** | X19 | -0.54** | ||
X2 | -0.35* | X11 | 0.58** | X20 | 0.27 | ||
X3 | 0.63** | X12 | 0.41** | X21 | 0.54** | ||
X4 | 0.41** | X13 | 0.51** | X22 | -0.15 | ||
X5 | -0.26 | X14 | 0.88** | X23 | 0.17 | ||
X6 | 0.06 | X15 | 0.84** | X24 | 0.07 | ||
X7 | 0.80** | X16 | 0.32* | X25 | 0.51** | ||
X8 | 0.78** | X17 | 0.83** | X26 | 0.58** | ||
X9 | 0.78** | X18 | 0.76** | X27 | -0.63** |
表6
不同烘烤食用品质类型各指标的表现特征"
类别 Cluster | X7 | X21 | X20 | X19 | X27 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值 Mean | 范围 Range | 均值 Mean | 范围 Range | 均值 Mean | 范围 Range | 均值 Mean | 范围 Range | 均值 Mean | 范围 Range | |||||
第一类First cluster | 64.21 | 55.44-74.56 | 6.86 | 6.24-7.41 | 22.19 | 20.84-23.38 | 44.84 | 42.02-46.62 | 2.13 | 1.78-2.77 | ||||
第二类Second cluster | 63.90 | 52.92-80.73 | 3.32 | 1.88-5.45 | 22.95 | 19.56-27.04 | 52.69 | 47.49-56.5 | 1.73 | 0.89-2.53 | ||||
第三类Third cluster | 44.54 | 30.86-55.02 | 3.20 | 2.25-3.93 | 21.53 | 18.05-24.7 | 52.95 | 49.96-54.61 | 2.90 | 1.59-3.96 |
[1] | 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿. 利用回交和标记辅助选择快速培育高油酸花生品种及其评价. 中国农业科学, 2018, 51(9):1641-1652. |
ZHANG Z H, WANG Z H, HUAI D X, TAN J Z, CHEN J H, YAN L Y, WANG X J, WAN L Y, CHEN A, KANG Y P, JIANG H F, LEI Y, LIAO B S. Fast development of high oleate peanut cultivars by using marker-assisted backcrossing and their evaluation. Scientia Agricultura Sinica, 2018, 51(9):1641-1652. (in Chinese) | |
[2] | WANG Q. Peanut Processing Characteristics and Quality Evaluation. Singapore: Springer Nature, 2018: 42-63. |
[3] | 林茂, 赵景芳, 郑秀艳, 孟繁博, 黄道梅, 李国林, 陈曦, 宋光艳, 蒋力. 不同种皮颜色花生生品的营养、感官和品质的分析. 分子植物育种, 2019, 17(5):1647-1657. |
LIN M, ZHAO J F, ZHENG X Y, MENG F B, HUANG D M, LI G L, CHEN X, SONG G Y, JIANG L. Analysis of nutrition, sense and quality of peanut seed with different testa color. Molecular Plant Breeding, 2019, 17(5):1647-1657. (in Chinese) | |
[4] |
雷永, 王志慧, 淮东欣, 高华援, 晏立英, 李建国, 李威涛, 陈玉宁, 康彦平, 刘海龙, 王欣, 薛晓梦, 姜慧芳, 廖伯寿. 花生籽仁蔗糖含量近红外模型构建及在高糖品种培育中的应用. 作物学报, 2021, 47(2):332-341.
doi: 10.3724/SP.J.1006.2021.04106 |
LEI Y, WANG Z H, HUAI D X, GAO H Y, YAN L Y, LI J G, LI W T, CHEN Y N, KANG Y P, LIU H L, WANG X, XUE X M, JIANG H F, LIAO B S. Development and application of a near infrared spectroscopy model for predicting high sucrose content of peanut seed. Acta Agronomica Sinica, 2021, 47(2):332-341. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04106 |
|
[5] | WANG C T. Evaluation of groundnut genotypes from China for quality traits. Journal of SAT Agricultural Research, 2011, 12(9):1-5. |
[6] | 孙东雷, 卞能飞, 陈志德, 邢兴华, 徐泽俊, 齐玉军, 王幸, 王晓军, 王伟. 花生种质资源表型性状的综合评价及指标筛选. 植物遗传资源学报, 2018, 19(5):865-874. |
SUN D L, BIAN N F, CHEN Z D, XING X H, XU Z J, QI Y J, WANG X, WANG X J, WANG W. Comprehensive evaluation and index screening of phenotypic traits in peanut germplasm resources. Journal of Plant Genetic Resources, 2018, 19(5):865-874. (in Chinese) | |
[7] | 鲁清, 梁炫强, 陈小平, 李少雄, 刘浩, 周桂元, 刘海燕, 李海芬, 洪彦彬. 花生落荚、裂荚和裂仁特性评鉴及优异种质筛选. 植物遗传资源学报, 2020, 21(5):1102-1111. |
LU Q, LIANG X Q, CHEN X P, LI S X, LIU H, ZHOU G Y, LIU H Y, LI H F, HONG Y B. Evaluation on traits of pod abscission, dehiscence and kernel cracking of peanut and identification of elite germplasm. Journal of Plant Genetic Resources, 2020, 21(5):1102-1111. (in Chinese) | |
[8] | 胡廷会, 成良强, 王军, 吕建伟, 饶庆琳. 不同基因型花生耐荫性评价及其鉴定指标的筛选. 中国农业科学, 2020, 53(6):1140-1153. |
HU T H, CHENG L Q, WANG J, LÜ J W, RAO Q L. Evaluation of shade tolerance of peanut with different genotypes and screening of identification indexes. Scientia Agricultura Sinica, 2020, 53(6):1140-1153. (in Chinese) | |
[9] |
张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选. 作物学报, 2021, 47(9):1753-1767.
doi: 10.3724/SP.J.1006.2021.04182 |
ZHANG H, JIANG C J, YIN D M, DONG J L, REN J Y, ZHAO X H, ZHONG C, WANG X G, YU H Q. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut. Acta Agronomica Sinica, 2021, 47(9):1753-1767. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04182 |
|
[10] | 孙东雷, 卞能飞, 王幸, 邢兴华, 沈一, 徐泽俊, 齐玉军, 王晓军. 高油酸花生萌发期耐冷性综合评价及种质筛选. 核农学报, 2021, 35(6):1263-1272. |
SUN D L, BIAN N F, WANG X, XING X H, SHEN Y, XU Z J, QI Y J, WANG X J. Comprehensive evaluation of cold tolerance and germplasm screening of high oleic acid peanut at germination stage. Journal of Nuclear Agricultural Sciences, 2021, 35(6):1263-1272. (in Chinese) | |
[11] | 巩阿娜, 刘红芝, 刘丽, 石爱民, 王强. 原料特性与花生酱品质间关系模型的建立. 食品科学技术学报, 2016, 34(2):24-30. |
GONG A N, LIU H Z, LIU L, SHI A M, WANG Q. Establishment of relationship model between peanut material characteristics and peanut butter quality. Journal of Food Science and Technology, 2016, 34(2):24-30. (in Chinese) | |
[12] | 巩阿娜, 刘红芝, 刘丽, 石爱民, 林伟静, 王强. 原料特性对花生酱品质的影响. 中国食品学报, 2016, 16(11):253-262. |
GONG A N, LIU H Z, LIU L, SHI A M, LIN W J, WANG Q. Influence of peanut material characteristics on peanut butter quality. Journal of Chinese Institute of Food Science and Technology, 2016, 16(11):253-262. (in Chinese) | |
[13] | YU H, LIU H, ERASMUS S W, ZHAO S, WANG Q, RUTH S M. An explorative study on the relationships between the quality traits of peanut varieties and their peanut butters. LWT-Food Science and Technology, 2021, 151:112068. |
[14] | 王丽, 王强, 刘红芝, 刘丽, 杜寅, 张建书. 不同品种花生分离蛋白凝胶性评价方法的研究. 中国油脂, 2012, 37(7):20-23. |
WANG L, WANG Q, LIU H Z, LIU L, DU Y, ZHANG J S. Evaluation methods of gel property of peanut protein isolate with different varieties. China Oils and Fats, 2012, 37(7):20-23. (in Chinese) | |
[15] | 王丽, 刘红芝, 刘丽, 石爱民, 胡晖, 杨颖, 王强. 油用花生品质评价模型的建立及其加工适宜性研究. 食品科学技术学报, 2016, 34(1):21-27. |
WANG L, LIU H Z, LIU L, SHI A M, HU H, YANG Y, WANG Q, Research on evaluation model and processing suitability of oil-used peanut. Journal of Food Science and Technology, 2016, 34(1):21-27. (in Chinese) | |
[16] |
PATTEE H E, ISLEIB T G, GIESBRECHT F G. Variation in intensity of sweet and bitter sensory attributes across peanut genotypes. Peanut Science, 1998, 25:63-69.
doi: 10.3146/i0095-3679-25-2-2 |
[17] |
PATTEE H E, ISLEIB T G, GIESBRECHT F G, MCFEETERS R F. Investigations into genotypic variations of peanut carbohydrates. Journal of Agricultural and Food Chemistry, 2000, 48:750-756.
doi: 10.1021/jf9910739 |
[18] |
PATTEE H E, ISLEIB T G, GIESBRECHT F G, MCFEETERS R F. Relationships of sweet, bitter, and roasted peanut sensory attributes with carbohydrate components in peanuts. Journal of Agricultural and Food Chemistry, 2000, 48:757-763.
doi: 10.1021/jf9910741 |
[19] | 王传堂, 张建成, 唐月异, 吴琪, 王志伟, 王秀贞, 穆树旗, 李平涛, 李滨. 花生生仁生化成分、生仁和烤仁感官品质的典型相关分析. 山东农业科学, 2020, 52(8):12-16. |
WANG C T, ZHANG J C, TANG Y Y, WU Q, WANG Z W, WANG X Z, MU S Q, LI P T, LI B. Inter-relationships between peanut biochemical components of raw kernels, sensory quality of raw and roasted kernels revealed by canonical correlation analysis. Shandong Agricultural Sciences, 2020, 52(8):12-16. (in Chinese) | |
[20] | 王志伟, 王秀贞, 唐月异, 吴琪, 孙全喜, 杜龙, 刘婷, 张欣, 王传堂. 31个花生品种(系)的生、熟花生感官品质评价研究. 山东农业科学, 2018(6):52-56. |
WANG Z W, WANG X Z, TANG Y Y, WU Q, SUN Q X, DU L, LIU T, ZHANG X, WANG C T. Sensory evaluation for raw and roasted peanuts of 31 genotypes. Shandong Agricultural Sciences, 2018(6):52-56. (in Chinese) | |
[21] | 王秀贞, 吴琪, 成波, 王志伟, 唐月异, 韩守萍, 王传堂. 基因型和成熟度对鲜食花生感官品质的影响. 花生学报, 2019, 48(3):51-54. |
WANG X Z, WU Q, CHENG B, WANG Z W, TANG Y Y, HAN S P, WANG C T. Effect of genotype and maturity on sensory quality of fresh green peanuts. Journal of Peanut Science, 2019, 48(3):51-54. (in Chinese) | |
[22] | 房元瑾, 孙子淇, 苗利娟, 齐飞艳, 黄冰艳, 郑峥, 董文召, 汤丰收, 张新友. 花生籽仁外观和营养品质特征及食用花生育种利用分析. 植物遗传资源学报, 2018, 19(5):875-886. |
FANG Y J, SUN Z Q, MIAO L J, QI F Y, HUANG B Y, ZHENG Z, DONG W Z, TANG F S, ZHANG X Y. Characterization of kernel appearance and nutritional quality in peanut accessions and its application for food-use peanut breeding. Journal of Plant Genetic Resources, 2018, 19(5):875-886. (in Chinese) | |
[23] |
BAGHERI H, KASHANINEJAD M, ZIAIIFAR A M, AALAMI M. Textural, color and sensory attributes of peanut kernels as affected by infrared roasting method. Information Processing in Agriculture, 2019, 6(2):255-264.
doi: 10.1016/j.inpa.2018.11.001 |
[24] | 汤鹏宇, 孟繁博, 黄道梅, 郑秀艳, 林茂. 质构参数与花生物性测定的相关性. 现代食品科技, 2021, 37(7):294-301. |
TANG P Y, MENG F B, HUANG D M, ZHENG X Y, LIN M. Correlation between texture-analyzer parameters and physical properties measurement of peanut. Modern Food Science and Technology, 2021, 37(7):294-301. (in Chinese) | |
[25] |
李威涛, 郭建斌, 喻博伦, 徐思亮, 陈海文, 吴贝, 龚廷锋, 黄莉, 罗怀勇, 陈玉宁, 周小静, 刘念, 陈伟刚, 姜慧芳. 基于HPLC-RID的花生籽仁可溶性糖含量检测方法的建立. 作物学报, 2021, 47(2):368-375.
doi: 10.3724/SP.J.1006.2021.04110 |
LI W T, GUO J B, YU B L, XU S L, CHEN H W, WU B, GONG T F, HUANG L, LUO H Y, CHEN Y N, ZHOU X J, LIU N, CHEN W G, JIANG H F. Establishment of HPLC-RID method for the determination of soluble sugars in peanut seed. Acta Agronomica Sinica, 2021, 47(2):368-375. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04110 |
|
[26] |
COLEMAN W M, WHITE J L, PERFETTI T A. Characteristics of heat-treated aqueous extracts of peanuts and cashews. Journal of Agricultural and Food Chemistry, 1994, 42(1):190-194.
doi: 10.1021/jf00037a034 |
[27] |
MISRA J B. A mathematical approach to comprehensive evaluation of quality in groundnut. Journal of Food Composition and Analysis, 2004, 17(1):69-79.
doi: 10.1016/S0889-1575(03)00102-9 |
[28] | 王强, 石爱民, 盛晓静, 刘红芝, 刘丽, 胡晖. 一种适宜休闲花生加工的花生品质评价方法及装置: 中国, 107228809. 2017-10-03. |
WANG Q, SHI A M, SHENG X J, LIU H Z, LIU L, HU H. Peanut quality evaluation method and device suitable for leisure peanut processing: China, 107228809. 2017-10-03. (in Chinese) | |
[29] |
宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价. 作物学报, 2021, 47(9):1741-1752.
doi: 10.3724/SP.J.1006.2021.04149 |
SONG L J, NIE X Y, HE L L, KUAI J, YANG H, GUO A G, HUANG J S, FU T D, WANG B, ZHOU G S. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties. Acta Agronomica Sinica, 2021, 47(9):1741-1752. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04149 |
|
[30] | 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选. 中国农业科学, 2021, 54(7):1397-1409. |
LIU Q Y, ZHOU L, TIAN J Y, CHENG S, TAO Y, XING Z P, LIU G D, WEI H Y, ZHANG H C. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze river. Scientia Agricultura Sinica, 2021, 54(7):1397-1409. (in Chinese) | |
[31] | 杨涛, 黄雅婕, 李生梅, 任丹, 崔进鑫, 庞博, 于爽, 高文伟. 海岛棉种质资源表型性状的遗传多样性分析及综合评价. 中国农业科学, 2021, 54(12):2499-2509. |
YANG T, HUANG Y J, LI S M, REN D, CUI J X, PANG B, YU S, GAO W W. Genetic diversity and comprehensive evaluation of phenotypic traits in sea-island cotton germplasm resources. Scientia Agricultura Sinica, 2021, 54(12):2499-2509. (in Chinese) | |
[32] | 孙珍珠, 李秋月, 王小柯, 赵婉彤, 薛杨, 冯锦英, 刘小丰, 刘梦雨, 江东. 宽皮柑橘种质资源表型多样性分析及综合评价. 中国农业科学, 2017, 50(22):4362-4372. |
SUN Z Z, LI Q Y, WANG X K, ZHAO W T, XUE Y, FENG J Y, LIU X F, LIU M Y, JIANG D. Comprehensive evaluation and phenotypic diversity analysis of germplasm resources in mandarin. Scientia Agricultura Sinica, 2017, 50(22):4362-4372. (in Chinese) | |
[33] |
李建国, 薛晓梦, 张照华, 王志慧, 晏立英, 陈玉宁, 万丽云, 康彦平, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用. 作物学报, 2019, 45(12):1891-1898.
doi: 10.3724/SP.J.1006.2019.94016 |
LI J G, XUE X M, ZHANG Z H, WANG Z H, YAN L Y, CHEN Y N, WAN L Y, KANG Y P, HUAI D X, JIANG H F, LEI Y, LIAO B S. Establishment and applicant of near-infrared reflectance spectroscopy models for predicting main fatty acid contents of single seed in peanut. Acta Agronomica Sinica, 2019, 45(12):1891-1898. (in Chinese)
doi: 10.3724/SP.J.1006.2019.94016 |
[1] | 吴月,隋新华,戴良香,郑永美,张智猛,田云云,于天一,孙学武,孙棋棋,马登超,吴正锋. 慢生根瘤菌及其与花生共生机制研究进展[J]. 中国农业科学, 2022, 55(8): 1518-1528. |
[2] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[3] | 王秀秀,邢爱双,杨茹,何守朴,贾银华,潘兆娥,王立如,杜雄明,宋宪亮. 陆地棉种质资源表型性状综合评价[J]. 中国农业科学, 2022, 55(6): 1082-1094. |
[4] | 沈倩,张思平,刘瑞华,刘绍东,陈静,葛常伟,马慧娟,赵新华,杨国正,宋美珍,庞朝友. 棉花出苗期耐冷综合评价体系的构建及耐冷指标筛选[J]. 中国农业科学, 2022, 55(22): 4342-4355. |
[5] | 王娟,陈皓宁,石大川,于天一,闫彩霞,孙全喜,苑翠玲,赵小波,牟艺菲,王奇,李春娟,单世华. 花生高亲和硝酸盐转运蛋白基因AhNRT2.7a响应低氮胁迫的功能研究[J]. 中国农业科学, 2022, 55(22): 4356-4372. |
[6] | 胡馨, 张职亮, 张飞, 邓波, 房伟民. 大花型茶专用菊杂交后代株系的综合评价与筛选[J]. 中国农业科学, 2022, 55(20): 4036-4051. |
[7] | 葛岳,张德权,李少博,陈丽,郑晓春,梁策,颜统晶,李金活,王振宇. 基于消费者喜好性评价宰后不同阶段羊肉食用品质差异[J]. 中国农业科学, 2022, 55(18): 3640-3651. |
[8] | 郭灿,岳晓凤,白艺珍,张良晓,张奇,李培武. 花生黄曲霉毒素平衡取样-随机森林风险预警模型的应用研究[J]. 中国农业科学, 2022, 55(17): 3426-3436. |
[9] | 史晓龙,郭佩,任婧瑶,张鹤,董奇琦,赵新华,周宇飞,张正,万书波,于海秋. 基于花生//高粱间作模式的花生盐胁迫耐受性效应研究[J]. 中国农业科学, 2022, 55(15): 2927-2937. |
[10] | 郝静,李秀坤,崔顺立,邓洪涛,侯名语,刘盈茹,杨鑫雷,穆国俊,刘立峰. 花生每荚种子数相关性状QTL的定位[J]. 中国农业科学, 2022, 55(13): 2500-2508. |
[11] | 解斌,安秀红,陈艳辉,程存刚,康国栋,周江涛,赵德英,李壮,张艳珍,杨安. 不同苹果砧木对持续低磷的响应及适应性评价[J]. 中国农业科学, 2022, 55(13): 2598-2612. |
[12] | 徐晓,任根增,赵欣蕊,常金华,崔江慧. 中国高粱地方品种和育成品种穗部表型性状精准鉴定及综合评价[J]. 中国农业科学, 2022, 55(11): 2092-2108. |
[13] | 范文静,刘明,赵鹏,张强强,吴德祥,郭鹏宇,朱晓亚,靳容,张爱君,唐忠厚. 甘薯苗期耐低氮基因型筛选及不同氮效率类型综合评价[J]. 中国农业科学, 2022, 55(10): 1891-1902. |
[14] | 冯晨,黄波,冯良山,郑家明,白伟,杜桂娟,向午燕,蔡倩,张哲,孙占祥. 不同配置对辽西玉米‖花生间作系统氮素吸收利用的影响[J]. 中国农业科学, 2022, 55(1): 61-73. |
[15] | 孟鑫浩,邓洪涛,李丽,崔顺立,Charles Y.Chen,侯名语,杨鑫雷,刘立峰. 栽培种花生株型相关性状的QTL定位[J]. 中国农业科学, 2021, 54(8): 1599-1612. |
|