中国农业科学 ›› 2022, Vol. 55 ›› Issue (13): 2598-2612.doi: 10.3864/j.issn.0578-1752.2022.13.010
解斌1(),安秀红1,2,陈艳辉1(
),程存刚1(
),康国栋1,周江涛1,赵德英1,李壮1,张艳珍1,杨安1
收稿日期:
2021-10-09
接受日期:
2021-12-31
出版日期:
2022-07-01
发布日期:
2022-07-08
联系方式:
解斌,E-mail: sxauxiebin@163.com。
基金资助:
XIE Bin1(),AN XiuHong1,2,CHEN YanHui1(
),CHENG CunGang1(
),KANG GuoDong1,ZHOU JiangTao1,ZHAO DeYing1,LI Zhuang1,ZHANG YanZhen1,YANG An1
Received:
2021-10-09
Accepted:
2021-12-31
Published:
2022-07-01
Online:
2022-07-08
摘要:
【目的】研究7种苹果砧木幼苗对低磷胁迫的响应特征,评价不同砧木的低磷适应性,为耐低磷苹果砧木的选用及磷高效利用生理机制的研究提供理论依据。【方法】以生产中常用的5种苹果矮化砧木(‘T337’‘Nic29’‘Pajam2’‘B9’‘71-3-150’)、半矮化砧木‘青砧2号’(Qingzhen 2)和乔化砧‘山定子’(Malus baccata (L.) Borkh.)为材料,通过盆栽沙培试验的方法,研究各砧木在正常供磷和低磷条件下树体生长、光合作用、叶片形态及根系构型、生物量积累、磷吸收利用及转运分配的差异。【结果】低磷条件下,‘T337’‘Nic29’‘Pajam2’和‘山定子’的地上部生长和植株生物量积累显著下降,‘山定子’和‘青砧2号’的平均叶面积显著降低,其中‘山定子’的叶片SPAD值与正常供磷相比下降了9.47%。与对照相比,低磷条件下‘B9’的平均叶面积、叶片长度和叶片宽度均显著升高,‘71-3-150’和‘青砧2号’的叶片SPAD值显著提高,‘B9’‘71-3-150’‘Nic29’和‘青砧2号’的F0显著升高,Fv/Fm显著降低,‘71-3-150’下降最明显。‘T337’‘Nic29’‘山定子’和‘青砧2号’在低磷条件下根系生长均受到明显抑制,根系总表面积、总根长显著降低,其中‘T337’降幅最大;‘B9’和‘71-3-150’的根系总表面积和根总体积均显著增加,植株根冠比显著提高,其中‘71-3-150’根冠比增幅最大,是对照的1.54倍。低磷条件下,‘71-3-150’‘Nic29’‘Pajam2’‘山定子’和‘青砧2号’的磷利用效率和磷转运系数降低,‘71-3-150’‘Nic29’‘Pajam2’和‘山定子’的地上部磷累积量减少,而根系磷含量和累积量高于对照,‘71-3-150’的根系磷累积量增幅最大。采用最大方差法正交旋转得出与耐低磷性最相关的13个主成分因子,利用隶属函数对13个主成分因子进行综合评价,结合聚类分析可以将7种苹果砧木分为4种耐性类型:第Ⅰ类为耐性强的砧木(‘B9’和‘71-3-150’),第Ⅱ类为耐性较强的砧木(‘T337’和‘青砧2号’),第Ⅲ类为耐性较弱的砧木(‘Nic29’和‘Pajam2’),第Ⅳ类为耐性最弱的砧木(‘山定子’)。【结论】低磷条件下,苹果砧木通过减少叶片光合作用的物质消耗,增加植株根系磷累积量,促进根系发育,提高植株根冠比,以适应低磷环境;不同砧木的适应能力存在显著差异。
解斌,安秀红,陈艳辉,程存刚,康国栋,周江涛,赵德英,李壮,张艳珍,杨安. 不同苹果砧木对持续低磷的响应及适应性评价[J]. 中国农业科学, 2022, 55(13): 2598-2612.
XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency[J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
表1
不同供磷条件对不同砧木类型株高生长速率和根冠比的影响"
砧木类型 Rootstock | 株高生长速率 Growth rate of plant height | 根冠比 Ratio of root/shoot | ||||
---|---|---|---|---|---|---|
正常供磷 NP (cm·d-1) | 低磷处理 LP (cm·d-1) | 相对值 Relative value | 正常供磷 NP | 低磷处理 LP | 相对值 Relative value | |
T337 | 6.29±0.07a | 4.72±0.36b | 0.75 | 0.15 | 0.13 | 0.89 |
B9 | 2.54±0.32b | 6.22±0.30a | 2.44 | 0.23 | 0.18 | 0.79 |
71-3-150 | 0.19±0.09a | 0.42±0.05a | 2.14 | 0.18 | 0.30 | 1.62 |
Nic29 | 8.13±0.92a | 3.89±0.43b | 0.48 | 0.16 | 0.16 | 0.99 |
Pajam2 | 3.63±0.37a | 2.66±0.09a | 0.73 | 0.22 | 0.25 | 1.15 |
山定子 M.baccata | 3.71±0.16a | 0.90±0.42b | 0.24 | 0.78 | 0.78 | 1.01 |
青砧2号 Qingzhen2 | 0.54±0.13b | 1.99±0.19a | 3.66 | 0.74 | 0.93 | 1.26 |
表2
不同供磷条件对不同砧木类型各器官鲜重的影响"
砧木类型 Rootstock | 叶片 Leaf | 茎干Stem | 根系Root | ||||||
---|---|---|---|---|---|---|---|---|---|
正常供磷 NP (g/plant) | 低磷处理 LP (g/plant) | 相对值 Relative value | 正常供磷 NP (g/plant) | 低磷处理 LP (g/plant) | 相对值 Relative value | 正常供磷 NP (g/plant) | 低磷处理 LP (g/plant) | 相对值 Relative value | |
T337 | 39.960± 4.019a | 38.917± 1.191a | 0.97 | 53.877± 1.879b | 73.420± 1.286a | 1.36 | 40.243± 0.740a | 37.583± 0.229b | 0.93 |
B9 | 32.630± 1.912a | 41.747± 2.591a | 1.28 | 45.467± 1.711b | 64.787± 1.268a | 1.42 | 44.620± 1.732a | 57.207± 0.780b | 1.28 |
71-3-150 | 14.170± 1.586a | 15.087± 4.860a | 1.06 | 41.783± 4.607a | 56.157± 6.018a | 1.34 | 17.077± 1.376b | 44.983± 5.030a | 2.63 |
Nic29 | 45.353± 3.306a | 37.393± 3.616a | 0.82 | 73.413± 0.739a | 56.293± 2.096b | 0.77 | 40.317± 5.955a | 33.353± 2.728a | 0.75 |
Pajam2 | 51.370± 2.095a | 51.197± 2.590a | 1.00 | 150.233± 25.531a | 131.517± 7.192a | 0.88 | 74.333± 9.841a | 85.807± 3.559a | 1.15 |
山定子 M.baccata | 57.537± 6.249a | 36.65± 2.753a | 0.64 | 137.287± 8.743a | 92.443± 8.116b | 0.67 | 208.020± 20.051a | 125.557± 3.401b | 0.60 |
青砧2号 Qingzhen2 | 42.673± 3.649a | 52.250± 1.250a | 1.22 | 91.880± 7.762a | 113.463± 2.541a | 1.23 | 124.350± 17.898a | 142.017± 11.874a | 1.14 |
表3
不同供磷条件对不同砧木类型叶片参数的影响"
砧木类型 Rootstock | 平均叶面积 Average leaf surface | 叶片长度 Leaf length | 叶片宽度 Leaf width | ||||||
---|---|---|---|---|---|---|---|---|---|
正常供磷 NP (cm2) | 低磷处理 LP (cm2) | 相对值 Relative value | 正常供磷 NP (cm2) | 低磷处理 LP (cm2) | 相对值 Relative value | 正常供磷 NP (cm2) | 低磷处理 LP (cm2) | 相对值 Relative value | |
T337 | 25.56±1.93a | 30.62±1.01a | 1.20 | 7.87±0.37a | 8.33±0.17a | 1.06 | 3.37±0.20a | 3.63±0.04a | 1.08 |
B9 | 23.50±0.46b | 34.56±1.08a | 1.47 | 6.71±0.17b | 8.92±0.18a | 1.33 | 3.44±0.07b | 3.84±0.07a | 1.12 |
71-3-150 | 18.16±1.74a | 19.58±4.21a | 1.08 | 6.35±0.39a | 6.58±0.81a | 1.04 | 2.83±0.11a | 2.83±0.24a | 1.00 |
Nic29 | 23.63±2.15a | 21.71±2.05a | 0.92 | 7.09±0.19a | 6.89±0.40a | 0.97 | 3.25±0.20a | 3.11±0.11a | 0.96 |
Pajam2 | 31.52±0.43a | 25.24±1.23a | 0.80 | 8.52±0.23a | 7.76±0.21a | 0.91 | 3.59±0.08a | 3.21±0.11a | 0.89 |
M.baccata | 20.34±0.14a | 12.03±0.37b | 0.59 | 8.24±0.34a | 6.67±0.02b | 0.81 | 2.20±0.15a | 2.10±0.16a | 0.96 |
青砧2号 Qingzhen2 | 19.70±0.40a | 14.26±0.13b | 0.72 | 6.96±0.36a | 5.54±0.06a | 0.80 | 2.51±0.16a | 2.62±0.07a | 1.04 |
表4
不同供磷条件对不同砧木类型各器官磷含量的影响"
砧木类型 Rootstock | 叶片Leaf | 茎干Stem | 根系Root | ||||||
---|---|---|---|---|---|---|---|---|---|
正常供磷 NP (mg·g-1) | 低磷处理 LP (mg·g-1) | 相对值 Relative value | 正常供磷 NP (mg·g-1) | 低磷处理 LP (mg·g-1) | 相对值 Relative value | 正常供磷 NP (mg·g-1) | 低磷处理 LP (mg·g-1) | 相对值 Relative value | |
T337 | 2.97±0.08a | 3.05±0.05a | 1.03 | 2.77±0.36a | 2.35±0.03a | 0.85 | 4.86±0.05b | 6.39±0.05a | 1.31 |
B9 | 3.06±0.21a | 3.17±0.08a | 1.04 | 2.75±0.05a | 2.47±0.25a | 0.90 | 5.37±0.23a | 6.13±0.75a | 1.14 |
71-3-150 | 4.15±0.07a | 3.37±0.13a | 0.88 | 2.57±0.10a | 2.53±0.05a | 1.00 | 7.80±1.18b | 19.61±0.21a | 2.51 |
Nic29 | 2.80±0.09a | 2.85±0.03a | 1.02 | 1.66±0.06a | 1.85±0.05a | 1.11 | 7.75±0.56a | 7.96±0.42a | 1.03 |
Pajam2 | 3.67±0.20a | 3.54±0.13a | 0.96 | 2.58±0.22a | 0.76±0.07a | 1.07 | 10.41±0.48a | 12.12±0.49a | 1.13 |
山定子M.baccata | 3.17±0.07a | 3.03±0.30a | 0.96 | 2.31±0.04a | 2.34±0.05a | 1.01 | 9.28±0.70b | 15.71±0.11a | 1.69 |
青砧2号 Qingzhen2 | 3.17±0.07a | 3.03±0.30a | 0.96 | 2.72±0.06a | 2.60±0.14a | 0.95 | 5.50±0.19a | 6.02±0.46a | 1.09 |
表5
不同供磷条件对不同砧木类型各器官磷累积量的影响"
砧木类型 Rootstock | 叶片 Leaf | 茎干 Stem | 根系 Root | ||||||
---|---|---|---|---|---|---|---|---|---|
正常供磷 NP (mg) | 低磷处理 LP (mg) | 相对值 Relative value | 正常供磷 NP (mg) | 低磷处理 LP (mg) | 相对值 Relative value | 正常供磷 NP (mg) | 低磷处理 LP (mg) | 相对值 Relative value | |
T337 | 44.63±5.04a | 45.60±0.82a | 1.02 | 74.02±10.68a | 66.38±7.68a | 0.90 | 31.53±0.43a | 37.66±2.31a | 1.19 |
B9 | 45.44±5.50a | 47.55±6.98a | 1.05 | 45.75±4.86a | 60.33±7.20a | 1.04 | 39.06±3.66a | 39.01±3.22a | 1.00 |
71-3-150 | 28.04±3.64a | 26.10±5.39a | 0.93 | 55.16±5.92a | 72.23±8.91a | 1.31 | 43.62±3.74b | 194.55±19.81a | 4.46 |
Nic29 | 54.98±5.28a | 52.76±3.56a | 0.96 | 48.47±3.57a | 51.79±3.85a | 1.07 | 65.87±12.81a | 65.42±1.18a | 0.99 |
Pajam2 | 82.32±7.91a | 66.59±9.50a | 0.81 | 174.36±20.23a | 152.31±20.85a | 0.87 | 154.47±10.87b | 239.12±5.47a | 1.56 |
山定子 M. baccata | 82.13±9.47a | 47.75±1.02b | 0.58 | 169.20±5.68a | 116.92±8.94b | 0.69 | 704.68±65.82a | 817.64±17.91a | 1.16 |
青砧2号 Qingzhen2 | 60.11±4.98a | 67.43±2.22a | 1.12 | 128.96±15.29a | 140.04±2.31a | 1.09 | 271.49±45.08a | 433.68±47.58a | 1.60 |
表6
正交旋转因子载荷矩阵"
指标 Index | 正常供磷 NP | 低磷处理 LP | ||||
---|---|---|---|---|---|---|
主成分1 PCP1 | 主成分2 PCP2 | 主成分3 PCP3 | 主成分1 PCP1 | 主成分2 PCP2 | 主成分3 PCP3 | |
I1 | -0.321 | 0.151 | 0.787 | 0.881 | -0.118 | -0.208 |
I2 | 0.936 | -0.060 | 0.090 | -0.714 | 0.298 | -0.519 |
I3 | 0.480 | 0.548 | 0.610 | 0.266 | 0.734 | -0.397 |
I4 | 0.577 | 0.768 | 0.065 | -0.145 | 0.962 | -0.125 |
I5 | 0.948 | 0.198 | 0.230 | -0.557 | 0.600 | -0.491 |
I6 | 0.494 | 0.274 | 0.684 | -0.354 | 0.895 | 0.058 |
I7 | 0.378 | 0.231 | 0.725 | -0.451 | 0.815 | -0.100 |
I8 | 0.589 | 0.757 | 0.047 | -0.401 | 0.889 | -0.199 |
I9 | 0.940 | 0.200 | 0.168 | -0.639 | 0.649 | -0.298 |
I10 | -0.252 | 0.886 | -0.332 | 0.311 | 0.888 | 0.142 |
I11 | 0.944 | 0.179 | 0.247 | -0.426 | 0.846 | -0.101 |
I12 | -0.454 | 0.819 | 0.220 | 0.960 | -0.091 | 0.128 |
I13 | 0.256 | 0.859 | 0.422 | 0.835 | -0.006 | 0.020 |
I14 | -0.886 | 0.334 | 0.058 | 0.976 | -0.114 | 0.156 |
I15 | -0.430 | 0.391 | 0.506 | 0.194 | 0.049 | 0.544 |
I16 | -0.381 | 0.257 | -0.204 | 0.118 | -0.201 | 0.888 |
I17 | -0.013 | -0.052 | 0.106 | 0.106 | 0.236 | -0.903 |
I18 | -0.017 | 0.221 | -0.902 | -0.018 | 0.258 | 0.685 |
I19 | -0.081 | 0.144 | -0.283 | 0.046 | 0.639 | 0.121 |
I20 | 0.317 | 0.663 | -0.321 | -0.636 | -0.066 | 0.479 |
I21 | 0.579 | 0.699 | 0.256 | 0.077 | 0.762 | -0.242 |
I22 | 0.650 | 0.729 | -0.001 | -0.374 | 0.896 | -0.090 |
I23 | 0.963 | 0.172 | 0.162 | -0.807 | 0.325 | -0.428 |
I24 | 0.945 | 0.293 | 0.139 | -0.774 | 0.447 | -0.409 |
I25 | -0.920 | -0.195 | 0.248 | 0.785 | -0.312 | -0.161 |
I26 | -0.853 | -0.069 | 0.062 | 0.918 | -0.303 | -0.185 |
特征值 Eigenvalue | 10.943 | 6.143 | 4.025 | 8.974 | 8.647 | 4.128 |
方差贡献率 Variance contribution rate | 44.140 | 24.778 | 26.236 | 35.272 | 33.988 | 16.226 |
累计贡献率 Cumulative percentage | 44.140 | 68.918 | 85.154 | 35.272 | 69.260 | 85.485 |
表7
不同类型苹果砧木对低磷条件耐性的模糊数学函数隶属法评价"
砧木类型 Rootstock | I1 | I2 | I5 | I9 | I11 | I12 | I13 | I14 | I23 | I24 | I25 | I26 | I | 排名 Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T337 | 0.041 | 0.040 | 0.042 | 0.062 | 0.068 | 0.058 | 0.076 | 0.077 | 0.036 | 0.033 | 0.084 | 0.066 | 0.684 | 3 |
B9 | 0.066 | 0.034 | 0.050 | 0.072 | 0.084 | 0.084 | 0.084 | 0.084 | 0.034 | 0.045 | 0.082 | 0.084 | 0.803 | 1 |
71-3-150 | 0.061 | 0.084 | 0.084 | 0.074 | 0.062 | 0.056 | 0.057 | 0.057 | 0.084 | 0.084 | 0.034 | 0.034 | 0.770 | 2 |
Nic29 | 0.037 | 0.046 | 0.037 | 0.044 | 0.052 | 0.050 | 0.048 | 0.054 | 0.033 | 0.034 | 0.074 | 0.075 | 0.585 | 5 |
Pajam2 | 0.041 | 0.055 | 0.047 | 0.084 | 0.046 | 0.044 | 0.034 | 0.036 | 0.042 | 0.038 | 0.050 | 0.053 | 0.569 | 6 |
山定子M.baccata | 0.034 | 0.047 | 0.034 | 0.034 | 0.034 | 0.035 | 0.048 | 0.034 | 0.036 | 0.035 | 0.043 | 0.054 | 0.465 | 7 |
Qingzhen 2 | 0.084 | 0.062 | 0.047 | 0.061 | 0.041 | 0.034 | 0.067 | 0.056 | 0.042 | 0.041 | 0.074 | 0.061 | 0.670 | 4 |
表8
各指标与耐低磷综合评价值的相关性"
指标 Index | 相关性系数 Correlation coefficient | 指标 Index | 相关性系数 Correlation coefficient | |
---|---|---|---|---|
I1 | 0.6617 | I14 | 0.8202 | |
I2 | 0.1567 | I15 | 0.4742 | |
I3 | 0.8378 | I16 | 0.4635 | |
I4 | 0.9353 | I17 | -0.5016 | |
I5 | 0.6671 | I18 | 0.0297 | |
I6 | 0.3430 | I19 | -0.5545 | |
I7 | 0.2450 | I20 | 0.2020 | |
I8 | 0.7520 | I21 | 0.7595 | |
I9 | 0.6052 | I22 | 0.7477 | |
I10 | -0.2393 | I23 | 0.4114 | |
I11 | 0.8336 | I24 | 0.5821 | |
I12 | 0.7488 | I25 | 0.2995 | |
I13 | 0.7354 | I26 | 0.1335 |
[1] | MAI N T P, NGUYEN H N, NGUYEN V H, DUONG V L, NGUYEN P, MAI D C, LEBRUN M, TO H T M. Investigating the genetic variability of 12 vietnamese rice accessions (Oryza sativa L.) in response to phosphorus deficiency. Journal of Biotechnology, 2018, 16(4): 621. |
[2] |
PLAXTON W C, TRAN H T. Metabolic adaptations of phosphate- starved plants. Plant Physiology, 2011, 156(3): 1006-1015. doi: 10.1104/pp.111.175281.
doi: 10.1104/pp.111.175281 |
[3] |
FU X Z, XING F, WANG N Q, PENG L Z, CHUN C P, CAO L, LING L L, JIANG C L. Exogenous spermine pretreatment confers tolerance to combined high-temperature and drought stress in vitro in trifoliate orange seedlings via modulation of antioxidative capacity and expression of stress-related genes. Biotechnology & Biotechnological Equipment, 2014, 28(2): 192-198. doi: 10.1080/13102818.2014.909152.
doi: 10.1080/13102818.2014.909152 |
[4] |
HAM B K, CHEN J Y, YAN Y, LUCAS W J. Insights into plant phosphate sensing and signaling. Current Opinion in Biotechnology, 2018, 49: 1-9. doi: 10.1016/j.copbio.2017.07.005.
doi: 10.1016/j.copbio.2017.07.005 |
[5] |
ZHU Q, WANG H, SHAN Y Z, MA H Y, WANG H Y, XIE F T, AO X. Physiological response of phosphorus-efficient and inefficient soybean genotypes under phosphorus-deficiency. Russian Journal of Plant Physiology, 2020, 67(1): 175-184.
doi: 10.1134/S1021443720010276 |
[6] |
张强, 李兴亮, 李民吉, 周贝贝, 孙健, 魏钦平. ‘富士’苹果品质与果实矿质元素含量的关联性分析. 果树学报, 2016, 33(11): 1388-1395. doi: 10.13925/j.cnki.gsxb.20160057.
doi: 10.13925/j.cnki.gsxb.20160057 |
ZHANG Q, LI X L, LI M J, ZHOU B B, SUN J, WEI Q P. The correlation analysis between quality characteristics and fruit mineral element contents in ‘Fuji’ apples. Journal of Fruit Science, 2016, 33(11): 1388-1395. doi: 10.13925/j.cnki.gsxb.20160057. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20160057 |
|
[7] |
赵旸, 李卓, 刘明, 肖潇, 王重阳, 孙丹峰, 伦飞. 中国苹果主产区2006—2016年磷元素收支及其环境风险变化. 农业环境科学学报, 2019, 38(12): 2779-2787. doi: 10.11654/jaes.2019-1078.
doi: 10.11654/jaes.2019-1078 |
ZHAO Y, LI Z, LIU M, XIAO X, WANG C Y, SUN D F, LUN F. Phosphorus budgets and their associated environmental risks in the main apple orchard areas in China from 2006 to 2016. Journal of Agro-Environment Science, 2019, 38(12): 2779-2787. doi: 10.11654/jaes.2019-1078. (in Chinese)
doi: 10.11654/jaes.2019-1078 |
|
[8] |
YAN Z J, CHEN S, LI J L, ALVA A, CHEN Q. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses. Journal of Environmental Management, 2016, 181: 26-35.
doi: 10.1016/j.jenvman.2016.05.081 |
[9] |
GÜLÜT K Y, ÖZDEMIR O. Phosphorus tolerance levels of different chickpea genotypes. Saudi Journal of Biological Sciences, 2021, 28(9): 5386-5390.
doi: 10.1016/j.sjbs.2021.05.066 |
[10] |
季萌萌, 彭玲, 文炤, 姜翰, 葛顺峰, 姜远茂. 供磷水平对苹果砧木氮、磷吸收和利用特性的影响. 植物营养与肥料学报, 2015, 21(4): 1016-1021. doi: 10.11674/zwyf.2015.0421.
doi: 10.11674/zwyf.2015.0421 |
JI M M, PENG L, WEN Z, JIANG H, GE S F, JIANG Y M. Nitrogen and phosphorus absorption and utilization characteristics of apple rootstocks under different phosphorus levels. Plant Nutrition and Fertilizer Science, 2015, 21(4): 1016-1021. doi: 10.11674/zwyf.2015.0421. (in Chinese)
doi: 10.11674/zwyf.2015.0421 |
|
[11] |
ZOU X H, WU P F, CHEN N L, WANG P, MA X Q. Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil. Canadian Journal of Forest Research, 2015, 45(4): 402-410.
doi: 10.1139/cjfr-2014-0384 |
[12] | 董然然, 安贵阳, 赵政阳, 梅立新, 李敏敏. 不同树形矮化自根砧苹果的冠内光照及其生长和产量比较. 中国农业科学, 2013, 46(9): 1867-1873. |
DONG R R, AN G Y, ZHAO Z Y, MEI L X, LI M M. Comparison of light interception ability and growth and yield of different apple tree shapes on dwarf rootstock. Scientia Agricultura Sinica, 2013, 46(9): 1867-1873. (in Chinese) | |
[13] |
马宝焜, 徐继忠, 孙建设. 关于我国苹果矮砧密植栽培的思考. 果树学报, 2010, 27(1): 105-109. doi: 10.13925/j.cnki.gsxb.2010.01.020.
doi: 10.13925/j.cnki.gsxb.2010.01.020 |
MA B K, XU J Z, SUN J S. Consideration for high density planting with dwarf rootstocks in apple in China. Journal of Fruit Science, 2010, 27(1): 105-109. doi: 10.13925/j.cnki.gsxb.2010.01.020. (in Chinese)
doi: 10.13925/j.cnki.gsxb.2010.01.020 |
|
[14] |
王健强, 李佳, 苏怡, 郝奕樊, 左家乐, 石濛, 李中勇, 张学英, 徐继忠.7种苹果矮化砧木的抗旱性评价. 中国果树, 2019(6): 38-41. doi: 10.16626/j.cnki.issn1000-8047.2019.06.008.
doi: 10.16626/j.cnki.issn1000-8047.2019.06.008 |
WANG J Q, LI J, SU Y, HAO Y F, ZUO J L, SHI M, LI Z Y, ZHANG X Y, XU J Z. Evaluation analysis of different apple dwarfing stocks on drought resistance. China Fruits, 2019(6): 38-41. doi: 10.16626/j.cnki.issn1000-8047.2019.06.008. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2019.06.008 |
|
[15] |
张德, 张瑞, 张夏燚, 吴玉霞, 赵婷, 张仲兴, 王双成, 王延秀. 不同抗盐性苹果砧木对盐胁迫的生理响应. 干旱地区农业研究, 2021, 39(4): 86-94. doi: 10.7606/j.issn.1000-7601.2021.04.11.
doi: 10.7606/j.issn.1000-7601.2021.04.11 |
ZHANG D, ZHANG R, ZHANG X Y, WU Y X, ZHAO T, ZHANG Z X, WANG S C, WANG Y X. Physiological response of different salt-tolerant apple rootstocks to salt stress. Agricultural Research in the Arid Areas, 2021, 39(4): 86-94. doi: 10.7606/j.issn.1000-7601.2021.04.11. (in Chinese)
doi: 10.7606/j.issn.1000-7601.2021.04.11 |
|
[16] |
王海波, 程来亮, 常源升, 孙清荣, 陶吉寒, 李林光. 苹果矮化砧‘71-3-150’对冷胁迫的生理与转录组响应. 园艺学报, 2016, 43(8): 1437-1451. doi: 10.16420/j.issn.0513-353x.2016-0031.
doi: 10.16420/j.issn.0513-353x.2016-0031 |
WANG H B, CHENG L L, CHANG Y S, SUN Q R, TAO J H, LI L G. Physiological and transcriptome response of apple dwarfing rootstock to cold stress and cold-resistant genes screening. Acta Horticulturae Sinica, 2016, 43(8): 1437-1451. doi: 10.16420/j.issn.0513-353x.2016-0031. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0031 |
|
[17] |
慈晓彤, 沈兵琪, 王大玮, 王玉昌, 何承忠, 蔡年辉, 段安安. 苹果矮化砧木‘T337’和‘JM7’抗白粉病基因的筛选及分析. 分子植物育种, 2020, 18(19): 6280-6289. doi: 10.13271/j.mpb.018.006280.
doi: 10.13271/j.mpb.018.006280 |
CI X T, SHEN B Q, WANG D W, WANG Y C, HE C Z, CAI N H, DUAN A N. Screening and analysis of resistant genes to apple dwarf rootstock ‘T337’ and ‘JM7’ powdery mildew. Molecular Plant Breeding, 2020, 18(19): 6280-6289. doi: 10.13271/j.mpb.018.006280. (in Chinese)
doi: 10.13271/j.mpb.018.006280 |
|
[18] |
林冰冰, 韩振海, 王忆, 吴婷, 张新忠. 苹果实生砧木种质资源耐缺铁和耐盐碱性评价. 中国农业大学学报, 2016, 21(1): 48-58. doi: 10.11841/j.issn.1007-4333.2016.01.06.
doi: 10.11841/j.issn.1007-4333.2016.01.06 |
LIN B B, HAN Z H, WANG Y, WU T, ZHANG X Z. Evaluation onthe tolerance of apple seedling rootstock resources to iron- deficiency, salinity and alkalinity. Journal of China Agricultural University, 2016, 21(1): 48-58. doi: 10.11841/j.issn.1007-4333.2016.01.06. (in Chinese)
doi: 10.11841/j.issn.1007-4333.2016.01.06 |
|
[19] |
范晓丹, 刘飞, 王衍安, 付春霞, 闫玉静, 沙广利, 束怀瑞. 不同苹果砧木对缺锌胁迫的耐性评价. 应用生态学报, 2015, 26(10): 3045-3052. doi: 10.13287/j.1001-9332.20150921.002.
doi: 10.13287/j.1001-9332.20150921.002 |
FAN X D, LIU F, WANG Y N, FU C X, YAN Y J, SHA G L, SHU H R. Evaluation of zinc deficiency tolerance in different kinds of apple rootstocks. Chinese Journal of Applied Ecology, 2015, 26(10): 3045-3052. doi: 10.13287/j.1001-9332.20150921.002. (in Chinese)
doi: 10.13287/j.1001-9332.20150921.002 |
|
[20] |
栗振义, 张绮芯, 仝宗永, 李跃, 徐洪雨, 万修福, 毕舒贻, 曹婧, 何峰, 万里强, 李向林. 不同紫花苜蓿品种对低磷环境的形态与生理响应分析. 中国农业科学, 2017, 50(20): 3898-3907. doi: 10.3864/j.issn.0578-1752.2017.20.006.
doi: 10.3864/j.issn.0578-1752.2017.20.006 |
LI Z Y, ZHANG Q X, TONG Z Y, LI Y, XU H Y, WAN X F, BI S Y, CAO J, HE F, WAN L Q, LI X L. Analysis of morphological and physiological responses to low pi stress in different alfalfas. Scientia Agricultura Sinica, 2017, 50(20): 3898-3907. doi: 10.3864/j.issn.0578-1752.2017.20.006. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.20.006 |
|
[21] |
杨楚童, 邹显花, 孙雪莲, 胡亚楠, 吴鹏飞, 马祥庆. 不同磷利用效率杉木在低磷胁迫下的形态及养分分配差异. 西北林学院学报, 2021, 36(4): 94-102. doi: 10.3969/j.issn.1001-7461.2021.04.14.
doi: 10.3969/j.issn.1001-7461.2021.04.14 |
YANG C T, ZOU X H, SUN X L, HU Y N, WU P F, MA X Q. Differences in morphology and nutrient distribution of Chinese fir with different phosphorus use efficiency under low phosphorus stress. Journal of Northwest Forestry University, 2021, 36(4): 94-102. doi: 10.3969/j.issn.1001-7461.2021.04.14. (in Chinese)
doi: 10.3969/j.issn.1001-7461.2021.04.14 |
|
[22] |
葛顺峰, 季萌萌, 许海港, 郝文强, 魏绍冲, 姜远茂. 土壤pH对富士苹果生长及碳氮利用特性的影响. 园艺学报, 2013, 40(10): 1969-1975. doi: 10.16420/j.issn.0513-353x.2013.10.007.
doi: 10.16420/j.issn.0513-353x.2013.10.007 |
GE S F, JI M M, XU H G, HAO W Q, WEI S C, JIANG Y M. Effects of soil pH on growth, distribution and utilization of carbon and nitrogen of Malus × domestica ‘red fuji’. Acta Horticulturae Sinica, 2013, 40(10): 1969-1975. doi: 10.16420/j.issn.0513-353x.2013.10.007. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2013.10.007 |
|
[23] |
张强, 李民吉, 周贝贝, 李兴亮, 孙健, 张军科, 魏钦平. 两大优势产区‘富士’苹果园土壤养分与果实品质关系的多变量分析. 应用生态学报, 2017, 28(1): 105-114. doi: 10.13287/j.1001-9332.201701.030.
doi: 10.13287/j.1001-9332.201701.030 |
ZHANG Q, LI M J, ZHOU B B, LI X L, SUN J, ZHANG J K, WEI Q P. Multivariate analysis of relationship between soil nutrient factors and fruit quality characteristic of ‘Fuji’ apple in two dominant production regions of China. Chinese Journal of Applied Ecology, 2017, 28(1): 105-114. doi: 10.13287/j.1001-9332.201701.030. (in Chinese)
doi: 10.13287/j.1001-9332.201701.030 |
|
[24] |
蔡泽宇, 张建锋, 陈光才, 张涵丹, 孙士咏, 李晓刚, 秦光华. 柳树新无性系(A42)对富营养水体不同浓度磷的吸收和净化机制. 应用生态学报, 2018, 29(10): 3416-3424. doi: 10.13287/j.1001-9332.201810.037.
doi: 10.13287/j.1001-9332.201810.037 |
CAI Z Y, ZHANG J F, CHEN G C, ZHANG H D, SUN S Y, LI X G, QIN G H. P absorption and removal mechanism of new Salix clone(A42) on eutrophic water with different P concentrations. Chinese Journal of Applied Ecology, 2018, 29(10): 3416-3424. doi: 10.13287/j.1001-9332.201810.037. (in Chinese)
doi: 10.13287/j.1001-9332.201810.037 |
|
[25] |
张建伟, 石孝均, 徐文静, 张学良, 刘瑞, 魏勇, 赵秋, 张宇亭. 果园绿肥对土壤磷组分及磷素有效性的影响. 水土保持学报, 2021, 35(6): 336-342. doi: 10.13870/j.cnki.stbcxb.2021.06.045.
doi: 10.13870/j.cnki.stbcxb.2021.06.045 |
ZHANG J W, SHI X J, XU W J, ZHANG X L, LIU R, WEI Y, ZHAO Q, ZHANG Y T. Effects of green manure on soil phosphorus fractions and availability in orchard. Journal of Soil and Water Conservation, 2021, 35(6): 336-342. doi: 10.13870/j.cnki.stbcxb.2021.06.045. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2021.06.045 |
|
[26] |
ZOU X H, WEI D, WU P F, ZHANG Y, HU Y N, CHEN S T, MA X Q. Strategies of organic acid production and exudation in response to low-phosphorus stress in Chinese fir genotypes differing in phosphorus-use efficiencies. Trees, 2018, 32(3): 897-912. doi: 10.1007/s00468-018-1683-2.
doi: 10.1007/s00468-018-1683-2 |
[27] |
SU B Q, WANG L F, SHANGGUAN Z P. Morphological and physiological responses and plasticity in Robinia pseudoacacia to the coupling of water, nitrogen and phosphorus. Journal of Plant Nutrition and Soil Science, 2021, 184(2): 271-281.
doi: 10.1002/jpln.202000465 |
[28] |
钟思荣, 陈仁霄, 陶瑶, 龚丝雨, 何宽信, 张启明, 张世川, 刘齐元. 耐低氮烟草基因型的筛选及其氮效率类型. 作物学报, 2017, 43(7): 993-1002. doi: 10.3724/SP.J.1006.2017.00993.
doi: 10.3724/SP.J.1006.2017.00993 |
ZHONG S R, CHEN R X, TAO Y, GONG S Y, HE K X, ZHANG Q M, ZHANG S C, LIU Q Y. Screening of tobacco genotypes tolerant to low-nitrogen and their nitrogen efficiency types. Acta Agronomica Sinica, 2017, 43(7): 993-1002. doi: 10.3724/SP.J.1006.2017.00993. (in Chinese)
doi: 10.3724/SP.J.1006.2017.00993 |
|
[29] |
陈凌, 王君杰, 王海岗, 曹晓宁, 刘思辰, 田翔, 秦慧彬, 乔治军. 耐低氮糜子品种的筛选及农艺性状的综合评价. 中国农业科学, 2020, 53(16): 3214-3224. doi: 10.3864/j.issn.0578-1752.2020.16.002.
doi: 10.3864/j.issn.0578-1752.2020.16.002 |
CHEN L, WANG J J, WANG H G, CAO X N, LIU S C, TIAN X, QIN H B, QIAO Z J. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits. Scientia Agricultura Sinica, 2020, 53(16): 3214-3224. doi: 10.3864/j.issn.0578-1752.2020.16.002. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.16.002 |
|
[30] |
罗燕, 樊卫国. 不同施磷水平下4种柑橘砧木的根际土壤有机酸、微生物及酶活性. 中国农业科学, 2014, 47(5): 955-967. doi: 10.3864/j.issn.0578-1752.2014.05.012.
doi: 10.3864/j.issn.0578-1752.2014.05.012 |
LUO Y, FAN W G. Organic acid content, microbial quantity and enzyme activity in rhizosphere soil of four Citrus rootstocks under different phosphorus levels. Scientia Agricultura Sinica, 2014, 47(5): 955-967. doi: 10.3864/j.issn.0578-1752.2014.05.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.05.012 |
|
[31] | 束怀瑞. 果树栽培理论与实践. 北京: 中国农业出版社, 2009. |
SHU H R. Theory and Practice of Fruit Tree Cultivation. Beijing: Chinese Agriculture Press, 2009. (in Chinese) | |
[32] | 杨洪强, 束怀瑞. 苹果根系研究. 北京: 科学出版社, 2007. |
YANG H Q, SHU H R. Studies on Apple Roots. Beijing: Science Press, 2007. (in Chinese) | |
[33] |
HE H H, PENG Q, WANG X, FAN C B, PANG J Y, LAMBERS H, ZHANG X C. Growth, morphological and physiological responses of alfalfa (Medicago sativa) to phosphorus supply in two alkaline soils. Plant and Soil, 2017, 416(1/2): 565-584. doi: 10.1007/s11104-017-3242-9.
doi: 10.1007/s11104-017-3242-9 |
[34] |
孙淼, 李鹏程, 郑苍松, 刘帅, 刘爱忠, 韩慧敏, 刘敬然, 董合林. 低磷胁迫对不同基因型棉花苗期根系形态及生理特性的影响. 棉花学报, 2018, 30(1): 45-52. doi: 10.11963/1002-7807.smdhl.20180103.
doi: 10.11963/1002-7807.smdhl.20180103 |
SUN M, LI P C, ZHENG C S, LIU S, LIU A Z, HAN H M, LIU J R, DONG H L. Effects of low phosphorus stress on root morphology and physiological characteristics of different cotton genotypes at the seedling stage. Cotton Science, 2018, 30(1): 45-52. doi: 10.11963/1002-7807.smdhl.20180103. (in Chinese)
doi: 10.11963/1002-7807.smdhl.20180103 |
|
[35] |
唐荣莉, 王春萍, 王红娟, 吴红, 韩垚, 林清, 雷开荣. 低磷胁迫对辣椒苗期生长和生理特性的影响. 西南农业学报, 2020, 33(9): 1933-1942. doi: 10.16213/j.cnki.scjas.2020.9.009.
doi: 10.16213/j.cnki.scjas.2020.9.009 |
TANG R L, WANG C P, WANG H J, WU H, HAN Y, LIN Q, LEI K R. Effects of low phosphorus stress on growth and physiological characteristics of pepper at seedling stage. Southwest China Journal of Agricultural Sciences, 2020, 33(9): 1933-1942. doi: 10.16213/j.cnki.scjas.2020.9.009. (in Chinese)
doi: 10.16213/j.cnki.scjas.2020.9.009 |
|
[36] |
王枫, 王玉凤, 许晓萱, 李嘉欣, 丁冬, 贺琳, 李佐同, 徐晶宇. 低磷胁迫下玉米幼苗生理响应及相关基因表达研究. 玉米科学, 2021, 29(1): 77-84. doi: 10.13597/j.cnki.maize.science.20210112.
doi: 10.13597/j.cnki.maize.science.20210112 |
WANG F, WANG Y F, XU X X, LI J X, DING D, HE L, LI Z T, XU J Y. Physiological response and related genes expression of maize seedlings under low phosphorus stress. Journal of Maize Sciences, 2021, 29(1): 77-84. doi: 10.13597/j.cnki.maize.science.20210112. (in Chinese)
doi: 10.13597/j.cnki.maize.science.20210112 |
|
[37] |
SIEDLISKA A, BARANOWSKI P, PASTUSZKA-WOŹNIAK J, ZUBIK M, KRZYSZCZAK J. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance. BMC Plant Biology, 2021, 21(1): 28. doi: 10.1186/s12870-020-02807-4.
doi: 10.1186/s12870-020-02807-4 |
[38] |
罗佳, 候银莹, 陈波浪. 低磷胁迫对不同磷效率棉花干物质及养分吸收的影响. 西南农业学报, 2017, 30(1): 155-161. doi: 10.16213/j.cnki.scjas.2017.1.027.
doi: 10.16213/j.cnki.scjas.2017.1.027 |
LUO J, HOU Y Y, CHEN B L. Effect of phosphorus stress on dry matter accumulation and nutrient absorption of cotton genotypes with different phosphorus efficiency. Southwest China Journal of Agricultural Sciences, 2017, 30(1): 155-161. doi: 10.16213/j.cnki.scjas.2017.1.027. (in Chinese)
doi: 10.16213/j.cnki.scjas.2017.1.027 |
|
[39] |
LIU D. Root developmental responses to phosphorus nutrition. Journal of Integrative Plant Biology, 2021, 63(6): 1065-1090. doi: 10.1111/jipb.13090.
doi: 10.1111/jipb.13090 |
[40] | 臧成凤, 樊卫国, 潘学军. 供磷水平对铁核桃实生苗生长、形态特征及叶片营养元素含量的影响. 中国农业科学, 2016, 49(2): 319-330. |
ZANG C F, FAN W G, PAN X J. Effect of phosphorus levels on growth, morphological characteristics and leaf element contents of Juglans sigillata dode seedlings. Scientia Agricultura Sinica, 2016, 49(2): 319-330. (in Chinese) | |
[41] |
高艳敏, 栾本荣, 辛贵金, 杨成桓, 高锐, 杜文章, 郭济民, 高永泰. 果树施用氯化钾的效应. 北方果树, 1995(3): 6-8. doi: 10.16376/j.cnki.bfgs.1995.03.002.
doi: 10.16376/j.cnki.bfgs.1995.03.002 |
GAO Y M, LUAN B R, XIN G J, YANG C H, GAO R, DU W Z, GUO J M, GAO Y T. Effect of potassium chloride application to fruit trees. Northern Fruits, 1995(3): 6-8. doi: 10.16376/j.cnki.bfgs.1995.03.002. (in Chinese)
doi: 10.16376/j.cnki.bfgs.1995.03.002 |
|
[42] |
王兴梅, 杨莉莉, 高义民, 同延安. 不同含氯肥料用量对黄土区苹果产量、品质及氯素分布的影响. 西北农林科技大学学报(自然科学版), 2019, 47(3): 77-84. doi: 10.13207/j.cnki.jnwafu.2019.03.011.
doi: 10.13207/j.cnki.jnwafu.2019.03.011 |
WANG X M, YANG L L, GAO Y M, TONG Y N. Effects of chlorine-containing fertilizer dosage on yield, quality of apple and Cl-distribution in Loess Area. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(3): 77-84. doi: 10.13207/j.cnki.jnwafu.2019.03.011. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2019.03.011 |
|
[43] |
张晨光, 赵德英, 袁继存, 徐锴, 程存刚, 闫帅. 矮化自根砧T337对苹果幼树N、P、K累积量和内源激素含量的影响. 植物生理学报, 2016, 52(12): 1950-1958. doi: 10.13592/j.cnki.ppj.2016.0344.
doi: 10.13592/j.cnki.ppj.2016.0344 |
ZHANG C G, ZHAO D Y, YUAN J C, XU K, CHENG C G, YAN S. Effect of T337 dwarf root stock on N, P, K accumulation and endogenous hormones contents of young apple tree. Plant Physiology Journal, 2016, 52(12): 1950-1958. doi: 10.13592/j.cnki.ppj.2016.0344. (in Chinese)
doi: 10.13592/j.cnki.ppj.2016.0344 |
|
[44] |
郭江云, 张秀芝, 任洪春, 王永章, 原永兵, 刘成连. 矮化自根砧苹果叶片矿质营养周年变化研究. 中国果树, 2013(6): 31-34. doi: 10.16626/j.cnki.issn1000-8047.2013.06.017.
doi: 10.16626/j.cnki.issn1000-8047.2013.06.017 |
GUO J Y, ZHANG X Z, REN H C, WANG Y Z, YUAN Y B, LIU C L. Annual variation of mineral nutrition in leaves of dwarf self-rooted rootstock apples. China Fruits, 2013(6): 31-34. doi: 10.16626/j.cnki.issn1000-8047.2013.06.017. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2013.06.017 |
|
[45] |
袁继存, 赵德英, 徐锴, 闫帅, 程存刚. 不同砧穗组合对长富2号苹果果实品质的影响初报. 中国南方果树, 2018, 47(6): 107-109, 114. doi: 10.13938/j.issn.1007-1431.20180401.
doi: 10.13938/j.issn.1007-1431.20180401 |
YUAN J C, ZHAO D Y, XU K, YAN S, CHENG C G. Effects of different scion-rootstock combination on fruit qualities of ‘Nagafu2’ apple. South China Fruits, 2018, 47(6): 107-109, 114. doi: 10.13938/j.issn.1007-1431.20180401. (in Chinese)
doi: 10.13938/j.issn.1007-1431.20180401 |
|
[46] |
刘兴禄, 王红平, 孙文泰, 董铁, 牛军强, 马明. 5个砧木苹果枝条的抗寒性评价. 果树学报, 2021, 38(8): 1264-1274. doi: 10.13925/j.cnki.gsxb.20200354.
doi: 10.13925/j.cnki.gsxb.20200354 |
LIU X L, WANG H P, SUN W T, DONG T, NIU J Q, MA M. Cold resistance evaluation of the shoots of 5 apple rootstocks. Journal of Fruit Science, 2021, 38(8): 1264-1274. doi: 10.13925/j.cnki.gsxb.20200354. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20200354 |
[1] | 郭磊, 黄晨艳, 宋宏峰, 沈志军, 张斌斌, 马瑞娟, 孙朦, 何鑫, 俞明亮. 桃苗圃适用除草剂的筛选、混配与安全性评价[J]. 中国农业科学, 2024, 57(9): 1734-1747. |
[2] | 吴玉珍, 黄龙雨, 周大云, 黄义文, 付守阳, 彭军, 匡猛. 中国棉花审定品种SSR指纹库的构建与综合评价[J]. 中国农业科学, 2024, 57(8): 1430-1443. |
[3] | 卫乃翠, 陶金博, 苑名杨, 张彧, 开梦想, 乔玲, 武棒棒, 郝宇琼, 郑兴卫, 王娟玲, 赵佳佳, 郑军. 山西小麦苗期耐低磷特性及遗传分析[J]. 中国农业科学, 2024, 57(5): 831-845. |
[4] | 熊楚雯, 郭智滨, 周强华, 程艳波, 马启彬, 蔡占东, 年海. 大豆转录因子NAC1耐低磷胁迫的功能研究[J]. 中国农业科学, 2024, 57(3): 442-453. |
[5] | 潘静, 孟志浩, 王森, 王海波, 何平, 常源升, 郑文燕, 李林光, 王琛, 王平, 何晓文. 苹果‘金冠’和‘长富2号’正反交F1代果实品质性状多样性及综合评价[J]. 中国农业科学, 2024, 57(24): 4945-4963. |
[6] | 王晶, 王天舒, 王丽, 周新雨, 李庭宇, 孟熠黎, 黄新阳, 尧水红. 麦茬土壤残留氮对夏大豆根瘤、根系发育及产量的影响[J]. 中国农业科学, 2024, 57(23): 4712-4724. |
[7] | 石德杨, 李艳红, 王飞飞, 夏德君, 矫岩林, 孙妮娜, 赵健. 高密度下扩行缩株对夏玉米干物质与养分积累、转运的调控效应[J]. 中国农业科学, 2024, 57(23): 4658-4672. |
[8] | 戎亚思, 李丰, 张鹏钰, 王东勇, 苏小雨, 田媛, 高桐梅. 基于主成分-聚类分析芝麻盛花期耐高温评价及品种筛选[J]. 中国农业科学, 2024, 57(20): 3957-3973. |
[9] | 王小军, 王金兰, 琚泽亮, 梁国玲, 贾志锋, 刘文辉, 马祥, 马金秀, 李文. 环青海湖地区不同饲用燕麦品种生产性能和营养品质综合评价[J]. 中国农业科学, 2024, 57(19): 3730-3742. |
[10] | 周罕觅, 马林爽, 孙旗立, 陈佳庚, 李纪琛, 苏裕民, 陈诚, 吴奇. 基于多目标综合评价的苹果水氮综合调控[J]. 中国农业科学, 2024, 57(18): 3654-3670. |
[11] | 李玉姗, 肖菁, 马越, 田超, 赵连佳, 王帆, 宋羽, 蒋程瑶. 169份番茄种质资源表型性状遗传多样性分析及综合评价[J]. 中国农业科学, 2024, 57(18): 3671-3683. |
[12] | 翟彩娇, 葛礼姣, 程玉静, 仇亮, 王小秋, 刘水东. 基于表型性状与SSR标记的冬瓜、节瓜种质资源遗传多样性分析[J]. 中国农业科学, 2024, 57(17): 3440-3457. |
[13] | 宋想, 王钟曼, 张秋玲, 魏媛媛, 赵小刚, 刘波, 戴思兰. 早花露地小菊杂交后代株系的综合评价与筛选[J]. 中国农业科学, 2024, 57(1): 173-189. |
[14] | 刘娜, 谢畅, 黄海云, 姚瑞, 徐爽, 宋海玲, 于海秋, 赵新华, 王婧, 蒋春姬, 王晓光. 施钾量对花生根系和根瘤特性、养分吸收及产量的影响[J]. 中国农业科学, 2023, 56(4): 635-648. |
[15] | 徐隽峰, 张学美, 杨珺, 郭子糠, 黄翠, 丁玉兰, 黄宁, 孙蕊卿, 田汇, 王朝辉, 石美. 旱地高产小麦品种籽粒氮含量与产量形成及氮磷钾吸收分配的关系[J]. 中国农业科学, 2023, 56(24): 4880-4894. |
|