中国农业科学 ›› 2020, Vol. 53 ›› Issue (16): 3214-3224.doi: 10.3864/j.issn.0578-1752.2020.16.002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

耐低氮糜子品种的筛选及农艺性状的综合评价

陈凌(),王君杰,王海岗,曹晓宁,刘思辰,田翔,秦慧彬,乔治军()   

  1. 山西农业大学农业基因资源研究中心(山西省农业科学院农作物品种资源研究所)/农业部黄土高原作物基因资源与种质创制重点实验室/杂粮种质资源发掘与遗传改良山西省重点实验室,太原030031
  • 收稿日期:2019-07-24 接受日期:2019-11-20 出版日期:2020-08-16 发布日期:2020-08-27
  • 通讯作者: 乔治军
  • 作者简介:陈凌,Tel:13934660843;E-mail:chenling832013@163.com
  • 基金资助:
    国家现代农业产业技术体系(CARS-06-13.5-A16);山西省农业科学院农业科技创新研究课题(YYS1711)

Screening of Broomcorn Millet Varieties Tolerant to Low Nitrogen Stress and the Comprehensive Evaluation of Their Agronomic Traits

CHEN Ling(),WANG JunJie,WANG HaiGang,CAO XiaoNing,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun()   

  1. Center for Agricultural Genetic Resources Research, Shanxi Agricultural University (Institute of Crop Germplasm Resources,Shanxi Academy of Agricultural Sciences)/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031
  • Received:2019-07-24 Accepted:2019-11-20 Online:2020-08-16 Published:2020-08-27
  • Contact: ZhiJun QIAO

摘要:

【目的】探明耐低氮糜子品种的评价方法,筛选耐低氮糜子基因型材料及鉴定指标,为耐低氮品种的选育和耐低氮生理机制的研究提供理论依据。【方法】采用大田试验,以来自国内外100份糜子品种为材料,在低氮胁迫(0纯氮)和正常施氮(150 kg·hm-2纯氮)处理下,连续2年进行株高、茎粗、主茎节数、穗长、草重、单株穗重、单株粒重、千粒重、叶面积9个主要农艺性状和氮含量、氮素吸收共11个指标的测定,采用隶属函数法计算各指标耐低氮胁迫指数,通过主成分分析、回归分析与聚类分析评价各糜子品种的综合耐低氮能力。【结果】供试品种在不同氮水平条件下的株高、茎粗、主茎节数、穗长、草重、单株穗重、单株粒重、千粒重、叶面积、氮含量、氮素吸收均存在显著差异;低氮胁迫下,糜子的生长、生物量积累和氮素吸收受到抑制,各性状指标明显下降,变化范围幅度降低,各农艺指标降低幅度排序依次为叶面积>草重>单株粒重>单株穗重>茎粗>主茎节数>穗长>千粒重>株高,不同糜子品种籽粒的氮含量和氮素吸收均降低,降低幅度为氮素吸收>氮含量;低氮胁迫下,不同糜子品种的株高、茎粗、主茎节数、穗长、草重、单株穗重、单株粒重的变异系数大于正常施氮水平各指标的变异系数;不同氮水平下,不同糜子籽粒氮素吸收的变异系数高于氮含量的变异系数,且低氮胁迫的氮素吸收的变异系数高于正常施氮处理。对11个指标的耐低氮胁迫指数进行主成分分析,选择了5个主成分,累积方差贡献率达75.83%;株高、穗长、草重、单株穗重、单株粒重、单株叶面积、氮吸收量的耐低氮胁迫指数与耐低氮综合评价值(D)的相关性均达极显著水平,其中,单株穗重、单株粒重、氮吸收量的相关性较高,其相关系数分别为0.858、0.812和0.812;根据耐低氮综合评价D值,通过聚类分析将100份糜子品种划分为耐低氮型、中间型和不耐低氮型3种类型。【结论】单株穗重、草重、氮吸收量等指标作为糜子耐低氮能力评价的首选指标;榆糜3号、2058、榆黍1号、雁黍7号4个品种耐低氮能力最强。

关键词: 糜子, 耐低氮胁迫, 筛选指标, 综合评价

Abstract:

【Objective】The objective of this study is to find out the evaluation methods of low-nitrogen-tolerant broomcorn millet varieties, to screen the genotypes and identification indexes, and to provide a theoretical basis for the breeding of the low-nitrogen-tolerant varieties and understanding the physiological mechanism of the tolerance to low nitrogen stress.【Method】In the field experiment, 100 broomcorn millet varieties from domestic and foreign places were used for the treatment of low nitrogen stress (0 pure nitrogen) and normal nitrogen application (150 kg·hm-2 pure nitrogen). Eleven indexes, including nine major agronomic traits (the plant height, stem diameter, number of main-stem nodes, panicle length, straw weight, panicle weight per plant, grain weight per plant, 1000-grain weight and leaf area), nitrogen content and nitrogen absorption were measured for two consecutive years. The low-nitrogen-tolerant index of each indicator was assessed by the method of membership function, and their comprehensive ability of low nitrogen tolerance was evaluated by principal component analysis, regression analysis and cluster analysis.【Result】There were significant differences in all eleven indexes, including plant height, stem diameter, number of main -stem nodes, panicle length, straw weight, panicle weight per plant, grain weight per plant, 1000-grain weight, leaf area, nitrogen content and nitrogen absorption of the tested varieties at different nitrogen levels. Under low nitrogen stress, the growth, biomass accumulation and nitrogen absorption of broomcorn millet were inhibited. The value of each agronomic trait decreased significantly, and the range of variation was reduced. The order of reduction range was that leaf area > straw weight > grain weight per plant > panicle weight per plant > stem diameter > number of main-stem nodes > panicle length > 1000-grain weight > plant height. The nitrogen content and the nitrogen absorption of different broomcorn millet seeds decreased and the decrease range of nitrogen absorption decrease was higher than that of nitrogen content. Under low nitrogen stress, the variation coefficients of plant height, stem diameter, number of main-stem nodes, panicle length, straw weight, panicle weight per plant and grain weight per plant in different broomcorn millet varieties were higher than those of normal nitrogen application levels. Under different nitrogen levels, the variation coefficient of nitrogen absorption in different broomcorn millet seeds was higher than that of nitrogen content. The variation coefficient of nitrogen absorption under low nitrogen stress was higher than that of normal nitrogen application. The principal component analysis was carried out on the low nitrogen tolerance index of 11 indicators, and the five principal components were selected. The cumulative variance contribution rate was 75.83%. The correlation between the low nitrogen tolerance index and the comprehensive evaluation value on the low nitrogen tolerance (D) of seven indicators (the plant height, panicle length, straw weight, panicle weight per plant, grain weight per plant, leaf area, nitrogen absorption) was highly significant. Among them, the correlation of panicle weight per plant, grain weight per plant and nitrogen absorption was higher, with the correlation coefficients 0.858, 0.812 and 0.812, respectively. According to the D-value, 100 varieties of broomcorn millet were classified into three types: Low nitrogen tolerance, intermediate and low nitrogen susceptible.【Conclusion】Through the analysis of the comprehensive characteristics of each trait index, it is concluded that the panicle weight per plant, straw weight, and nitrogen absorption can be used as the first choice for the evaluation of the ability of low nitrogen tolerance. Four varieties of Yumi 3, 2058, Yushu 1 and Yanshu 7 have the strongest tolerance to nitrogen-deficiency.

Key words: broomcorn millet, tolerance to low nitrogen stress, screening index, comprehensive evaluation