中国农业科学 ›› 2020, Vol. 53 ›› Issue (14): 2897-2906.doi: 10.3864/j.issn.0578-1752.2020.14.013
袁武1(),靳振江1,2,3(
),程跃扬1,贾远航1,梁锦桃1,邱江梅1,潘复静1,2,3,刘德深1,2,3
收稿日期:
2019-09-05
接受日期:
2020-02-16
出版日期:
2020-07-16
发布日期:
2020-08-10
通讯作者:
靳振江
作者简介:
袁武,E-mail:基金资助:
YUAN Wu1(),JIN ZhenJiang1,2,3(
),CHENG YueYang1,JIA YuanHang1,LIANG JinTao1,QIU JiangMei1,PAN FuJing1,2,3,LIU DeShen1,2,3
Received:
2019-09-05
Accepted:
2020-02-16
Online:
2020-07-16
Published:
2020-08-10
Contact:
ZhenJiang JIN
摘要:
【目的】探究土地利用变化对湿地土壤酶活性和温室气体排放之间关系的影响。【方法】以会仙岩溶湿地为研究样点,以湖泊湿地和其相邻的稻田为研究对象,采用比色法和静态暗箱法分别测定水稻整个生育期内主要土壤酶的活性及CO2和CH4的排放,并对二者之间的关系进行分析。【结果】稻田土壤的β-葡萄糖苷酶、纤维素酶、蔗糖酶、几丁质酶、脲酶和碱性磷酸酶活性均高于湖泊湿地,高出幅度为11.8%—32.7%。稻田CO2和CH4排放通量分别为255.9—789.7和-0.41—1.74 mg·m-2·h-1,平均值分别为445.8和0.42 mg·m-2·h-1,低于天然湖泊湿地。与湖泊湿地相比,稻田CO2和CH4排放总量分别降低了22.3%和83.3%,而增温潜势(GHGs,含N2O)降低了29.6%。相关性结果显示,CO2排放通量与β-葡萄糖苷酶、纤维素酶、蔗糖酶和几丁质酶活性呈显著负相关关系,CH4排放通量与6种土壤酶活性显著负相关(P<0.05)。【结论】在会仙岩溶湿地系统中,天然的湖泊湿地转变为稻田可显著提高土壤酶活性,同时降低CO2和CH4的排放量,有利于微生物碳利用率的提高和土壤碳的封存。
袁武,靳振江,程跃扬,贾远航,梁锦桃,邱江梅,潘复静,刘德深. 岩溶湿地和稻田的土壤酶活性与CO2和CH4排放特征[J]. 中国农业科学, 2020, 53(14): 2897-2906.
YUAN Wu,JIN ZhenJiang,CHENG YueYang,JIA YuanHang,LIANG JinTao,QIU JiangMei,PAN FuJing,LIU DeShen. Characteristics of Soil Enzyme Activities and CO2 and CH4 Emissions from Natural Wetland and Paddy Field in Karst Areas[J]. Scientia Agricultura Sinica, 2020, 53(14): 2897-2906.
表1
不同湿地类型理化指标及养分含量"
因子 | 湿地类型Wetland type | |
---|---|---|
Factor | 稻田 | 湖泊湿地 |
Paddy field | Lake wetland | |
pH (H2O) | 7.36±0.02b | 7.63±0.08a |
阳离子交换量CEC (cmol·kg-1) | 22.13±0.25a | 20.05±3.21a |
交换性钙 Exchangeable Ca2+ (cmol·kg-1) | 14.39±2.03a | 14.49±0.59a |
交换性镁Exchangeable Mg2+ (cmol·kg-1) | 1.03±0.11a | 0.55±0.04b |
土壤有机碳SOC (g·kg-1) | 26.62±0.32a | 14.49±8.37b |
可溶性有机碳DOC (mg·kg-1) | 202.30±10.34a | 116.60±47.78b |
全氮TN (g·kg-1) | 2.46±0.01a | 1.42±0.71b |
碱解氮AN (mg·kg-1) | 89.54±2.59a | 45.24±3.36b |
全磷TP (g·kg-1) | 0.87±0.04a | 0.33±0.12b |
有效磷AP (mg·kg-1) | 30.50±2.30a | 3.28±0.18b |
表2
水稻生育期稻田和湖泊湿地的酶活性"
日期 | 湿地类型 | β-葡萄糖苷酶 | 纤维素酶 | 蔗糖酶 | 几丁质酶 | 脲酶 | 碱性磷酸酶 |
---|---|---|---|---|---|---|---|
Date | Wetland type | β-glucosidase (μg·g-1·h-1) | Cellulase (mg·10g-1·72h-1) | Invertase (mg·g-1·24h-1) | Chitinase (μg·g-1·18h-1) | Urease (mg·g-1·24h-1) | Alkaline phosphatase (mg·g-1·2h-1) |
5.8 | 稻田 Paddy field | 110.2±1.77a | 5.85±0.08a | 68.63±4.38a | 3.86±0.19a | 1.54±0.07a | 1.12±0.05a |
湖泊湿地Lake wetland | 88.67±6.80b | 2.39±0.35b | 32.92±5.52b | 2.61±0.05b | 1.12±0.33b | 0.47±0.08b | |
5.26 | 稻田Paddy field | 87.90±6.32a | 4.04±0.57a | 167.0±11.15a | 4.08±0.13a | 1.01±0.08a | 0.74±0.04a |
湖泊湿地Lake wetland | 68.64±8.57b | 2.69±0.19b | 49.43±16.26b | 2.18±0.05b | 1.13±0.12a | 0.39±0.07b | |
6.3 | 稻田Paddy field | 104.8±19.81a | 5.26±0.61a | 79.25±4.48a | 4.10±0.38a | 1.32±0.09a | 0.94±0.04a |
湖泊湿地Lake wetland | 28.56±15.34b | 2.87±0.38b | 25.67±3.94b | 1.96±0.09b | 0.42±0.08b | 0.26±0.10b | |
6.18 | 稻田Paddy field | 117.7±12.67a | 4.60±0.15a | 106.0±17.71a | 3.23±0.28a | 1.56±0.18a | 1.04±0.12a |
湖泊湿地Lake wetland | 70.20±18.73b | 2.92±0.19b | 93.19±24.76a | 2.65±0.57a | 0.79±0.22b | 0.95±0.07a | |
7.4 | 稻田Paddy field | 71.14±0.49a | 4.18±0.34a | 47.38±2.37a | 2.23±0.11a | 1.22±0.05a | 0.74±0.08a |
湖泊湿地Lake wetland | 44.91±0.41b | 2.54±0.95b | 46.56±3.99a | 2.21±0.04a | 0.97±0.17b | 0.69±0.13a | |
7.16 | 稻田Paddy field | 125.9±33.66a | 4.97±0.59a | 95.92±6.29a | 4.16±0.10a | 1.76±0.26a | 1.13±0.08a |
湖泊湿地Lake wetland | 71.07±18.67b | 3.63±0.54b | 41.34±3.52b | 2.31±0.63b | 1.00±0.33b | 1.18±0.24a | |
7.29 | 稻田Paddy field | 113.4±12.22a | 6.63±0.30a | 57.30±13.02a | 3.69±0.49a | 2.28±0.20a | 1.10±0.17a |
湖泊湿地Lake wetland | 73.21±6.72b | 3.64±0.51b | 32.98±7.59b | 2.46±0.31b | 1.65±0.51a | 1.36±0.20a | |
8.5 | 稻田Paddy field | 115.3±9.73a | 8.19±0.67a | 120.4±27.58a | 3.65±0.27a | 2.52±0.20a | 1.61±0.11a |
湖泊湿地Lake wetland | 88.86±13.44b | 3.69±0.43b | 54.63±12.73b | 2.82±0.13b | 1.59±0.46b | 1.33±0.53a |
表5
温室气体排放与酶活性的相关性"
β-葡萄糖苷酶 β-glucosidase | 纤维素酶 Cellulase | 蔗糖酶 Invertase | 几丁质酶 Chitinase | 脲酶 Urease | 碱性磷酸酶 Alkaline phosphatase | CO2排放通量 CO2 flux | |
---|---|---|---|---|---|---|---|
纤维素酶 Cellulase | 0.633** | ||||||
蔗糖酶Invertase | 0.433** | 0.433** | |||||
几丁质酶Chitinase | 0.633** | 0.500** | 0.533** | ||||
脲酶Urease | 0.667** | 0.567** | 0.300 | 0.367* | |||
碱性磷酸酶Alkaline phosphatase | 0.433** | 0.400* | 0.233 | 0.367* | 0.533** | ||
CO2排放通量CO2 flux | -0.367* | -0.433** | -0.333* | -0.500** | -0.167 | -0.200 | |
CH4排放通量CH4 flux | -0.683** | -0.417* | -0.483** | -0.483** | -0.550** | -0.350* | 0.317* |
[1] | 肖春旺, 杨帆, 柳隽瑶, 周勇, 苏佳琦, 梁韵, 裴智琴. 陆地生态系统地下碳输入与输出过程研究进展. 植物学报, 2017,52(5):652-668. |
XIAO C W, YANG F, LIU J Y, ZHOU Y, SU J Q, LIANG Y, PEI Z Q. Advances in input and output processes of below-ground carbon of terrestrial ecosystems. Chinese Bulletin of Botany, 2017,52(5):652-668. (in Chinese) | |
[2] | 宋长春, 宋艳宇, 王宪伟, 郭跃东, 孙丽, 张新厚. 气候变化下湿地生态系统碳、氮循环研究进展. 湿地科学, 2018,16(3):424-431. |
SONG C C, SONG Y Y, WANG X W, GUO Y D, SUN L, ZHANG X H. Advance in researches on carbon and nitrogen cycles in wetland ecosystems under climate change. Wetland Science, 2018,16(3):424-431. (in Chinese) | |
[3] | 马安娜, 陆健健. 湿地生态系统碳通量研究进展. 湿地科学, 2008,6(2):116-123. |
MA A N, LU J J. The progress of research on carbon flux in wetland ecosystems. Wetland Science, 2008,6(2):116-123. (in Chinese) | |
[4] | 李典友, 潘根兴. 长江中下游地区湿地开垦及土壤有机碳含量变化. 湿地科学, 2009,7(2):187-190. |
LI D Y, PAN G X. Cultivation of wetlands and changes of soil organic carbon content in the middle and lower reaches of Yangtze River. Wetland Science, 2009,7(2):187-190. (in Chinese) | |
[5] | 熊汉锋, 黄世宽, 陈治平, 廖勤周, 谭启玲. 梁子湖湿地土壤酶初步研究. 生态环境, 2006,15(6):179-183. |
XIONG H F, HUANG S K, CHEN Z P, LIAO Q Z, TAN Q L. Soil enzyme activities of wetland in Liangzi Lake. Ecology and Environment, 2006,15(6):179-183. (in Chinese) | |
[6] | 靳振江, 邰继承, 潘根兴, 李恋卿, 宋祥云, 谢添, 刘晓雨, 王丹. 荆江地区湿地与稻田有机碳、微生物多样性及土壤酶活性的比较. 中国农业科学, 2012,45(18):3773-3781. |
JIN Z J, TAI J C, PAN G X, LI L Q, SONG X Y, XIE T, LIU X Y, WANG D. Comparison of soil organic carbon, microbial diversity and enzyme activity of wetlands and rice paddies in Jingjiang Area of Hubei, China. Scientia Agricultura Sinica, 2012,45(18):3773-3781. (in Chinese) | |
[7] |
HUANG L, HU W, TAO J, LIU Y, KONG Z, WU L. Soil bacterial community structure and extracellular enzyme activities under different land use types in a long-term reclaimed wetland. Journal of Soils and Sediments, 2019,19(5):2543-2557.
doi: 10.1007/s11368-019-02262-1 |
[8] | 何小青, 许信旺, 方宇媛, 毛敏, 石小磊, 郑聚锋. 淡水湿地不同围垦土壤非耕季节呼吸速率差异. 水土保持通报, 2014,34(1):118-122. |
HE X Q, XU X W, FANG Y Y, MAO M, SHI X L, ZHENG J F. Difference of soil respiration rate in freshwater wetland with different reclamation methods during non-cropping season. Bulletin of Soil and Water Conservation, 2014,34(1):118-122. (in Chinese) | |
[9] | 张容娟, 布乃顺, 崔军, 方长明. 土地利用对崇明岛围垦区土壤有机碳库和土壤呼吸的影响. 生态学报, 2010,30(24):6698-6706. |
ZHANG R J, BU N S, CUI J, FANG C M. Effects of land use on soil organic carbon and soil respiration in soils reclaimed from wetland in the Chongming Island. Acta Ecologica Sinica, 2010,30(24):6698-6706. (in Chinese) | |
[10] | 任文玲, 侯颖, 杨淑慧, 仲启铖, 王开运. 崇明岛新围垦区不同土地利用条件下的土壤呼吸研究. 生态环境学报, 2011,20(1):97-101. |
REN W L, HOU Y, YANG S H, ZHONG Q C, WANG K Y. Research on soil respiration of different use-lands in new reclaimed soils in the Chongming Island. Ecology and Environmental Sciences, 2011,20(1):97-101. (in Chinese) | |
[11] | 王圣燕, 陈圆, 徐勇峰, 韩建刚, 李萍萍. 洪泽湖湿地重金属含量与N2O释放特征及关系. 福建农林大学学报(自然科学版), 2018,47(2):236-242. |
WANG S Y, CHEN Y, XU Y F, HAN J G, LI P P. Relationship between heavy metal contents and N2O emission in sediments from Hung-tse Lake wetland. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018,47(2):236-242. (in Chinese) | |
[12] | 靳振江, 曾鸿鹄, 李强, 程亚平, 汤华峰, 李敏, 黄炳富. 起源喀斯特溶洞湿地稻田与旱地土壤的微生物数量、生物量及土壤酶活性比较. 环境科学, 2016,37(1):335-341. |
JIN Z J, ZENG H H, LI Q, CHENG Y P, TANG H F, LI M, HUANG B F. Comparisons of microbial numbers, biomasses and soil enzyme activities between paddy field and dryland origins in karst cave wetland. Environmental Science, 2016,37(1):335-341. (in Chinese) | |
[13] | 贾远航, 靳振江, 袁武, 程跃扬, 邱江梅, 梁锦桃, 潘复静, 刘德深. 会仙岩溶湿地、稻田与旱地土壤细菌群落结构特征比较. 环境科学, 2019,40(7):3313-3323. |
JIA Y H, JIN Z J, YUAN W, CHENG Y Y, QIU J M, LIANG J T, PAN F J, LIU D S. Comparison of soil bacterial community structure between paddy fields and dry land in the Huixian karst wetland, China. Environmental Science, 2019,40(7):3313-3323. (in Chinese) | |
[14] | 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. |
LU R K. Methods of Soil Agricultural Chemical Analysis. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese) | |
[15] | 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. |
GUAN S Y. Soil Enzyme and Its Research Method. Beijing: China Agricultural Press, 1986. (in Chinese) | |
[16] | ZHANG X X, FAN C H, MA Y C, LIU Y L, LI L, ZHOU Q S, XIONG Z Q. Two approaches for net ecosystem carbon budgets and soil carbon sequestration in a rice-wheat rotation system in China. Nutrient Cycling in Agroecosystems, 2014,100(3):301-313. |
[17] |
HUANG Y, ZHANG W, SUN W J, ZHENG X H. Net primary production of Chinese croplands from 1950 to 1999. Ecological Applications, 2007,17(3):692-701.
doi: 10.1890/05-1792 pmid: 17494389 |
[18] | KIMURA M, MURASE J, LU Y H. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biology and Biochemistry, 2004,36(9):1399-1416. |
[19] | MANDAL B, MAJUMDER B, ADHYA T, BANDYOPADHYAY P, GANGOPADHYAY A, SARKAR D, KUNDU M, CHOUDHURY S, HAZRA G, KUNDU S, SAMANTARAY R, MISRA A. Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate. Global Change Biology, 2008,14(9):2139-2151. |
[20] | ZHANG L M, YU D S, SHI X Z, WEINDORF D, ZHAO L M, DING W X, WANG H J, PAN J J, LI C S. Simulation of global warming potential (GWP) from rice fields in the Tai-Lake region, China by coupling 1: 50,000 soil database with DNDC model. Atmospheric Environment, 2009,43(17):2737-2746. |
[21] | 熊正琴, 张晓旭. 氮肥高效施用在低碳农业中的关键作用. 植物营养与肥料学报, 2017,23(6):1433-1440. |
XIONG Z Q, ZHANG X X. Key role of efficient nitrogen application in low carbon agriculture. Journal of Plant Nutrition and Fertilizer, 2017,23(6):1433-1440. (in Chinese) | |
[22] | 严金龙. 湿地、稻田土壤酶分布与活性及生态功能指示[D]. 南京: 南京农业大学, 2011. |
YAN J L. Distribution, activity and ecological indicator function of enzymes in wetland and paddy soils[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese) | |
[23] | 陈贵, 赵国华, 张红梅, 沈亚强, 汪峰, 程旺大. 长期施用有机肥对水稻产量和氮磷养分利用效率的影响. 中国土壤与肥料, 2017(1):92-97. |
CHEN G, ZHAO G H, ZHANG H M, SHEN Y Q, WANG F, CHENG W D. Effect of long-term organic fertilizers application on rice yield, nitrogen and phosphorus use efficiency. Soil and Fertilizer Sciences in China, 2017(1):92-97. (in Chinese) | |
[24] | 柳开楼, 李亚贞, 秦江涛, 夏桂龙, 刘金花, 胡惠文, 周利军, 叶会财, 徐小林. 中亚热带稻田不同耕作栽培和施肥模式对土壤肥力的影响. 土壤, 2015,47(2):310-317. |
LIU K L, LI Y Z, QIN J T, XIA G L, LIU J H, HU H W, ZHOU L J, YE H C, XU X L. Effects of different tillage, straw returning and transplanting methods on paddy soil fertility in middle subtropical region. Soils, 2015,47(2):310-317. (in Chinese) | |
[25] | CHEN H, LUO P, WEN L, YANG L, WANG K, LI D. Determinants of soil extracellular enzyme activity in a karst region, southwest China. European Journal of Soil Biology, 2017,80:69-76. |
[26] |
LIU Z, RONG Q, ZHOU W, LIANG G. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. Plos One, 2017,12(3):e0172767.
doi: 10.1371/journal.pone.0172767 pmid: 28263999 |
[27] | DONG W Y, ZHANG X Y, DAI X Q, FU X L, YANG F T, LIU X Y, SUN X M, WEN X F, SCHAEFFER S. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Applied Soil Ecology, 2014,84:140-147. |
[28] | 万忠梅, 宋长春. 土壤酶活性对生态环境的响应研究进展. 土壤通报, 2009,40(4):951-956. |
WAN Z M, SONG C C. Advance on response of soil enzyme activity to ecological environment. Chinese Journal of Soil Science, 2009,40(4):951-956. (in Chinese) | |
[29] | 李香兰, 徐华, 曹金留, 蔡祖聪, 八木一行. 水分管理对水稻生长期CH4排放的影响. 土壤, 2007,39(2):238-242. |
LI X L, XU H, CAO J L, CAI Z C, KAZUYUKI Y. Effect of water management on CH4 emission during rice-growing season. Soils, 2007,39(2):238-242. (in Chinese) | |
[30] |
TARIQ A, JENSEN L S, SANDER B O, TOURDONNET S D, AMBUS P L, THANH P H, TRINH M V, NEERGAARD A D. Paddy soil drainage influences residue carbon contribution to methane emissions. Journal of Environmental Management, 2018,225:168-176.
doi: 10.1016/j.jenvman.2018.07.080 pmid: 30119009 |
[31] | 李香兰, 徐华, 蔡祖聪, 八木一行. 水稻生长后期水分管理对CH4和N2O排放的影响. 生态环境学报, 2009,18(1):332-336. |
LI X L, XU H, CAI Z C, KAZUYUKI Y. Effect of water management of late stage of rice growth on methane and nitrous oxide emissions. Ecology and Environmental Sciences, 2009,18(1):332-336. (in Chinese) | |
[32] |
贾仲君, 蔡祖聪. 水稻植株对稻田甲烷排放的影响. 应用生态学报, 2003,14(11):2049-2053.
pmid: 14997675 |
JIA Z J, CAI Z C. Effects of rice plants on methane emission from paddy fields. Chinese Journal of Applied Ecology, 2003,14(11):2049-2053. (in Chinese)
pmid: 14997675 |
|
[33] | 阎丽娜, 李霞. 水稻对稻田甲烷排放的影响. 中国农学通报, 2008,24(10):471-476. |
YAN L N, LI X. Effects of rice on methane emission from paddy fields. Chinese Agricultural Science Bulletin, 2008,24(10):471-476. (in Chinese) | |
[34] | 陈槐, 周舜, 吴宁, 王艳芬, 罗鹏, 石福孙. 湿地甲烷的产生、氧化及排放通量研究进展. 应用与环境生物学报, 2006,12(5):726-733. |
CHEN H, ZHOU S, WU N, WANG Y F, LUO P, SHI F S. Advance in studies on production, oxidation and emission flux of methane from wetlands. Chinese Journal of Applied and Environmental Biology, 2006,12(5):726-733. (in Chinese) | |
[35] | 江瑜, 管大海, 张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展. 中国生态农业学报, 2018,26(2):175-181. |
JIANG Y, GUAN D H, ZHANG W J. The effect of rice plant traits on methane emissions from paddy fields: a review. Chinese Journal of Eco-Agriculture, 2018,26(2):175-181. (in Chinese) | |
[36] |
ZHANG H, LIU H, HOU D, ZHOU Y, LIU M, WANG Z, LIU L, GU J, YANG J. The effect of integrative crop management on root growth and methane emission of paddy rice. The Crop Journal, 2019,7(4):444-457.
doi: 10.1016/j.cj.2018.12.011 |
[37] |
SIX J, CONANT R T, PAUL E A, PAUSTIAN K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 2002,241(2):155-176.
doi: 10.1023/A:1016125726789 |
[38] | 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, MARIOS D, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质. 地球科学进展, 2019,34(5):451-470. |
PAN G X, DING Y J, CHEN S T, SUN J L, FENG X, ZHANG C, MARIOS D, ZHENG J F, ZHANG X H, CHENG K, LIU X Y, BIAN R J, LI L Q. Exploring the nature of soil organic matter from humic substances isolation to SOMics of molecular assemblage. Advances in Earth Science, 2019,34(5):451-470. (in Chinese) | |
[39] | 潘根兴, 陆海飞, 李恋卿, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 郑金伟. 土壤碳固定与生物活性:面向可持续土壤管理的新前沿. 地球科学进展, 2015,30(8):940-951. |
PAN G X, LU H F, LI L Q, ZHENG J F, ZHANG X H, CHENG K, LIU X Y, BIAN R J, ZHENG J W. Soil carbon sequestration with bioactivity: a new emerging frontier for sustainable soil management. Advances in Earth Science, 2015,30(8):940-951. (in Chinese) | |
[40] |
CHI J, ZHANG W, WANG L, PUTNIS C V. Direct observations of the occlusion of soil organic matter within calcite. Environmental Science & Technology, Environmental Science & Technology, 2019,53(14):8097-8104.
doi: 10.1021/acs.est.8b06807 pmid: 31241316 |
[1] | 高佳蕊,方胜志,张玉玲,安晶,虞娜,邹洪涛. 东北黑土不同开垦年限稻田土壤有机氮矿化特征[J]. 中国农业科学, 2022, 55(8): 1579-1588. |
[2] | 李晓立,何堂庆,张晨曦,田明慧,吴梅,李潮海,杨青华,张学林. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948-961. |
[3] | 张学林, 吴梅, 何堂庆, 张晨曦, 田明慧, 李晓立, 侯小畔, 郝晓峰, 杨青华, 李潮海. 秸秆分解对两种类型土壤无机氮和氧化亚氮排放的影响[J]. 中国农业科学, 2022, 55(4): 729-742. |
[4] | 杨滨娟,李萍,胡启良,黄国勤. 紫云英与油菜混播对稻田土壤N2O排放及相关功能基因丰度的影响[J]. 中国农业科学, 2022, 55(4): 743-754. |
[5] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[6] | 夏芊蔚,陈浩,姚宇阗,笪达,陈健,石志琦. “优标”水稻体系对稻田土壤环境的影响[J]. 中国农业科学, 2022, 55(17): 3343-3354. |
[7] | 陈绪昊,高强,陈新平,张务帅. 东北三省玉米生产资源投入和环境效应的时空特征[J]. 中国农业科学, 2022, 55(16): 3170-3184. |
[8] | 毛安然,赵护兵,杨慧敏,王涛,陈秀文,梁文娟. 不同覆盖时期和覆盖方式对旱地冬小麦经济和环境效应的影响[J]. 中国农业科学, 2021, 54(3): 608-618. |
[9] | 张卫建,严圣吉,张俊,江瑜,邓艾兴. 国家粮食安全与农业双碳目标的双赢策略[J]. 中国农业科学, 2021, 54(18): 3892-3902. |
[10] | 任海英,周慧敏,戚行江,郑锡良,俞浙萍,张淑文,王震铄. 多效唑对杨梅土壤微生物及内生群落结构的影响[J]. 中国农业科学, 2021, 54(17): 3752-3765. |
[11] | 马原,迟美静,张玉玲,范庆峰,虞娜,邹洪涛. 黑土旱地改稻田土壤水稳性团聚体有机碳和全氮的变化特征[J]. 中国农业科学, 2020, 53(8): 1594-1605. |
[12] | 朱晓晴,安晶,马玲,陈松岭,李嘉琦,邹洪涛,张玉龙. 秸秆还田深度对土壤温室气体排放及玉米产量的影响[J]. 中国农业科学, 2020, 53(5): 977-989. |
[13] | 王士超,闫志浩,王瑾瑜,槐圣昌,武红亮,邢婷婷,叶洪龄,卢昌艾. 秸秆还田配施氮肥对稻田土壤活性碳氮动态变化的影响[J]. 中国农业科学, 2020, 53(4): 782-794. |
[14] | 邬磊,何志龙,汤水荣,吴限,张文菊,胡荣桂. 稻田转为菜地初始阶段温室气体排放特征[J]. 中国农业科学, 2020, 53(24): 5050-5062. |
[15] | 徐梦,徐丽君,程淑兰,方华军,卢明珠,于光夏,杨艳,耿静,曹子铖,李玉娜. 人工草地土壤有机碳组分与微生物群落对施氮补水的响应[J]. 中国农业科学, 2020, 53(13): 2678-2690. |
|