中国农业科学 ›› 2022, Vol. 55 ›› Issue (5): 948-961.doi: 10.3864/j.issn.0578-1752.2022.05.009
李晓立(),何堂庆,张晨曦,田明慧,吴梅,李潮海,杨青华,张学林()
收稿日期:
2021-01-17
接受日期:
2021-04-22
出版日期:
2022-03-01
发布日期:
2022-03-08
通讯作者:
张学林
作者简介:
李晓立,E-mail: 基金资助:
LI XiaoLi(),HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin()
Received:
2021-01-17
Accepted:
2021-04-22
Online:
2022-03-01
Published:
2022-03-08
Contact:
XueLin ZHANG
摘要:
【目的】明确大田等氮量条件下,有机肥替代化肥对玉米农田土壤温室气体(N2O和CO2)排放及其增温潜势的影响,为稳定作物产量、减少化肥投入、减少氮肥流失、提高氮肥利用效率提供理论依据。【方法】2018和2019年大田采用静态箱-气相色谱法,以不施肥(CK)为对照,比较等氮量条件下常规单施化肥(NPK)、有机肥替代30%(化学肥料180 kg N·hm-2+有机肥90 kg N·hm-2,NPKM30)、有机肥替代50%(化学肥料135 kg N·hm-2+有机肥135 kg N·hm-2,NPKM50)对夏玉米生育期土壤N2O和CO2排放的影响,并估算玉米季农田温室气体排放量、全球增温潜势(global warming potential,GWP)和农业碳足迹(carbon footprint)。【结果】等氮量条件下NPK、NPKM30和NPKM50处理间的玉米籽粒产量没有显著差异。玉米整个生育期土壤N2O排放通量呈动态变化,且3个施肥处理的N2O排放通量均高于对照。与NPK相比,NPKM30处理两年N2O累积排放量均值增加5.22%,而NPKM50处理降低7.92%。玉米生育期N2O累积排放量占土壤全氮的12.91?—18.74?。3个施肥处理间CO2排放通量的季节变化趋势基本一致,变幅为74.53—367.04 mg·m-2·h-1。施肥显著增加CO2累积排放量,与NPK相比,NPKM30和NPKM50处理两年CO2累积排放量均值分别增加0.91%和5.79%;GWP分别增加2.07%和2.10%。与NPK处理相比,NPKM30处理的温室气体排放强度(GHGI)和单位产量碳足迹降低2.46%和1.43%,而NPKM50处理增加3.37%和1.43%。【结论】部分有机肥替代化肥能够增加玉米田土壤温室气体排放量和全球增温潜势,但能够保持玉米产量稳定,同时有效降低温室气体排放强度和单位产量碳足迹,综合考虑玉米产量和生态效益,有机肥替代30%(NPKM30)是实现玉米稳产减肥减排较为理想的有机肥替代化肥比例。
李晓立,何堂庆,张晨曦,田明慧,吴梅,李潮海,杨青华,张学林. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948-961.
LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland[J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
表2
玉米生育期各项生产要素的投入量"
处理 Treatment | 氮肥 N (kg·hm-2) | 磷肥 P2O5 (kg·hm-2) | 钾肥 K2O (kg·hm-2) | 杀虫剂 Pesticide (kg·hm-2) | 除草剂Herbicide (kg·hm-2) | 灌溉量 Irrigation (m3·hm-2) | 柴油 Diesel oil (kg·hm-2) | 玉米种子 Maize seed (kg·hm-2) |
---|---|---|---|---|---|---|---|---|
CK | 0 | 0 | 0 | 0.45 | 6 | 975 | 31.5 | 22.5 |
NPK | 270 | 90 | 120 | 0.45 | 6 | 975 | 31.5 | 22.5 |
NPKM30 | 270 | 90 | 120 | 0.45 | 6 | 975 | 31.5 | 22.5 |
NPKM50 | 270 | 90 | 120 | 0.45 | 6 | 975 | 31.5 | 22.5 |
表4
不同处理之间玉米产量、土壤N2O与CO2排放量以及全球增温潜势的差异"
年份 Year | 处理Treatment | 产量 Yield (kg·hm-2) | N2O排放 通量 N2O flux (μg·m-2·h-1) | N2O累积 排放量 N2O cumulative emission (kg·hm-2) | N2O排 放强度 N2O emission intensity (kg·t-1) | N2O排 放系数 N2O emission factor (%) | N2O累积排放量占土壤全氮比重 Ratio (?) | CO2排放 通量 CO2 flux (mg·m-2·h-1) | CO2累积 排放量 CO2 cumulative emission (kg·hm-2) | 全球增温潜势 GWP (kg·hm-2) | 温室气体 排放强度 GHGI (kg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
2018 | CK | 6399.10±288.53c | 211.72±5.99c | 4.52±0.32b | 0.67±0.03a | 0 | 14.76±1.04b | 177.34±36.30c | 3674.15±335.41c | 5020.37±263.72c | 0.79±0.08a |
NPK | 8522.88±55.98ab | 253.81±1.39b | 6.23±0.22a | 0.69±0.02a | 0.59±0.15a | 20.36±0.73a | 234.81±11.55b | 4333.53±153.99b | 6189.98±106.11b | 0.73±0.02a | |
NPKM30 | 8807.15±329.88a | 275.86±18.60a | 6.25±0.49a | 0.67±0.06a | 0.59±0.14a | 20.43±1.61a | 235.20±16.59b | 4393.73±36.33b | 6256.85±150.52b | 0.71±0.03a | |
NPKM50 | 8349.92±122.83b | 247.16±14.35b | 5.89±0.30a | 0.67±0.04a | 0.48±0.21a | 19.25±0.99a | 284.30±6.32a | 4808.55±190.86a | 6564.02±233.98a | 0.79±0.04a | |
2019 | CK | 7861.60±417.66b | 168.22±5.19c | 3.38±0.17d | 0.41±0.02a | 0 | 11.05±0.54d | 192.64±3.22c | 3583.36±82.41b | 4590.76±115.45c | 0.58±0.02a |
NPK | 12166.58±1455.93a | 269.58±18.25a | 4.67±0.17b | 0.37±0.03b | 0.46±0.11b | 15.27±0.57b | 227.76±14.48b | 4486.64±266.95a | 5879.17±241.34ab | 0.49±0.05b | |
NPKM30 | 12886.34±1178.23a | 275.96±12.12a | 5.22±0.15a | 0.39±0.02ab | 0.66±0.07a | 17.06±0.50a | 237.48±2.14ab | 4506.71±70.87a | 6062.18±100.08a | 0.47±0.03b | |
NPKM50 | 12326.96±348.83a | 216.09±14.06b | 4.15±0.21c | 0.33±0.02c | 0.28±0.09c | 13.56±0.69c | 241.87±7.31a | 4522.70±61.36a | 5758.99±91.02b | 0.47±0.02b |
表5
2018年和2019年不同处理对玉米植株生物量、氮素积累量和土壤养分含量的影响"
参数 Parameter | 时期 Period | CK | NPK | NPKM30 | NPKM50 | |
---|---|---|---|---|---|---|
生物量 Biomass (g/plant) | ||||||
地上部 Aboveground | 2018 | 拔节期 Jointing stage | 12.76±1.09b | 18.99±2.44a | 18.64±0.94a | 18.52±1.51a |
2018 | 吐丝期 Silking stage | 69.38±16.75b | 106.90±4.57a | 112.78±3.67a | 119.95±1.59a | |
2018 | 成熟期 Maturity stage | 226.06±10.71b | 403.20±60.39a | 385.51±51.45a | 405.39±41.86a | |
2019 | 拔节期 Jointing stage | 9.27±2.11b | 17.37±1.39a | 16.77±2.14a | 17.07±0.38a | |
2019 | 吐丝期 Silking stage | 148.28±4.07c | 167.71±9.36b | 169.70±4.85b | 191.72±6.03a | |
2019 | 成熟期 Maturity stage | 236.94±22.11b | 387.47±23.05a | 415.29±21.05a | 393.20±7.71a | |
根 Root | 2018 | 拔节期 Jointing stage | 0.57±0.12c | 0.90±0.03ab | 0.66±0.12bc | 1.00±0.23a |
2018 | 吐丝期 Silking stage | 8.46±0.95b | 11.28±1.08a | 10.68±0.20a | 10.61±1.50a | |
2018 | 成熟期 Maturity stage | 5.84±2.00a | 6.72±2.14a | 7.79±1.70a | 8.99±1.37a | |
2019 | 拔节期 Jointing stage | 0.55±0.12c | 0.96±0.03ab | 0.80±0.15bc | 1.13±0.26a | |
2019 | 吐丝期 Silking stage | 9.37±1.13b | 10.07±1.19b | 10.81±1.12a | 12.89±1.50ab | |
2019 | 成熟期 Maturity stage | 5.50±1.84b | 9.25±1.88a | 11.89±0.70a | 12.04±1.00a | |
氮素积累量 N accumulation (mg N/plant) | ||||||
籽粒Grain | 2018 | 成熟期 Maturity stage | 1062.06±155.77b | 1796.03±47.25a | 1853.35±65.03a | 1891.79±137.66a |
2019 | 成熟期 Maturity stage | 1404.98±281.75b | 2527.99±85.31a | 2776.74±220.55a | 2868.92±625.98a | |
地上部Aboveground | 2018 | 拔节期 Jointing stage | 316.20±36.52b | 578.95±49.54a | 576.95±38.64a | 576.21±35.50a |
2018 | 吐丝期 Silking stage | 730.92±193.87b | 1622.22±108.39a | 1877.26±133.01a | 1737.69±24.44a | |
2018 | 成熟期 Maturity stage | 1855.88±381.54b | 4545.08±276.53a | 4637.18±52.01a | 4641.32±432.87a | |
2019 | 拔节期 Jointing stage | 283.00±72.24b | 716.77±36.09a | 711.64±68.94a | 694.13±10.83a | |
2019 | 吐丝期 Silking stage | 1879.96±503.84c | 2920.41±142.82b | 3305.00±247.48ab | 3741.69±67.14a | |
2019 | 成熟期 Maturity stage | 2039.42±328.46b | 4836.64±178.49a | 4948.44±23.72a | 5043.64±374.47a | |
非根际土壤 Non-rhizosphere soil (mg·kg-1) | ||||||
铵态氮 NH4+-N (mg·kg-1) | 2019 | 拔节期 Jointing stage | 6.75±0.74a | 7.26±0.39a | 6.80±0.57a | 6.99±0.80a |
2019 | 吐丝期 Silking stage | 6.98±0.18d | 57.78±2.59a | 32.35±5.43b | 10.16±3.78c | |
2019 | 成熟期 Maturity stage | 3.34±0.03a | 4.05±0.57a | 3.24±0.83a | 3.27±0.41a | |
硝态氮 NO3--N (mg·kg-1) | 2019 | 拔节期 Jointing stage | 5.89±0.28c | 18.45±2.18b | 26.11±4.96a | 27.82±2.44a |
2019 | 吐丝期 Silking stage | 6.75±1.16d | 166.70±8.39a | 138.92±6.86b | 72.11±5.85c | |
2019 | 成熟期 Maturity stage | 7.81±0.04b | 24.82±0.56a | 25.98±0.03a | 25.35±2.15a | |
无机氮 INN (mg·kg-1) | 2019 | 拔节期 Jointing stage | 12.64±0.94c | 25.71±2.00b | 32.92±5.99a | 35.21±2.04a |
2019 | 吐丝期 Silking stage | 13.73±1.08d | 224.49±6.01a | 171.27±6.58b | 82.27±6.15c | |
2019 | 成熟期 Maturity stage | 11.15±0.06b | 29.15±0.27a | 28.75±0.13a | 28.62±2.51a | |
根际土壤 Rhizosphere soil (mg·kg-1) | ||||||
铵态氮 NH4+-N (mg·kg-1) | 2019 | 拔节期 Jointing stage | 5.87±0.52a | 9.55±5.34a | 5.45±0.27a | 7.16±2.17a |
2019 | 吐丝期 Silking stage | 4.98±0.15a | 7.11±2.12a | 5.79±0.12a | 5.63±0.35a | |
2019 | 成熟期 Maturity stage | 3.08±0.31ab | 5.20±0.77a | 4.19±2.40ab | 2.62±0.18b | |
硝态氮NO3--N (mg·kg-1) | 2019 | 拔节期 Jointing stage | 6.13±1.68b | 12.08±4.19a | 8.40±0.13ab | 10.36±1.14ab |
2019 | 吐丝期 Silking stage | 7.21±0.73c | 17.73±0.09a | 7.98±1.00c | 12.81±3.49b | |
2019 | 成熟期 Maturity stage | 5.12±0.86b | 6.56±0.32b | 8.54±1.25a | 6.35±1.09b | |
无机氮INN (mg·kg-1) | 2019 | 拔节期 Jointing stage | 12.00±2.16b | 21.62±6.84a | 13.84±0.37b | 17.52±1.06 |
2019 | 吐丝期 Silking stage | 12.19±0.83c | 24.84±2.16a | 13.77±0.89c | 18.44±3.70b | |
2019 | 成熟期 Maturity stage | 8.20±0.56c | 11.76±0.64ab | 12.73±3.25a | 8.97±1.00bc |
表6
生产过程中各项投入的碳排放和单位产量碳足迹"
处理Treatment | 化肥Fertilizer | 杀虫剂 Pesticide (kg·hm-2) | 除草剂 Herbicide (kg·hm-2) | 灌溉电力 Electricity (kg·hm-2) | 柴油 Diesel oil (kg·hm-2) | 玉米种子 Mazie seed (kg·hm-2) | 直接排放 Direct emissions (kg·hm-2) | 总碳排放 Total emission (kg·hm-2) | 单位产量碳排放量 Carbon emissions of unit yield (kg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
CK | 0 | 7.47 | 60.9 | 360 | 97.65 | 43.43 | 4805.57 | 5375.02 | 0.75 |
NPK | 637.8 | 7.47 | 60.9 | 360 | 97.65 | 43.43 | 6034.57 | 7241.82 | 0.70 |
NPKM30 | 637.8 | 7.47 | 60.9 | 360 | 97.65 | 43.43 | 6159.51 | 7366.76 | 0.69 |
NPKM50 | 637.8 | 7.47 | 60.9 | 360 | 97.65 | 43.43 | 6161.51 | 7368.76 | 0.71 |
[1] | IPCC. Climate Change 2007: Mitigation//Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007. |
[2] |
肖杰, 刘平静, 孙本华, 高明霞, 张树兰, 杨学云, 冯浩. 长期施用化肥对旱作雨养农田N2O排放特征的影响. 西北农林科技大学学报(自然科学版), 2020, 48(5):108-114, 122. doi: 10.13207/j.cnki.jnwafu.2020.05.013.
doi: 10.13207/j.cnki.jnwafu.2020.05.013 |
XIAO J, LIU P J, SUN B H, GAO M X, ZHANG S L, YANG X Y, FENG H. Effects of long-term chemical fertilization on N2O emission from rain-fed dry farmland. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(5):108-114, 122. doi: 10.13207/j.cnki.jnwafu.2020.05.013. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2020.05.013 |
|
[3] |
WEST T O, MARLAND G. Net carbon flux from agricultural ecosystems: Methodology for full carbon cycle analyses. Environmental Pollution, 2002, 116(3):439-444. doi: 10.1016/S0269-7491(01)00221-4.
doi: 10.1016/S0269-7491(01)00221-4 |
[4] |
MORSE J L, BERNHARDT E S. Using 15N tracers to estimate N2O and N2 emissions from nitrification and denitrification in coastal plain wetlands under contrasting land-uses. Soil Biology and Biochemistry, 2013, 57:635-643. doi: 10.1016/j.soilbio.2012.07.025.
doi: 10.1016/j.soilbio.2012.07.025 |
[5] | 李书田, 金继运. 中国不同区域农田养分输入、输出与平衡. 中国农业科学, 2011, 44(20):4207-4229. |
LI S T, JIN J Y. Characteristics of nutrient input/output and nutrient balance in different regions of China. Scientia Agricultura Sinica, 2011, 44(20):4207-4229. (in Chinese) | |
[6] | 苏曼. 主要粮食作物生产中N2O排放强度研究[D]. 北京: 中国农业科学院, 2013. |
SU M. Research on greenhouse gas(N2O)emission intensity of main grain crops[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese) | |
[7] |
LIU H T, LI J, LI X, ZHENG Y H, FENG S F, JIANG G M. Mitigating greenhouse gas emissions through replacement of chemical fertilizer with organic manure in a temperate farmland. Science Bulletin, 2015, 60(6):598-606. doi: 10.1007/s11434-014-0679-6.
doi: 10.1007/s11434-014-0679-6 |
[8] |
李虎, 邱建军, 王立刚, 任天志. 中国农田主要温室气体排放特征与控制技术. 生态环境学报, 2012, 21(1):159-165. doi: 10.16258/j.cnki.1674-5906.2012.01.025.
doi: 10.16258/j.cnki.1674-5906.2012.01.025 |
LI H, QIU J J, WANG L G, REN T Z. The characterization of greenhouse gases fluxes from croplands of China and mitigation technologies. Ecology and Environmental Sciences, 2012, 21(1):159-165. doi: 10.16258/j.cnki.1674-5906.2012.01.025. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2012.01.025 |
|
[9] |
张玉铭, 胡春胜, 张佳宝, 董文旭, 王玉英, 宋利娜. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展. 中国生态农业学报, 2011, 19(4):966-975. doi: 10.3724/SP.J.1011.2011.00966.
doi: 10.3724/SP.J.1011.2011.00966 |
ZHANG Y M, HU C S, ZHANG J B, DONG W X, WANG Y Y, SONG L N. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chinese Journal of Eco-Agriculture, 2011, 19(4):966-975. doi: 10.3724/SP.J.1011.2011.00966. (in Chinese)
doi: 10.3724/SP.J.1011.2011.00966 |
|
[10] |
VAN GROENIGEN J W, VELTHOF G L, OENEMA O, VAN GROENIGEN K J, VAN KESSEL C. Towards an agronomic assessment of N2O emissions: A case study for arable crops. European Journal of Soil Science, 2010, 61(6):903-913. doi: 10.1111/j.1365-2389.2009.01217.x.
doi: 10.1111/j.1365-2389.2009.01217.x |
[11] |
朱永官, 王晓辉, 杨小茹, 徐会娟, 贾炎. 农田土壤N2O产生的关键微生物过程及减排措施. 环境科学, 2014, 35(2):792-800. doi: 10.13227/j.hjkx.2014.02.008.
doi: 10.13227/j.hjkx.2014.02.008 |
ZHU Y G, WANG X H, YANG X R, XU H J, JIA Y. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies. Environmental Science, 2014, 35(2):792-800. doi: 10.13227/j.hjkx.2014.02.008 (in Chinese)
doi: 10.13227/j.hjkx.2014.02.008 |
|
[12] |
DOBBIE K E, SMITH K A. The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. European Journal of Soil Science, 2001, 52(4):667-673. doi: 10.1046/j.1365-2389.2001.00395.x.
doi: 10.1046/j.1365-2389.2001.00395.x |
[13] |
曹文超, 宋贺, 王娅静, 覃伟, 郭景恒, 陈清, 王敬国. 农田土壤N2O排放的关键过程及影响因素. 植物营养与肥料学报, 2019, 25(10):1781-1798. doi: 10.11674/zwyf.18441.
doi: 10.11674/zwyf.18441 |
CAO W C, SONG H, WANG Y J, QIN W, GUO J H, CHEN Q, WANG J G. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. Plant Nutrition and Fertilizer Science, 2019, 25(10):1781-1798. doi: 10.11674/zwyf.18441. (in Chinese)
doi: 10.11674/zwyf.18441 |
|
[14] |
李燕青, 唐继伟, 车升国, 温延臣, 孙文彦, 赵秉强. 长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响. 中国农业科学, 2015, 48(21):4381-4389. doi: 10.3864/j.issn.0578-1752.2015.21.018.
doi: 10.3864/j.issn.0578-1752.2015.21.018 |
LI Y Q, TANG J W, CHE S G, WEN Y C, SUN W Y, ZHAO B Q. Effect of organic and inorganic fertilizer on the emission of CO2 and N2O from the summer maize field in the North China plain. Scientia Agricultura Sinica, 2015, 48(21):4381-4389. doi: 10.3864/j.issn.0578-1752.2015.21.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.21.018 |
|
[15] | 翟振, 王立刚, 李虎, 邱建军, 杨军, 董小雨. 有机无机肥料配施对春玉米农田N2O排放及净温室效应的影响. 农业环境科学学报, 2013, 32(12):2502-2510. |
ZHAI Z, WANG L G, LI H, QIU J J, YANG J, DONG X Y. Nitrous oxide emissions and net greenhouse effect from spring-maize field as influenced by combined application of manure and inorganic fertilizer. Journal of Agro-Environment Science, 2013, 32(12):2502-2510. (in Chinese) | |
[16] |
毕智超, 张浩轩, 房歌, 郭澍, 熊正琴. 不同配比有机无机肥料对菜地N2O排放的影响. 植物营养与肥料学报, 2017, 23(1):154-161. doi: 10.11674/zwyf.16119.
doi: 10.11674/zwyf.16119 |
BI Z C, ZHANG H X, FANG G, GUO S, XIONG Z Q. Effects of combined organic and inorganic fertilizers on N2O emissions in intensified vegetable field. Plant Nutrition and Fertilizer Science, 2017, 23(1):154-161. doi: 10.11674/zwyf.16119. (in Chinese)
doi: 10.11674/zwyf.16119 |
|
[17] |
陈雪双, 刘娟, 姜培坤, 周国模, 李永夫, 吴家森. 施肥对山核桃林地土壤N2O排放的影响. 植物营养与肥料学报, 2014, 20(5):1262-1270. doi: 10.11674/zwyf.2014.0523.
doi: 10.11674/zwyf.2014.0523 |
CHEN X S, LIU J, JIANG P K, ZHOU G M, LI Y F, WU J S. Effects of fertilization on soil N2O flux in Chinese Carya cathayensis stands. Plant Nutrition and Fertilizer Science, 2014, 20(5):1262-1270. doi: 10.11674/zwyf.2014.0523. (in Chinese)
doi: 10.11674/zwyf.2014.0523 |
|
[18] |
JIA J X, LI B, CHEN Z Z, XIE Z B, XIONG Z Q. Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Science and Plant Nutrition, 2012, 58(4):503-509. doi: 10.1080/00380768.2012.686436.
doi: 10.1080/00380768.2012.686436 |
[19] |
臧逸飞, 郝明德, 张丽琼, 张昊青. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响. 生态学报, 2015, 35(5):1445-1451. doi: 10.5846/stxb201305070967.
doi: 10.5846/stxb201305070967 |
ZANG Y F, HAO M D, ZHANG L Q, ZHANG H Q. Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years. Acta Ecologica Sinica, 2015, 35(5):1445-1451. doi: 10.5846/stxb201305070967. (in Chinese)
doi: 10.5846/stxb201305070967 |
|
[20] |
王晓娇, 张仁陟, 齐鹏, 焦亚鹏, 蔡立群, 武均, 谢军红. Meta分析有机肥施用对中国北方农田土壤CO2排放的影响. 农业工程学报, 2019, 35(10):99-107. doi: 10.11975/j.issn.1002-6819.2019.10.013.
doi: 10.11975/j.issn.1002-6819.2019.10.013 |
WANG X J, ZHANG R Z, QI P, JIAO Y P, CAI L Q, WU J, XIE J H. Meta-analysis on farmland soil CO2 emission in Northern China affected by organic fertilizer. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10):99-107. doi: 10.11975/j.issn.1002-6819.2019.10.013. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2019.10.013 |
|
[21] | IPCC. Climate Change 2013: The physical science basis//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. |
[22] |
吕艳杰, 于海燕, 姚凡云, 曹玉军, 魏雯雯, 王立春, 王永军. 秸秆还田与施氮对黑土区春玉米田产量、温室气体排放及土壤酶活性的影响. 中国生态农业学报, 2016, 24(11):1456-1463. doi: 10.13930/j.cnki.cjea.160405.
doi: 10.13930/j.cnki.cjea.160405 |
LÜ Y J, YU H Y, YAO F Y, CAO Y J, WEI W W, WANG L C, WANG Y J. Effects of soil straw return and nitrogen on spring maize yield, greenhouse gas emission and soil enzyme activity in black soils. Chinese Journal of Eco-Agriculture, 2016, 24(11):1456-1463. doi: 10.13930/j.cnki.cjea.160405. (in Chinese)
doi: 10.13930/j.cnki.cjea.160405 |
|
[23] |
李春喜, 骆婷婷, 闫广轩, 许双, 宗洁静, 邵云. 河南省不同生态区小麦-玉米两熟制农田碳足迹分析. 生态环境学报, 2020, 29(5):918-925. doi: 10.16258/j.cnki.1674-5906.2020.05.007.
doi: 10.16258/j.cnki.1674-5906.2020.05.007 |
LI C X, LUO T T, YAN G X, XU S, ZONG J J, SHAO Y. Carbon footprint analysis of wheat-maize double cropping system in different ecological regions of Henan Province. Ecology and Environmental Sciences, 2020, 29(5):918-925. doi: 10.16258/j.cnki.1674-5906.2020.05.007. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2020.05.007 |
|
[24] |
王钰乔, 濮超, 赵鑫, 王兴, 刘胜利, 张海林. 中国小麦、玉米碳足迹历史动态及未来趋势. 资源科学, 2018, 40(9):1800-1811. doi: 10.18402/resci.2018.09.10.
doi: 10.18402/resci.2018.09.10 |
WANG Y Q, PU C, ZHAO X, WANG X, LIU S L, ZHANG H L. Historical dynamics and future trends of carbon footprint of wheat and maize in China. Resources Science, 2018, 40(9):1800-1811. doi: 10.18402/resci.2018.09.10. (in Chinese)
doi: 10.18402/resci.2018.09.10 |
|
[25] |
朱永昶, 李玉娥, 姜德锋, 邹晓霞. 基于生命周期评估的冬小麦-夏玉米种植系统碳足迹核算: 以山东省高密地区为例. 农业资源与环境学报, 2017, 34(5):473-482. doi: 10.13254/j.jare.2017.0180.
doi: 10.13254/j.jare.2017.0180 |
ZHU Y C, LI Y E, JIANG D F, ZOU X X. Life cycle assessment on carbon footprint of winter wheat-summer maize cropping system based on survey data of Gaomi in Shandong Province, China. Journal of Agricultural Resources and Environment, 2017, 34(5):473-482. doi: 10.13254/j.jare.2017.0180. (in Chinese)
doi: 10.13254/j.jare.2017.0180 |
|
[26] |
HE L Y, ZHANG A, WANG X D, LI J, HUSSAIN Q. Effects of different tillage practices on the carbon footprint of wheat and maize production in the Loess Plateau of China. Journal of Cleaner Production, 2019, 234:297-305. doi: 10.1016/j.jclepro.2019.06.161.
doi: 10.1016/j.jclepro.2019.06.161 |
[27] |
ZHANG Y J, LIN F, JIN Y G, WANG X F, LIU S W, ZOU J W. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China. Scientific Reports, 2016, 6:20700. doi: 10.1038/srep20700.
doi: 10.1038/srep20700 |
[28] |
王立刚, 李虎, 邱建军. 黄淮海平原典型农田土壤N2O的排放特征. 中国农业科学, 2008, 41(4):1248-1254. doi: 10.3864/j.issn.0578-1752.2008.04.040.
doi: 10.3864/j.issn.0578-1752.2008.04.040 |
WANG L G, LI H, QIU J J. Characterization of emissions of nitrous oxide from soils of typical crop fields in Huang-Huai-Hai plain. Scientia Agricultura Sinica, 2008, 41(4):1248-1254. doi: 10.3864/j.issn.0578-1752.2008.04.040. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2008.04.040 |
|
[29] |
RICHARDSON D, FELGATE H, WATMOUGH N, THOMSON A, BAGGS E. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle-could enzymic regulation hold the key? Trends in Biotechnology, 2009, 27(7):388-397. doi: 10.1016/j.tibtech.2009.03.009.
doi: 10.1016/j.tibtech.2009.03.009 |
[30] | 徐玉秀. 中国主要作物农田N2O和CH4排放系数及影响因子分析[D]. 沈阳: 沈阳农业大学, 2016. |
XU Y X. Analyses on emission factors and effect factors of N2O and CH4 from main cropland soils in China[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese) | |
[31] |
孙赫阳, 万忠梅, 刘德燕, 廖霞, 丁维新. 有机肥与无机肥配施对潮土N2O排放的影响. 环境科学, 2020, 41(3):1474-1481. doi: 10.13227/j.hjkx.201908008.
doi: 10.13227/j.hjkx.201908008 |
SUN H Y, WAN Z M, LIU D Y, LIAO X, DING W X. Effect of organic fertilizer and inorganic fertilizer application on N2O emissions from fluvo-aquic soil in the North China plain. Environmental Science, 2020, 41(3):1474-1481. doi: 10.13227/j.hjkx.201908008. (in Chinese)
doi: 10.13227/j.hjkx.201908008 |
|
[32] |
JASSAL R S, BLACK T A, ROY R, ETHIER G. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and Bole respiration. Geoderma, 2011, 162(1/2):182-186. doi: 10.1016/j.geoderma.2011.02.002.
doi: 10.1016/j.geoderma.2011.02.002 |
[33] |
AZAM F, MÜLLER C, WEISKE A, BENCKISER G, OTTOW J. Nitrification and denitrification as sources of atmospheric nitrous oxide-role of oxidizable carbon and applied nitrogen. Biology and Fertility of Soils, 2002, 35(1):54-61. doi: 10.1007/s00374-001-0441-5.
doi: 10.1007/s00374-001-0441-5 |
[34] |
BURNEY J A, DAVIS S J, LOBELL D B. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26):12052-12057. doi: 10.1073/pnas.0914216107.
doi: 10.1073/pnas.0914216107 |
[35] |
刘运通, 万运帆, 林而达, 李玉娥, 陈德立, 秦晓波, 高清竹, 金琳, 武艳娟. 施肥与灌溉对春玉米土壤N2O排放通量的影响. 农业环境科学学报, 2008, 27(3):997-1002. doi: 10.3321/j.issn:1672-2043.2008.03.029.
doi: 10.3321/j.issn:1672-2043.2008.03.029 |
LIU Y T, WAN Y F, LIN E D, LI Y E, CHEN D L, QIN X B, GAO Q Z, JIN L, WU Y J. N2O flux variations from spring maize soil under fertilization and irrigation. Journal of Agro-Environment Science, 2008, 27(3):997-1002. doi: 10.3321/j.issn:1672-2043.2008.03.029. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2008.03.029 |
|
[36] |
SCALA N L Jr, MARQUES J Jr, PEREIRA G T, CORÁ J E. Carbon dioxide emission related to chemical properties of a tropical bare soil. Soil Biology and Biochemistry, 2000, 32(10):1469-1473. doi: 10.1016/S0038-0717(00)00053-5.
doi: 10.1016/S0038-0717(00)00053-5 |
[37] |
董玉红, 欧阳竹, 李鹏, 张磊. 长期定位施肥对农田土壤温室气体排放的影响. 土壤通报, 2007, 38(1):97-100. doi: 10.19336/j.cnki.trtb.2007.01.023
doi: 10.19336/j.cnki.trtb.2007.01.023 |
DONG Y H, OUYANG Z, LI P, ZHANG L. Influence of long-term frtilization on greenhouse gas fuxes fom agricultural soil. Chinese Journal of Soil Science, 2007, 38(1):97-100. doi: 10.19336/j.cnki.trtb.2007.01.023. (in Chinese)
doi: 10.19336/j.cnki.trtb.2007.01.023 |
|
[38] |
杨书运, 严平, 马友华, 戴佳伟, 韩辉邦, 汪大林, 方海义. 施肥对冬小麦土壤温室气体排放的影响. 生态环境学报, 2010, 19(7):1642-1645. doi: 10.16258/j.cnki.1674-5906.2010.07.007.
doi: 10.16258/j.cnki.1674-5906.2010.07.007 |
YANG S Y, YAN P, MA Y H, DAI J W, HAN H B, WANG D L, FANG H Y. Effects on emissions of aoil greenhouse gas by fertilizing to winter wheat. Ecology and Environmental Sciences, 2010, 19(7):1642-1645. doi: 10.16258/j.cnki.1674-5906.2010.07.007. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2010.07.007 |
|
[39] | 张景源. 长期不同施肥措施下红壤旱地土壤微生物的生物量和多样性[D]. 武汉: 华中农业大学, 2008. |
ZHANG J Y. Soil microbial biomass and diversity under long-term different fertilization utilizations[D]. Wuhan: Huazhong Agricultural University, 2008. (in Chinese) | |
[40] |
乔云发, 苗淑杰, 王树起, 韩晓增, 李海波. 不同施肥处理对黑土土壤呼吸的影响. 土壤学报, 2007, 44(6):1028-1035. doi: 10.3321/j.issn:0564-3929.2007.06.010.
doi: 10.3321/j.issn:0564-3929.2007.06.010 |
QIAO Y F, MIAO S J, WANG S Q, HAN X Z, LI H B. Soil respiration affected by fertilization in black soil. Acta Pedologica Sinica, 2007, 44(6):1028-1035. doi: 10.3321/j.issn:0564-3929.2007.06.010. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2007.06.010 |
|
[41] |
汤桂容, 周旋, 田昌, 彭辉辉, 张玉平, 荣湘民. 有机无机氮肥配施对莴苣土壤N2O排放的影响. 土壤, 2019, 51(4):641-647. doi: 10.13758/j.cnki.tr.2019.04.003.
doi: 10.13758/j.cnki.tr.2019.04.003 |
TANG G R, ZHOU X, TIAN C, PENG H H, ZHANG Y P, RONG X M. Effects of combined application of organic and inorganic nitrogen fertilizers on soil nitrous oxide emission from lettuce (Lactuca sativa L.) fields. Soils, 2019, 51(4):641-647. doi: 10.13758/j.cnki.tr.2019.04.003. (in Chinese)
doi: 10.13758/j.cnki.tr.2019.04.003 |
|
[42] |
IQBAL J, HU R G, LIN S, HATANO R, FENG M L, LU L, AHAMADOU B, DU L J. CO2 emission in a subtropical red paddy soil (Ultisol) as affected by straw and N-fertilizer applications: A case study in Southern China. Agriculture, Ecosystems & Environment, 2009, 131(3/4):292-302. doi: 10.1016/j.agee.2009.02.001.
doi: 10.1016/j.agee.2009.02.001 |
[43] |
GINTING D, KESSAVALOU A, EGHBALL B, DORAN J W. Greenhouse gas emissions and soil indicators four years after manure and compost applications. Journal of Environmental Quality, 2003, 32(1):23-32. doi: 10.2134/jeq2003.2300.
doi: 10.2134/jeq2003.2300 |
[44] |
DING W X, MENG L, YIN Y F, CAI Z C, ZHENG X H. CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer. Soil Biology and Biochemistry, 2007, 39(2):669-679. doi: 10.1016/j.soilbio.2006.09.024.
doi: 10.1016/j.soilbio.2006.09.024 |
[45] |
温延臣, 张曰东, 袁亮, 李伟, 李燕青, 林治安, 赵秉强. 商品有机肥替代化肥对作物产量和土壤肥力的影响. 中国农业科学, 2018, 51(11):2136-2142. doi: 10.3864/j.issn.0578-1752.2018.11.011.
doi: 10.3864/j.issn.0578-1752.2018.11.011 |
WEN Y C, ZHANG Y D, YUAN L, LI W, LI Y Q, LIN Z A, ZHAO B Q. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer. Scientia Agricultura Sinica, 2018, 51(11):2136-2142. doi: 10.3864/j.issn.0578-1752.2018.11.011. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.11.011 |
|
[46] |
谢军, 赵亚南, 陈轩敬, 李丹萍, 徐春丽, 王珂, 张跃强, 石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016, 49(20):3934-3943. doi: 10.3864/j.issn.0578-1752.2016.20.008.
doi: 10.3864/j.issn.0578-1752.2016.20.008 |
XIE J, ZHAO Y N, CHEN X J, LI D P, XU C L, WANG K, ZHANG Y Q, SHI X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency. Scientia Agricultura Sinica, 2016, 49(20):3934-3943. doi: 10.3864/j.issn.0578-1752.2016.20.008 (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.20.008 |
|
[47] |
向秀媛, 刘强, 荣湘民, 谢桂先, 彭建伟, 黄伟明. 有机肥和无机肥配施对双季稻产量及氮肥利用率的影响. 湖南农业大学学报(自然科学版), 2014, 40(1):72-77. doi: 10.13331/j.cnki.jhau.2014.01.016.
doi: 10.13331/j.cnki.jhau.2014.01.016 |
XIANG X Y, LIU Q, RONG X M, XIE G X, PENG J W, HUANG W M. Effects of different combined application of organic manures and inorganic fertilizer on yield and N use efficiency of double-rice. Journal of Hunan Agricultural University (Natural Sciences), 2014, 40(1):72-77. doi: 10.13331/j.cnki.jhau.2014.01.016. (in Chinese)
doi: 10.13331/j.cnki.jhau.2014.01.016 |
|
[48] | 李孝良, 胡立涛, 王泓, 张云晴, 吴长昊, 汪建飞. 化肥减量配施有机肥对皖北夏玉米养分吸收及氮素利用效率的影响. 南京农业大学学报, 2019, 42(1):118-123. |
LI X L, HU L T, WANG H, ZHANG Y Q, WU C H, WANG J F. Effects of combination of chemical fertilizer reduction with organic manure on nutrient uptake and nitrogen utilization efficiency of summer maize in Northern Anhui Province. Journal of Nanjing Agricultural University, 2019, 42(1):118-123. (in Chinese) | |
[49] |
LASHOF D A, AHUJA D R. Relative contributions of greenhouse gas emissions to global warming. Nature, 1990, 344(6266):529-531. doi: 10.1038/344529a0.
doi: 10.1038/344529a0 |
[50] | 刘晓雨. 施用有机物料对农田固碳减排及生产力的影响:田间试验及整合研究[D]. 南京: 南京农业大学, 2013. |
LIU X Y. Effects of soil organic amendment on productivity and greenhouse gas mitigation of croplands: Field studies and synthetic analysis[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese) |
[1] | 陈晓炜, 王小龙. 种养循环农作制度碳足迹评估—以鲜食玉米-奶牛-粪便还田循环模式为例[J]. 中国农业科学, 2023, 56(2): 314-332. |
[2] | 张学林, 吴梅, 何堂庆, 张晨曦, 田明慧, 李晓立, 侯小畔, 郝晓峰, 杨青华, 李潮海. 秸秆分解对两种类型土壤无机氮和氧化亚氮排放的影响[J]. 中国农业科学, 2022, 55(4): 729-742. |
[3] | 陈绪昊,高强,陈新平,张务帅. 东北三省玉米生产资源投入和环境效应的时空特征[J]. 中国农业科学, 2022, 55(16): 3170-3184. |
[4] | 毛安然,赵护兵,杨慧敏,王涛,陈秀文,梁文娟. 不同覆盖时期和覆盖方式对旱地冬小麦经济和环境效应的影响[J]. 中国农业科学, 2021, 54(3): 608-618. |
[5] | 张卫建,严圣吉,张俊,江瑜,邓艾兴. 国家粮食安全与农业双碳目标的双赢策略[J]. 中国农业科学, 2021, 54(18): 3892-3902. |
[6] | 朱晓晴,安晶,马玲,陈松岭,李嘉琦,邹洪涛,张玉龙. 秸秆还田深度对土壤温室气体排放及玉米产量的影响[J]. 中国农业科学, 2020, 53(5): 977-989. |
[7] | 袁武,靳振江,程跃扬,贾远航,梁锦桃,邱江梅,潘复静,刘德深. 岩溶湿地和稻田的土壤酶活性与CO2和CH4排放特征[J]. 中国农业科学, 2020, 53(14): 2897-2906. |
[8] | 刘巧,吉艳芝,郭艳杰,张丽娟,张杰,韩建. 水氮调控对葡萄园土壤温室气体排放及其增温潜势的影响[J]. 中国农业科学, 2019, 52(8): 1413-1424. |
[9] | 刘松, 王效琴, 胡继平, 李强, 崔利利, 段雪琴, 郭亮. 施肥与灌溉对甘肃省苜蓿碳足迹的影响[J]. 中国农业科学, 2018, 51(3): 556-565. |
[10] | 黄容,高明,黎嘉成,徐国鑫,王富华,李娇,陈仕奇. 有机物料等氮量施用对紫色土氮形态及温室气体排放的影响[J]. 中国农业科学, 2018, 51(21): 4087-4101. |
[11] | 徐驰, 谢海宽, 丁武汉, 戴震, 张婧, 王立刚, 李虎. 油菜-水稻复种系统一次性施肥对CH4和N2O净排放的影响[J]. 中国农业科学, 2018, 51(20): 3972-3984. |
[12] | 王从,李舒清,刘树伟,邹建文. 大气CO2浓度和温度升高对稻麦轮作生态系统N2O排放的影响[J]. 中国农业科学, 2018, 51(13): 2535-2550. |
[13] | 张子扬,沈泰钰,于洪江,高三思,朱奎玲,黄宝银,徐 闯,杨 威. 亚临床型低血钙症奶牛生产性能及粪污排放特性[J]. 中国农业科学, 2016, 49(21): 4222-4230. |
[14] | 谢军,赵亚南,陈轩敬,李丹萍,徐春丽,王珂,张跃强,石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率[J]. 中国农业科学, 2016, 49(20): 3934-3943. |
[15] | 李健陵,李玉娥,周守华,苏荣瑞,万运帆,王 斌,蔡威威,郭 晨,秦晓波,高清竹,刘 硕. 节水灌溉、树脂包膜尿素和脲酶/硝化抑制剂对双季稻温室气体减排的协同作用[J]. 中国农业科学, 2016, 49(20): 3958-3967. |
|