中国农业科学 ›› 2022, Vol. 55 ›› Issue (4): 729-742.doi: 10.3864/j.issn.0578-1752.2022.04.009
张学林(),吴梅,何堂庆,张晨曦,田明慧,李晓立,侯小畔,郝晓峰,杨青华,李潮海
收稿日期:
2021-01-11
接受日期:
2021-03-11
出版日期:
2022-02-16
发布日期:
2022-02-23
作者简介:
张学林,Tel:13643867669;E-mail: 基金资助:
ZHANG XueLin(),WU Mei,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,HOU XiaoPan,HAO XiaoFeng,YANG QingHua,LI ChaoHai
Received:
2021-01-11
Accepted:
2021-03-11
Online:
2022-02-16
Published:
2022-02-23
摘要:
【目的】明确作物秸秆分解对土壤无机氮和氧化亚氮(N2O)排放的影响,为不同土壤类型采用合理的氮肥用量,促进秸秆分解、增加土壤可利用养分、减少N2O等温室气体排放提供理论依据。【方法】室内采用尼龙网袋法,设置秸秆类型(小麦和玉米)、土壤类型(潮土和砂姜黑土)和氮肥用量(N0:0,N1:180 kg N·hm-2,N2:360 kg N·hm-2)三因素培养试验,并设置无秸秆无氮肥为对照(CK),测定了土壤无机氮含量、N2O和CO2排放通量以及土壤酶活性等参数。【结果】与CK相比,添加作物秸秆的N0处理土壤无机氮含量显著降低,每添加1 g小麦或玉米秸秆平均减少0.8 mg或0.4 mg土壤无机氮。与潮土相比,不同氮肥用量条件下砂姜黑土添加小麦秸秆后土壤无机氮含量降低16%,而添加玉米秸秆后增加41%。与添加小麦秸秆相比,潮土和砂姜黑土添加玉米秸秆后无机氮含量分别增加111%和252%。两种土壤添加小麦或玉米秸秆均促进N2O和CO2排放。与CK相比,添加小麦秸秆和玉米秸秆的N0处理土壤N2O排放累积量分别增加70%和47%;CO2排放累积量增加346%和154%;全球变暖潜力增加53%和71%。与潮土相比,砂姜黑土添加小麦秸秆和玉米秸秆后N2O排放通量降低38%和61%,N2O排放累积量降低12%和51%,CO2排放累积量降低28%和16%。与潮土相比,砂姜黑土添加小麦秸秆的全球变暖潜力增加13%,而添加玉米秸秆却降低44%。与添加小麦秸秆相比,潮土和砂姜黑土添加玉米秸秆后N2O排放累积量分别增加88%和6%;CO2排放累积量降低21%和6%。不同氮肥用量和土壤类型条件下添加玉米秸秆的全球变暖潜力比小麦秸秆高91%。与N0和N2处理相比,砂姜黑土添加小麦秸秆或玉米秸秆的同时配施适量氮肥(N1)降低N2O排放量以及全球变暖潜力。与CK相比,两种土壤类型添加小麦或玉米秸秆后土壤蔗糖酶活性增加,而过氧化氢酶和氧气含量降低。与添加小麦秸秆相比,两种土壤添加玉米秸秆后脲酶、蔗糖酶、过氧化氢酶活性降低。与潮土相比,砂姜黑土添加作物秸秆后脲酶、过氧化氢酶活性降低,氧气含量增加;而过氧化氢酶活性和氧气含量均与N2O排放通量呈显著负相关。【结论】小麦和玉米秸秆分解均降低土壤无机氮含量、促进温室气体排放。玉米秸秆分解过程中土壤无机氮含量和N2O排放量均高于小麦秸秆;潮土添加小麦或玉米秸秆的N2O排放量高于砂姜黑土;砂姜黑土添加小麦或玉米秸秆并配施适量氮肥不会增加土壤N2O排放和全球变暖潜力。生产上秸秆还田应综合考虑秸秆类型、土壤类型和氮肥用量。
张学林, 吴梅, 何堂庆, 张晨曦, 田明慧, 李晓立, 侯小畔, 郝晓峰, 杨青华, 李潮海. 秸秆分解对两种类型土壤无机氮和氧化亚氮排放的影响[J]. 中国农业科学, 2022, 55(4): 729-742.
ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil[J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
表1
两种土壤类型或秸秆类型之间基本参数的比较"
项目 Item | 土壤类型Soil type | 秸秆类型 Residue type | ||
---|---|---|---|---|
潮土AS | 砂姜黑土LS | 小麦Wheat | 玉米Maize | |
全碳TC (%) | 7.3 ± 0.43 | 8.17 ± 0.96 | 448.13 ± 90.23 | 598.39 ± 39.48* |
全氮TN (%) | 3.18 ± 0.72 | 2.79 ± 0.18 | 6.19 ± 1.79 | 12.07 ± 0.29** |
全磷TP (%) | 3.88 ± 0.20 | 4.46 ± 0.81 | - | - |
C:N | 2.45 ± 0.34 | 2.99 ± 0.54 | 74.66 ± 11.62* | 49.60 ± 3.35 |
速效氮Available N (g·kg-1) | 0.08 ± 0.009 | 0.1 ± 0.003 | - | - |
速效磷Available P (g·kg-1) | 0.01 ± 0.001 | 0.02 ± 0.001 | 0.38 ± 0.06 | 0.34 ± 0.03 |
可溶性糖Soluble sugar (%) | - | - | 3.34 ± 2.24 | 8.09 ± 0.23* |
pH | 7.78 ± 0.006* | 6.81 ± 0.21 | - | - |
砂粒Sand (%) | 5.65 ± 0.42 | 39.09 ± 4.6** | - | - |
粉粒Silt (%) | 56.38 ± 3.96** | 21.35 ± 1.17 | - | - |
黏粒Clay (%) | 37.93 ± 3.84 | 39.56 ± 5.07 | - | - |
表2
秸秆类型、土壤类型和氮肥用量对土壤无机氮、温室气体排放和全球变暖潜力的影响"
处理 Tr | 硝态氮含量 NO3--N concentration (mg·kg-1) | 无机氮含量 INN concentration (mg·kg-1) | 180天N2O排放累积量 Accumulation for N2O flux in 180 d (kg·hm-2) | 180天CO2 排放累积量 Accumulation for CO2 flux in 180 d (kg·hm-2) | 全球变暖潜力 Global warming potential (kg CO2-e·hm-2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
潮土 AS | 砂姜黑土 LS | 潮土 AS | 砂姜黑土 LS | 潮土 AS | 砂姜黑土 LS | 潮土 AS | 砂姜黑土 LS | 潮土 AS | 砂姜黑土 LS | ||
小麦秸秆 Wheat residue | CK | 51.25±1.84b | 56.97±2.82b | 59.76±1.53b | 65.43±2.96b | 0.47±0.04a | 0.77±0.06a | 8.21±0.72a | 3.85±0.49a | 149.53±12.47a | 234.72±16.77a |
N0 | 42.02±6.32a | 34.05±1.82a | 50.20±6.85a | 42.74±1.89a | 0.61±0.06b | 1.30±0.05c | 21.62±1.04bc | 13.07±0.77b | 204.19±18.82b | 399.86±14.29b | |
N1 | 79.06±4.50c | 59.37±3.64b | 87.81±4.70c | 68.60±4.60b | 1.15±0.07c | 1.21±0.05b | 22.18±1.64c | 15.13±1.13c | 363.65±19.80c | 375.43±15.24b | |
N2 | 110.95±4.86d | 96.41±6.51c | 120.62±5.24d | 107.08±6.36c | 1.61±0.14d | 1.41±0.06d | 19.89±0.98b | 16.65±1.13d | 501.09±42.45d | 437.34±18.13c | |
玉米秸秆 Maize residue | CK | 130.27±3.75a | 148.09±5.25a | 142.25±4.46a | 162.67±4.80a | 1.01±0.05a | 0.81±0.11a | 7.10±1.19a | 7.64±0.78a | 306.97±15.71a | 249.96±32.62a |
N0 | 116.96±4.98a | 145.83±10.91a | 130.58±4.63a | 159.69±10.81a | 1.38±0.07b | 1.63±0.12b | 20.06±1.33c | 17.17±1.01c | 430.74±22.78b | 504.11±35.33b | |
N1 | 170.85±5.59b | 242.94±10.98b | 183.38±5.34b | 255.42±11.68b | 1.88±0.08c | 1.58±0.11b | 17.14±0.43b | 13.62±0.91b | 576.79±23.25c | 483.52±33.24b | |
N2 | 220.95±21.26c | 339.68±8.30c | 231.72±22.80c | 353.15±8.59c | 5.72±0.08d | 1.77±0.18b | 17.84±0.80b | 13.37±2.24b | 1721.24±24.59d | 540.82±55.87b | |
秸秆处理 Residue (R) | 159.74*** | 3715.61*** | 157.98*** | 8.81** | 1513.11*** | ||||||
土壤处理 Soil (S) | 594.82*** | 156.19*** | 7024.73*** | 223.57*** | 346.75*** | ||||||
氮肥处理 Nitrogen (N) | 296.75*** | 542.02*** | 10234.15*** | 360.45*** | 1200.99*** | ||||||
R×S | 114.04*** | 276.89*** | 983.78*** | 32.78*** | 724.15*** | ||||||
R×N | 23.66*** | 96.72*** | 411.09*** | 19.55*** | 367.45*** | ||||||
S×N | 47.02*** | 22.61*** | 4895.21*** | 9.36*** | 595.95*** | ||||||
R×S×N | 159.74*** | 42.38*** | 705.76*** | 7.59*** | 323.89*** |
表3
秸秆类型、土壤类型和氮肥用量对秸秆可溶性糖含量、土壤酶活性和O2含量的影响"
处理 Tr | 秸秆可溶性糖 Residue soluble sugar (%) | 脲酶 Soil urease (mg NH4+-N·g-1·24h-1) | 过氧化氢酶 Soil catalase (mg H2O2·g-1·20min-1) | 蛋白酶 Soil protease (mg glycine·kg-1·h-1) | 蔗糖酶 Soil invertase (mg glucose·g-1·24h-1) | 土壤O2含量 Soil O2 content (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
潮土 AS | 砂姜黑土 LS | 潮土 AS | 砂姜黑土 LS | 潮土 AS | 砂姜黑土 LS | 潮土 AS | 砂姜黑土 LS | 潮土 AS | 砂姜黑土 LS | 潮土 AS | 砂姜黑土 LS | ||
小麦秸秆 Wheat residue | CK | - | - | 1.53±0.02a | 0.44±0.01a | 1.19±0.02b | 1.09±0.01b | 13.13±0.65a | 11.91±0.55 | 25.73±1.02a | 25.35±0.94a | 20.48±0.20b | 23.63±0.68c |
N0 | 1.98±0.14 | 2.06±0.14 | 1.67±0.02c | 0.55±0.01b | 1.17±0.01a | 1.08±0.01b | 14.02±0.71ab | 11.70±0.25 | 29.14±1.19b | 34.08±2.26b | 20.14±0.20ab | 22.95±0.24bc | |
N1 | 2.26±0.13 | 2.16±0.24 | 1.67±0.03c | 0.53±0.03b | 1.17±0.00a | 1.08±0.01b | 14.33±0.05b | 12.08±0.20 | 29.89±1.43b | 36.27±3.40b | 20.02±0.21a | 22.35±0.23b | |
N2 | 1.97±0.14 | 2.11±0.06 | 1.60±0.03b | 0.52±0.00b | 1.17±0.01a | 1.04±0.01a | 15.47±0.24c | 11.71±0.27 | 30.47±2.28b | 33.53±1.81b | 20.15±0.24ab | 21.08±0.89a | |
玉米秸秆 Maize residue | CK | - | - | 1.02±0.03 | 0.29±0.02 | 1.17±0.00c | 0.99±0.01d | 12.86±0.30c | 12.75±0.17 | 7.95±0.37a | 5.55±0.27a | 21.08±0.04c | 22.49±0.50b |
N0 | 3.37±0.21 | 3.05±0.11 | 1.02±0.04 | 0.28±0.03 | 1.16±0.00b | 0.96±0.02c | 13.11±0.20c | 12.78±0.28 | 8.57±0.17ab | 6.40±0.26b | 20.64±0.03b | 21.47±0.04a | |
N1 | 3.05±0.23 | 2.90±0.16 | 1.03±0.02 | 0.27±0.01 | 1.16±0.00bc | 0.91±0.00b | 12.34±0.15b | 12.69±0.21 | 9.22±0.14b | 6.45±0.31b | 20.54±0.10b | 21.38±0.30a | |
N2 | 2.86±0.11 | 2.90±0.11 | 1.00±0.06 | 0.25±0.03 | 1.12±0.01a | 0.84±0.01a | 11.84±0.15a | 12.67±0.15 | 7.91±0.80a | 5.93±0.35ab | 20.20±0.29a | 21.07±0.15a | |
秸秆处理 Residue (R) | 430.17*** | 3685.63*** | 166.44*** | 13.45*** | 3924.52*** | 7.59** | |||||||
土壤处理 Soil (S) | 1.30 | 18148.06*** | 612.93*** | 95.38*** | 2.45 | 346.54*** | |||||||
氮肥处理 Nitrogen (N) | 4.62* | 17.83*** | 18.61*** | 1.14 | 25.87*** | 37.37*** | |||||||
R×S | 3.74 | 683.12*** | 83.15*** | 130.59*** | 61.35*** | 55.5*** | |||||||
R×N | 8.57*** | 19.63*** | 6.24*** | 10.99*** | 16.82*** | 1.39 | |||||||
S×N | 2.45 | 2.16 | 5.36** | 2.55 | 3.62* | 10.54*** | |||||||
R×S×N | 1.57 | 0.83 | 2.31 | 10.72*** | 4.19** | 5.86** |
表4
土壤N2O和CO2排放累积量与土壤无机氮、酶活性及其他参数的相关性"
排放累 积量 (kg·hm-2) | 秸秆 Residue | 土壤 Soil | CO2 flux (kg·hm-2) | 无机氮 Inorganic N (mg·kg-1) | 脲酶 Urease (mg NH4-N· g-1·24h-1) | 过氧化氢酶 Catalase (mg H2O2·g-1· 20min-1) | 蛋白酶 Protease (mg glycine· kg-1·h-1) | 蔗糖酶 Invertase (mg glucose· g-1·24h-1) | 氧气含量 O2 content (%) | 秸秆可溶性糖 Residue soluble sugar (%) |
---|---|---|---|---|---|---|---|---|---|---|
N2O flux | 小麦 Wheat | AS | 0.46 | 0.96** | 0.18 | -0.33 | 0.84** | 0.62* | -0.36 | 0.03 |
LS | 0.93** | 0.32 | 0.85** | -0.71** | -0.17 | 0.79** | -0.72** | -0.08 | ||
玉米 Maize | AS | 0.68** | 0.89** | -0.24 | -0.97** | -0.83** | -0.31 | -0.78** | -0.68* | |
LS | 0.39 | 0.59* | -0.26 | -0.72** | 0.01 | 0.58* | -0.81** | 0.04 | ||
CO2 flux | 小麦 Wheat | AS | - | 0.26 | 0.89** | -0.73** | 0.54* | 0.69** | -0.69** | 0.17 |
LS | - | 0.29 | 0.85** | -0.69** | -0.13 | 0.81** | -0.69** | 0.34 | ||
玉米 Maize | AS | - | 0.54* | -0.11 | -0.66** | -0.45 | 0.13 | -0.80** | -0.46 | |
LS | - | -0.34 | 0.28 | 0.18 | 0.09 | 0.47 | -0.2 | 0.38 |
[1] |
FRENEY J R, DENMEAD O T, SIMPSON J R. Soil as a source or sink for atmospheric nitrous oxide. Nature, 1978, 273:530-532. doi: 10.1038/273530a0.
doi: 10.1038/273530a0 |
[2] |
CHEN H H, LI X C, HU F, SHI W. Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Global Change Biology, 2013, 19(10):2956-2964. doi: org/10.1111/gcb.12274.
doi: org/10.1111/gcb.12274 |
[3] |
HARRION R, WEBB J. A review of the effect of N fertilizer type on gaseous emissions. Advances in Agronomy, 2001, 73:65-108. doi: 10.1016/S0065-2113(01)73005-2.
doi: 10.1016/S0065-2113(01)73005-2 |
[4] |
LI X G, JIA B, LV J T, MA Q J, KUZYAKOV Y, LI F M. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biology and Biochemistry, 2017, 112:47-55. doi: org/10.1016/j.soilbio.2017.04.018.
doi: org/10.1016/j.soilbio.2017.04.018 |
[5] |
WEI T, ZHANG P, WANG K, DING R X, YANG B P, NIE J F, JIA Z K, HAN Q F. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS One, 2015, 10(4):e0120994. doi: 10.1371/journal.pone.0120994.
doi: 10.1371/journal.pone.0120994 |
[6] |
李廷亮, 王宇峰, 王嘉豪, 栗丽, 谢钧宇, 李丽娜, 黄晓磊, 谢英荷. 我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示. 中国农业科学, 2020, 53(23):4835-4854. doi: 10.3864/j.issn.0578-1752.2020.23.010.
doi: 10.3864/j.issn.0578-1752.2020.23.010 |
LI T L, WANG Y F, WANG J H, LI L, XIE J Y, LI L N, HUANG X L, XIE Y H. Nutrient resource quantity from main grain crop straw incorporation and its enlightenment on chemical fertilizer reduction in wheat production in China. Scientia Agricultura Sinica, 2020, 53(23):4835-4854. doi: 10.3864/j.issn.0578-1752.2020.23.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.23.010 |
|
[7] |
BEGUM N, GUPPY C, HERRIDGE D, SCHWENKE G. Influence of source and quality of plant residues on emissions of N2O and CO2 from a fertile, acidic Black Vertisol. Biology and Fertility of Soils, 2014, 50(3):499-506. doi: 10.1007/s00374-013-0865-8.
doi: 10.1007/s00374-013-0865-8 |
[8] |
WU Y, LIN S, LIU T, WAN T, HU R. Effect of crop residue returns on N2O emissions from red soil in China. Soil Use and Management, 2016, 32(1):80-88. doi: 10.1111/sum.12220.
doi: 10.1111/sum.12220 |
[9] |
HUANG Y, ZOU J W, ZHENG X H, WANG Y S, XU X K. Nitrous oxide emissions as influenced by amendments of plant residues with different C: N ratio. Soil Biology and Biochemistry, 2004, 36(6):973-981. doi: 10.1016/j.soilbio.2004.02.009.
doi: 10.1016/j.soilbio.2004.02.009 |
[10] |
YANG G R, HAO X Y, LI C L, LI Y M. Effects of greenhouse intensive cultivation and organic amendments on greenhouse gas emission according to a soil incubation study. Archives of Agronomy and Soil Science, 2015, 61(1):89-103. doi: org/10.1080/03650340.2014.922177.
doi: org/10.1080/03650340.2014.922177 |
[11] |
SHAN J, YAN X Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmospheric Environment, 2013, 71:170-175. doi: org/10.1016/j.atmosenv.2013.02.009.
doi: org/10.1016/j.atmosenv.2013.02.009 |
[12] |
WEITZ A M, LINDER E, FROLKING S, CRILL P M, KELLER M. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil Biology and Biochemistry, 2001, 33(7/8):1077-1093. doi: org/10.1016/S0038-0717(01)00013-X.
doi: org/10.1016/S0038-0717(01)00013-X |
[13] |
BAGGS E M, REES R M, SMITH K A, VINTEN A J A. Nitrous oxide emission from soils after incorporating crop residues. Soil Use and Management, 2000, 16:82-87. doi: org/10.1111/j.1475-2743.2000.tb00179.x.
doi: org/10.1111/j.1475-2743.2000.tb00179.x |
[14] |
LIN S, IQBAL J, HU R G, SHAABAN M, CAI J B, CHEN X. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: a case study in central China. Archives of Environmental Contamination and Toxicology, 2013, 65(2):183-192. doi: 10.1007/s00244-013-9903-7.
doi: 10.1007/s00244-013-9903-7 |
[15] |
MUHAMMAD W, VAUGHAN S M, DALAL R C, MENZIES N W. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol. Biology and Fertility of Soils, 2011, 47(1):15-23. doi: 10.1007/s00374-010-0497-1.
doi: 10.1007/s00374-010-0497-1 |
[16] |
BASCHE A D, MIGUEZ F E, KASPAR T C, CASTELLANO M J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. Journal of Soil and Water Conservation, 2014, 69(6):471-482. doi: 10.2489/jswc.69.6.471.
doi: 10.2489/jswc.69.6.471 |
[17] |
GENTILE R, VANLAUWE B, VAN KESSEL C, SIX J. Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agriculture, Ecosystems and Environment, 2009, 131(3/4):308-314. doi: 10.1016/j.agee.2009.02.003.
doi: 10.1016/j.agee.2009.02.003 |
[18] |
MCFARLAND J W, RUESS R W, KIELLAND K, DOYLE A P. Cycling dynamics of NH4+ and amino acid nitrogen in soils of a deciduous boreal forest ecosystem. Ecosystems, 2002, 5(8):775-788. doi: 10.1007/s10021-002-0146-0.
doi: 10.1007/s10021-002-0146-0 |
[19] |
GILLIAM F S, LYTTLE N L, THOMAS A, ADAMS M B. Soil variability along a nitrogen mineralization/nitrification gradient in a nitrogen-saturated hardwood forest. Soil Science Society of America Journal, 2005, 69(1):247-256.
doi: 10.2136/sssaj2005.0247a |
[20] |
BRANT J B, SULZMAN E W, MYROLD D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry, 2006, 38(8):2219-2232. doi: 10.1016/j.soilbio.2006.01.022.
doi: 10.1016/j.soilbio.2006.01.022 |
[21] |
SCHNECKENBERGER K, DEMIN D, STAHR K, KUZYAKOV Y. Microbial utilization and mineralization of [14C]-glucose added in six orders of concentration to soil. Soil Biology and Biochemistry, 2008, 40(8):1981-1988. doi: 10.1016/j.soilbio.2008.02.020.
doi: 10.1016/j.soilbio.2008.02.020 |
[22] |
NETT L, SRADNICK A, FUß R, FLESSA H, FINK M. Emissions of nitrous oxide and ammonia after cauliflower harvest are influenced by soil type and crop residue management. Nutrient Cycling in Agroecosystems, 2016, 106(2):217-231. doi: 10.1007/s10705-016-9801-2.
doi: 10.1007/s10705-016-9801-2 |
[23] |
FRIMPONG K A, BAGGS E M. Do combined applications of crop residues and inorganic fertilizer lower emission of N2O from soil? Soil Use and Management, 2010, 26(4):412-424. doi: 10.1111/j.1475-2743.2010.00293.x.
doi: 10.1111/j.1475-2743.2010.00293.x |
[24] |
LIU C Y, WANG K, MENG S X, ZHENG X H, ZHOU Z X, HAN S H, CHEN D L, YANG Z P. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agriculture Ecosystems and Environment, 2011, 140(1/2):226-233. doi: 10.1016/j.agee.2010.12.009.
doi: 10.1016/j.agee.2010.12.009 |
[25] |
GAILLARD R, DUVAL B D, OSTERHOLZ W R, KUCHARIK C J. Simulated effects of soil texture on nitrous oxide emission factors from corn and soybean agroecosystems in Wisconsin. Journal of Environmental Quality, 2016, 45:1540-1548. doi: 10.2134/jeq2016.03.0112.
doi: 10.2134/jeq2016.03.0112 |
[26] |
TOMA Y, HATANO R. Effect of crop residue C:N ratio on N2O emissions from gray lowland soil in Mikasa, Hokkaido, Japan. Soil Science and Plant Nutrition, 2007, 53(2):198-205. doi: org/10.1111/j.1747-0765.2007.00125.x.
doi: org/10.1111/j.1747-0765.2007.00125.x |
[27] |
BLAGODATSKAYA E V, BLAGODATSKY S A, ANDERSON T H, KUZYAKOV Y. Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. European Journal of Soil Science, 2009, 60(2):186-197. doi: org/10.1111/j.1365-2389.2008.01103.x.
doi: org/10.1111/j.1365-2389.2008.01103.x |
[28] |
GU J X, NICOULLAUD B, ROCHETTE P, GROSSEL A, HENAULT C, CELLIER P, RICHARD G. A regional experiment suggests that soil texture is a major control of N2O emissions from tile-drained winter wheat fields during the fertilization period. Soil Biology and Biochemistry, 2013, 60:134-141. doi: 10.1016/j.soilbio.2013.01.029.
doi: 10.1016/j.soilbio.2013.01.029 |
[29] |
STEHFEST E, BOUWMAN L. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 2006, 74(3):207-228. doi: 10.1007/s10705-006-9000-7.
doi: 10.1007/s10705-006-9000-7 |
[30] |
VAN GROENIGEN J W, KASPER G J, VELTHOF G L, VAN DEN POL-VAN DASSELAAR A, KUIKMAN P J. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant and Soil, 2004, 263:101-111. doi: 10.1023/B:PLSO.0000047729.43185.46.
doi: 10.1023/B:PLSO.0000047729.43185.46 |
[31] |
LESSCHEN J P, VELTHOF G L, DE VRIES W, KROS J. Differentiation of nitrous oxide emission factors for agricultural soils. Environmental Pollution, 2011, 159(11):3215-3222. doi: org/10.1016/j.envpol.2011.04.001.
doi: org/10.1016/j.envpol.2011.04.001 |
[32] |
JIAN S Y, LI J W, CHEN J, WANG G S, MAYES M A, DZANTOR K E, HUI D F, LUO Y Q. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Biochemistry, 2016, 101:32-43. doi: org/10.1016/j.soilbio.2016.07.003.
doi: org/10.1016/j.soilbio.2016.07.003 |
[33] | 徐华, 邢光熹, 蔡祖聪, 鹤田治雄. 土壤水分状况和质地对稻田N2O排放的影响. 土壤学报, 2000, 37(4):499-505. |
XU H, XING G X, CAI Z C, HETIAN Z X. Effects of soil water regime and soil texture on N2O emission from rice paddy field. Acta Pedologica Sinica, 2000, 37(4):499-505. (in Chinese) | |
[34] |
张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019, 52(10):1746-1760. doi: 10.3864/j.issn.0578-1752.2019.10.008.
doi: 10.3864/j.issn.0578-1752.2019.10.008 |
ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Scientia Agricultura Sinica, 2019, 52(10):1746-1760. doi: 10.3864/j.issn.0578-1752.2019.10.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.10.008 |
|
[35] | 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. |
LU R K. Analytical Methods for Soil and Agro-chemistry. Beijing: China Agricultural Science of Technology Press, 2000. (in Chinese) | |
[36] | 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. |
GUAN S Y. Soil Enzymes and Their Research Methods. Beijing: Agricultural Press, 1986. (in Chinese) | |
[37] |
夏志敏, 周建斌, 梅沛沛, 王平, 桂林国, 李隆. 玉米与蚕豆秸秆配施对秸秆分解及土壤养分含量的影响. 应用生态学报, 2012, 23(1):103-108. doi: 10.13287/j.1001-9332.2012.0014.
doi: 10.13287/j.1001-9332.2012.0014 |
XIA Z M, ZHOU J B, MEI P P, WANG P, GUI L G, LI L. Effects of combined application of maize-and horsebean straws on the straws decomposition and soil nutrient contents. Chinese Journal of Applied Ecology, 2012, 23(1):103-108. doi: 10.13287/j.1001-9332.2012.0014. (in Chinese)
doi: 10.13287/j.1001-9332.2012.0014 |
|
[38] |
MILLAR N, NDUFA J K, CADISCH G, BAGGS E M. Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Global Biogeochemical Cycles, 2004, 18(1): GB1032. doi: 10.1029/2003gb002114.
doi: 10.1029/2003gb002114 |
[39] |
MANZONI S, JACKSON R B, TROFYMOW J A, PORPORATO A. The global stoichiometry of litter nitrogen mineralization. Science, 2008, 321:684-686. doi: 10.1126/science.1159792.
doi: 10.1126/science.1159792 |
[40] |
QIU Q Y, WU L F, OUYANG Z, LI B B, XU Y Y, WU S S, GREGORICH E G. Effects of plant-derived dissolved organic matter (DOM) on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations. Applied Soil Ecology, 2015, 96:122-130. doi: 10.1016/j.apsoil.2015.07.016.
doi: 10.1016/j.apsoil.2015.07.016 |
[41] |
马小婷, 隋玉柱, 朱振林, 王勇, 李新华. 秸秆还田对农田土壤碳库和温室气体排放的影响研究进展. 江苏农业科学, 2017, 45(6):14-20. doi: 10.15889/j.issn.1002-1302.2017.06.003.
doi: 10.15889/j.issn.1002-1302.2017.06.003 |
MA X T, SUI Y Z, ZHU Z L, WANG Y, LI X H. Effects of straw returning on soil carbon pool and greenhouse gas emissions. Jiangsu Agricultural Sciences. 2017, 45(6):14-20. doi: 10.15889/j.issn.1002-1302.2017.06.003. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2017.06.003 |
|
[42] |
李英臣, 侯翠翠, 李勇, 过治军. 免耕和秸秆覆盖对农田土壤温室气体排放的影响. 生态环境学报, 2014, 23(6):1076-1083. doi: 10.16258/j.cnki.1674-5906.2014.06.020.
doi: 10.16258/j.cnki.1674-5906.2014.06.020 |
LI Y C, HOU C C, LI Y, GUO Z J. Effects of no-till and straw mulch on greenhouse gas emission from farmland: A review. Ecology and Environmental Sciences, 2014, 23(6):1076-1083. doi: 10.16258/j.cnki.1674-5906.2014.06.020. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2014.06.020 |
|
[43] |
王淑颖, 李小红, 程娜, 付时丰, 李双异, 孙良杰, 安婷婷, 汪景宽. 地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响. 中国农业科学, 2021, 54(2):345-356. doi: 10.3864/j.issn.0578-1752.2021.02.010.
doi: 10.3864/j.issn.0578-1752.2021.02.010 |
WANG S Y, LI X H, CHENG N, FU S F, LI S Y, SUN L J, AN T T, WANG J K. Effects of plastic film mulching and fertilization on the sequestration of carbon and nitrogen from straw in soil. Scientia Agricultura Sinica, 2021, 54(2):345-356. doi: 10.3864/j.issn.0578-1752.2021.02.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.02.010 |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[3] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[4] | 李晓立,何堂庆,张晨曦,田明慧,吴梅,李潮海,杨青华,张学林. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948-961. |
[5] | 王良,刘元元,钱欣,张慧,代红翠,刘开昌,高英波,方志军,刘树堂,李宗新. 单季麦秸还田促进小麦-玉米周年碳效率和经济效益协同提高[J]. 中国农业科学, 2022, 55(2): 350-364. |
[6] | 马超,王玉宝,邬刚,王泓,汪建飞,朱林,李佳佳,马晓静,柴如山. 近十年安徽省秸秆直接还田研究进展[J]. 中国农业科学, 2022, 55(18): 3584-3599. |
[7] | 张英强,张水勤,李燕婷,赵秉强,袁亮. 不同含羧基有机酸改性尿素在石灰性潮土中的转化特征[J]. 中国农业科学, 2022, 55(17): 3355-3364. |
[8] | 陈绪昊,高强,陈新平,张务帅. 东北三省玉米生产资源投入和环境效应的时空特征[J]. 中国农业科学, 2022, 55(16): 3170-3184. |
[9] | 高仁才,陈松鹤,马宏亮,莫飘,柳伟伟,肖云,张雪,樊高琼. 秋闲期秸秆覆盖与减氮优化根系分布提高冬小麦产量及水氮利用效率[J]. 中国农业科学, 2022, 55(14): 2709-2725. |
[10] | 马立晓,李婧,邹智超,蔡岸冬,张爱平,李贵春,杜章留. 免耕和秸秆还田对我国土壤碳循环酶活性影响的荟萃分析[J]. 中国农业科学, 2021, 54(9): 1913-1925. |
[11] | 靳玉婷,刘运峰,胡宏祥,穆静,高梦瑶,李先藩,薛中俊,龚静静. 持续性秸秆还田配施化肥对油菜-水稻轮作周年氮磷径流损失的影响[J]. 中国农业科学, 2021, 54(9): 1937-1951. |
[12] | 王碧胜,于维水,武雪萍,高丽丽,李景,宋霄君,李生平,卢晋晶,郑凤君,蔡典雄. 不同耕作措施下添加秸秆对土壤有机碳及其相关因素的影响[J]. 中国农业科学, 2021, 54(6): 1176-1187. |
[13] | 李旭,董炜灵,宋阿琳,李艳玲,卢玉秋,王恩召,刘雄舵,王萌,范分良. 秸秆添加量对土壤生物固氮速率和固氮菌群落特征的影响[J]. 中国农业科学, 2021, 54(5): 980-991. |
[14] | 毛安然,赵护兵,杨慧敏,王涛,陈秀文,梁文娟. 不同覆盖时期和覆盖方式对旱地冬小麦经济和环境效应的影响[J]. 中国农业科学, 2021, 54(3): 608-618. |
[15] | 向晓玲,陈松鹤,杨洪坤,杨永恒,樊高琼. 秸秆覆盖与施磷对丘陵旱地小麦产量和磷素吸收利用效应的影响[J]. 中国农业科学, 2021, 54(24): 5194-5205. |
|