中国农业科学 ›› 2021, Vol. 54 ›› Issue (17): 3752-3765.doi: 10.3864/j.issn.0578-1752.2021.17.016
任海英1(),周慧敏1,3,戚行江1,郑锡良1,俞浙萍1,张淑文1,王震铄2(
)
收稿日期:
2021-02-26
接受日期:
2021-05-20
出版日期:
2021-09-01
发布日期:
2021-09-09
通讯作者:
王震铄
作者简介:
任海英,0571-86410266, 基金资助:
REN HaiYing1(),ZHOU HuiMin1,3,QI XingJiang1,ZHENG XiLiang1,YU ZhePing1,ZHANG ShuWen1,WANG ZhenShuo2(
)
Received:
2021-02-26
Accepted:
2021-05-20
Online:
2021-09-01
Published:
2021-09-09
Contact:
ZhenShuo WANG
摘要:
【目的】多效唑常用在杨梅上用来催化花芽分化,过量施用会使树势衰弱、叶片卷曲皱缩。研究过量多效唑对杨梅根围土和根表土的土壤酶活性以及杨梅树体微生物群落结构的影响,为合理使用多效唑提供理论指导。【方法】1年生‘东魁’杨梅嫁接苗种植在经150、300和600 mg∙kg-1多效唑处理的酸性红壤,不施用多效唑为对照。检测根围土、根表土、根、枝和叶中多效唑的积累量,测定土壤酶活性,利用Illumina MiSeq高通量测序研究多效唑对根围土、根表土、根、枝和叶中微生物群落结构的影响。【结果】杨梅叶片积累多效唑量最多,过氧化氢酶和磷酸酶活性显著降低,蔗糖酶活性显著提高。高浓度多效唑处理下,根围土的细菌多样性和丰富度明显降低,真菌多样性和丰富度明显升高,而根表土内的细菌多样性和丰富度明显升高、真菌多样性和丰富度明显降低,根内细菌、枝内真菌的多样性和丰富度均明显降低。在细菌群落结构组成分析中,施用多效唑后,明显降低杨梅根以及根围、根表土壤中酸杆菌门、放线菌门、厚壁菌门、绿弯菌门以及重要的生防类菌芽孢杆菌纲的相对丰度,增加根围土壤和枝条样品中伯克霍尔德菌属的相对丰度;而在真菌群落结构组成分析中,施用多效唑后,明显提高根围土壤和根表土壤的子囊菌门以及枝条叶片中外担菌纲的相对丰度,明显降低根围土壤、根表土壤和根中担子菌门、伞菌纲以及枝条和叶片中青霉属的相对丰度。【结论】土壤施用多效唑后,杨梅树体叶片残留量最多,土壤过氧化氢酶、磷酸酶、蔗糖酶活性显著变化,根围土、根表土、根、枝和叶中细菌、真菌丰富度和多样性发生显著变化。本研究结果可为合理施用多效唑和评价多效唑对果园土壤和杨梅树体生态系统的影响提供科学依据,有利于指导多效唑的科学施用。
任海英,周慧敏,戚行江,郑锡良,俞浙萍,张淑文,王震铄. 多效唑对杨梅土壤微生物及内生群落结构的影响[J]. 中国农业科学, 2021, 54(17): 3752-3765.
REN HaiYing,ZHOU HuiMin,QI XingJiang,ZHENG XiLiang,YU ZhePing,ZHANG ShuWen,WANG ZhenShuo. Effects of Paclobutrazol on Soil and Endophytic Microbial Community Structure of Bayberry[J]. Scientia Agricultura Sinica, 2021, 54(17): 3752-3765.
表1
不同多效唑用量在土壤及杨梅树体内的残留量"
样品 Sample | 处理 Treatment | 残留量 Residues (mg∙kg-1) | 样品 Sample | 处理 Treatment | 残留量 Residues (mg∙kg-1) |
---|---|---|---|---|---|
土壤 Soil | P0 | 0c | 枝条 Twig | P0 | 0c |
P150 | 0.39±0.11c | P150 | 0.01±0.00c | ||
P300 | 0.48±0.14c | P300 | 2.59±1.59b | ||
P600 | 0.93±0.47c | P600 | 3.97±0.57b | ||
根 Root | P0 | 0c | 叶 Leaf | P0 | 0c |
P150 | 0.17±0.07c | P150 | 0.39±0.33c | ||
P300 | 0.60±0.15c | P300 | 3.17±2.31b | ||
P600 | 0.93±0.21c | P600 | 7.83±2.65a |
表2
施用多效唑后杨梅土壤内活性酶的活性"
处理 Treatment | 过氧化氢酶 Catalase (mL·g-1) | 磷酸酶 Phosphatase (mg·g-1·d-1) | 蔗糖酶 Sucrase (mg·g-1·d-1) | 纤维素酶 Cellulase (mg·g-1) |
---|---|---|---|---|
P0 | 0.90±0.08ab | 7.53±0.19a | 0.87±0.09b | 0.41±0.04b |
P150 | 1.11±0.07a | 6.16±0.23a | 1.57±0.09a | 0.26±0.03c |
P300 | 0.82±0.08b | 1.74±0.74b | 1.41±0.11a | 0.52±0.02a |
P600 | 0.77±0.05b | 2.78±0.75b | 1.39±0.24a | 0.21±0.03c |
表3
细菌和真菌Alpha多样性指数"
样品 Sample | 细菌Bacteria | 真菌Fungi | ||
---|---|---|---|---|
Chao1 | Shannon | Chao1 | Shannon | |
SF0 | 901.79 | 7.44 | 232.11 | 3.68 |
SFP | 918.46 | 8.28* | 99.90# | 1.02# |
BS0 | 986.33 | 7.86 | 23.10 | 0.21 |
BSP | 784.70# | 7.25 | 200.39* | 3.95* |
R0 | 904.40 | 5.94 | 80.70 | 2.22 |
RP | 615.38# | 3.66# | 63.03# | 2.62* |
T0 | 14.40 | 0.50 | 205.29 | 4.00 |
TP | 7.80# | 0.68* | 93.47# | 1.74# |
L0 | 5.00 | 0.30 | 151.61 | 3.03 |
LP | 5.00 | 0.39* | 179.78* | 3.00 |
[1] |
REN H Y, YU H Y, ZHANG S W, LIANG S M, ZHENG X L, ZHANG S J, YAO P, ZHENG H K, QI X J. Genome sequencing provides insights into the evolution and antioxidant activity of Chinese bayberry. BMC Genomics, 2019, 20(1): 458.
doi: 10.1186/s12864-019-5818-7 |
[2] | 俞建忠, 陈列忠, 侯佳音, 俞瑞鲜, 胡秀卿, 赵学平. 吡唑醚菌酯在杨梅和土壤中的残留及消解动态. 农药学学报, 2020, 22(5): 857-863. |
YU J Z, CHEN L Z, HOU J Y, YU R X, HU X Q, ZHAO X P. Residue and dissipation dynamics of pyraclostrobin in waxberry (Myrica rubra) and soil. Chinese Journal of Pesticide Science, 2020, 22(5): 857-863. (in Chinese) | |
[3] | 陈方永, 倪海枝, 王引, 任正初. 多效唑对东魁杨梅生长与结果的影响. 生态毒理学报, 2011, 6(6): 661-666. |
CHEN F Y, NI H Z, WANG Y, REN Z C. Effect of paclobutrazol (PP333) on growth and fruiting of Dongkui bayberry (Myrica rubra). Asian Journal of Ecotoxicology, 2011, 6(6): 661-666. (in Chinese) | |
[4] | 何桂娥, 徐春燕, 何凤杰. 多效唑过度使用对杨梅树体早衰的影响. 浙江柑橘, 2014, 31(2): 33-35. |
HE G E, XU C Y, HE F J. Effect of paclobutrazol on premature senescence of bayberry. Zhejiang Citrus, 2014, 31(2): 33-35. (in Chinese) | |
[5] | 董志君, 张建军, 范永明, 陈莉祺, 朱炜, 于晓南. 3种植物生长延缓剂对盆栽芍药的矮化效应. 东北林业大学学报, 2020, 48(9): 62-66. |
DONG Z J, ZHANG J J, FAN Y M, CHEN L Q, ZHU W, YU X N. Dwarfing effects of paclobutrazol, unicnazleand chlormequat on potted Paeonia lactiflora. Journal of Northeast Forestry University, 2020, 48(9): 62-66. (in Chinese) | |
[6] | 孔德真, 聂迎彬, 桑伟, 徐红军, 刘鹏鹏, 穆培源, 田笑明. 多效唑、矮壮素对杂交小麦及其亲本矮化效应的研究. 中国农学通报, 2018, 34(35): 1-6. |
KONG D Z, NIE Y B, SANG W, XU H J, LIU P P, MU P Y, TIAN X M. Paclobutrazol and chlormequat: The dwarfing effect on hybrid wheat and its parents. Chinese Agricultural Science Bulletin, 2018, 34(35): 1-6. (in Chinese) | |
[7] |
KAMRAN M, SU W N, AHMAD I, MENG X P, CUI W W, ZHANG X D, MOU S W, KHAN A, HAN Q F, LIU T N. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region. Scientific Reports, 2018, 8(1): 4818.
doi: 10.1038/s41598-018-23166-z |
[8] |
KUMAR S, GHATTY S, SATYANARAYANA J, GUHA A, CHAITANYA B, REDDY A R. Paclobutrazol treatment as a potential strategy for higher seed and oil yield in field-grown Camelina sativa L. Crantz. BMC Research Notes, 2012, 5: 137.
doi: 10.1186/1756-0500-5-137 |
[9] | PAL S, ZHAO J, KHAN A, YADAV N S, BATUSHANSKY A, BARAK S, REWALD B, FAIT A, LAZAROVITCH N, RACHMILEVITCH S. Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Science Reports, 2016, 6: 39321. |
[10] |
CHEN S, WANG X J, TAN G F, ZHOU W Q, WANG G L. Gibberellin and the plant growth retardant Paclobutrazol altered fruit shape and ripening in tomato. Protoplasma, 2020, 257(3): 853-861.
doi: 10.1007/s00709-019-01471-2 |
[11] | 鲍雨林, 尚为民, 沈青山, 吴相祝, 陈宝福. 叶面喷施多效唑对杨梅幼树生长和结果的影响. 中国果树, 1994(2): 20-21. |
BAO Y L, SHANG W M, SHEN Q S, WU X Z, CHEN B F. Effect of paclobutrazole on the growth and results of young bayberry trees. China Fruits, 1994(2): 20-21. (in Chinese) | |
[12] | 靳晓拓, 周彦妤, 夏杨荣畅, 陈丽君, 李涛, 赵洪伟. 多效唑对芒果园土壤细菌多样性的影响及PICRUSt基因功能预测分析. 热带作物学报, 2019, 40(4): 807-814. |
JIN X T, ZHOU Y Y, XIA Y R C, CHEN L J, LI T, ZHAO H W. Effects of paclobutrazol on soil bacterial diversity in mango orchard and PICRUSt-based predicted metagenomic analysis. Chinese Journal of Tropical Crops, 2019, 40(4): 807-814. (in Chinese) | |
[13] |
KUO J, WANG Y W, CHEN M, FUH G, LIN C H. The effect of paclobutrazol on soil bacterial composition across three consecutive flowering stages of mung bean. Folia Microbiologica, 2019, 64(2): 197-205.
doi: 10.1007/s12223-018-0644-x |
[14] | 任海英, 方丽, 李岗, 王康强, 王汉荣. 多效唑、硼砂和10种农药对地表球囊霉菌根侵染能力的影响. 浙江农业科学, 2011, 52(6): 1345-1347. |
REN H Y, FANG L, LI G, WANG K Q, WANG H R. Effects of paclobutrazol, borax and 10 kinds of pesticides on the infection ability of glomus mycorrhiza. Journal of Zhejiang Agricultural Sciences, 2011, 52(6): 1345-1347. (in Chinese) | |
[15] | 熊悯梓, 钞亚鹏, 赵盼, 宋双伟, 石莹莹, 莫乘宝, 仲乃琴. 不同生境马铃薯根际土壤细菌多样性分析. 微生物学报, 2020, 60(11): 2434-2449. |
XIONG M Z, CHAO Y P, ZHAO P, SONG S W, SHI Y Y, MO C B, ZHONG N Q. Comparison of bacterial diversity in rhizosphere soil of potato in different habitats. Acta Microbiologica Sinica, 2020, 60(11): 2434-2449. (in Chinese) | |
[16] | 袁仁文, 刘琳, 张蕊, 范淑英. 植物根际分泌物与土壤微生物互作关系的机制研究进展. 中国农学通报, 2020, 36(2): 26-35. |
YUAN R W, LIU L, ZHANG R, FAN S Y. The interaction mechanism between plant rhizosphere secretion and soil microbe: A review. Chinese Agricultural Science Bulletin, 2020, 36(2): 26-35. (in Chinese) | |
[17] |
GONÇALVES I C R, ARAÚJO A S F, CARVALHO E M S, CARNEIRO R F V. Effect of paclobutrazol on microbial biomass, respiration and cellulose decomposition in soil. European Journal of Soil Biology, 2009, 45(3): 235-238.
doi: 10.1016/j.ejsobi.2009.01.002 |
[18] | 包明, 何红霞, 马小龙, 王朝辉, 邱炜红. 化学氮肥与绿肥对麦田土壤细菌多样性和功能的影响. 土壤学报, 2018, 55(3): 734-743. |
BAO M, HE H X, MA X L, WANG Z H, QIU W H. Effects of chemical nitrogen fertilizer and green manure on diversity and functions of soil bacteria in wheat field. Acta Pedologica Sinica, 2018, 55(3): 734-743. (in Chinese) | |
[19] | 吕宁, 石磊, 刘海燕, 司爱君, 李全胜, 张国丽, 陈云. 生物药剂滴施对棉花黄萎病及根际土壤微生物数量和多样性的影响. 应用生态学报, 2019, 30(2): 602-614. |
LÜ N, SHI L, LIU H Y, SI A J, LI Q S, ZHANG G L, CHEN Y. Effects of biological agent dripping on cotton Verticillium wilt and rhizosphere soil microorganism. Chinese Journal of Applied Ecology, 2019, 30(2): 602-614. (in Chinese) | |
[20] | 高红, 盛剑, 白旭, 康宝铃, 孙欢欢, 孙海峰, 曹秋芬. 浑源黄芪内生细菌的菌群组成及其功能. 微生物学报, 2020, 60(8): 1638-1647. |
GAO H, SHENG J, BAI X, KANG B L, SUN H H, SUN H F, CAO Q F. Composition and function of endophytic bacteria residing the root tissue of Astragalus mongholicus in Hunyuan. Acta Microbiologica Sinica, 2020, 60(8): 1638-1647. (in Chinese) | |
[21] | 张爱梅, 郭保民, 韩雪英, 李曦冉. 两种不同生境中国沙棘种子内生细菌的多样性. 生态学报, 2020, 40(15): 5247-5257. |
ZHANG A M, GUO B M, HAN X Y, LI X R. Diversity of endophytic bacteria in seeds of Hippophae rhamnoides subsp. sinensis in two different habitats. Acta Ecologica Sinica, 2020, 40(15): 5247-5257. (in Chinese) | |
[22] | 邢颖, 张莘, 郝志鹏, 赵正雄, 于有志, 陈保冬. 烟草内生菌资源及其应用研究进展. 微生物学通报, 2015, 42(2): 411-419. |
XING Y, ZHANG X, HAO Z P, ZHAO Z X, YU Y Z, CHEN B D. Biodiversity of endophytes in tobacco plants and their potential application-A mini review. Microbiology China, 2015, 42(2): 411-419. (in Chinese) | |
[23] |
LOPES R, TSUI S, GONÇALVES P J R O, DE QUEIROZ M V. A look into a multifunctional toolbox: Endophytic Bacillus species provide broad and underexploited benefits for plants. World Journal of Microbiology & Biotechnology, 2018, 34(7): 94.
doi: 10.1007/s11274-018-2479-7 |
[24] |
SUN W H, XIONG Z, CHU L, LI W, SOARES M A, WHITE J F, LI H Y. Bacterial communities of three plant species from Pb-Zn contaminated sites and plant-growth promotional benefits of endophytic Microbacterium sp. (strain BXGe71). Journal of Hazardous Materials, 2019, 370: 225-231.
doi: 10.1016/j.jhazmat.2018.02.003 |
[25] |
PIETRO-SOUZA W, MELLO I S, VENDRUSCULLO S J, SILVA G F D, CUNHA C N D, WHITE J F, SOARES M A. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination. PLoS ONE, 2017, 12(7): e0182017.
doi: 10.1371/journal.pone.0182017 |
[26] |
TAN Y, CUI Y S, LI H Y, KUANG A X, LI X R, WEI Y L, JI X L. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. Journal of Basic Microbiology, 2017, 57(4): 337-344.
doi: 10.1002/jobm.v57.4 |
[27] | 段春梅, 薛泉宏, 呼世斌, 赵娟, 魏样, 王玲娜, 申光辉, 陈秦. 连作黄瓜枯萎病株、健株根域土壤微生物生态研究. 西北农林科技大学学报(自然科学版), 2010, 38(4): 143-150. |
DUAN C M, XUE Q H, HU S B, ZHAO J, WEI Y, WANG L N, SHEN G H, CHEN Q. Microbial ecology of Fusarium wilt infected and healthy cucumber plant in root zone of continuous cropping soil. Journal of Northwest A&F University (Natural Science Edition), 2010, 38(4): 143-150. (in Chinese) | |
[28] | 赵锋, 李光耀, 黄璐璐, 李远富, 顾燕萍, 李雪生, 谭辉华. 多效唑在花生和土壤中的残留分析及消解动态. 南方农业学报, 2017, 48(8): 1421-1426. |
ZHAO F, LI G Y, HUANG L L, LI Y F, GU Y P, LI X S, TAN H H. Residues and degradation dynamics of paclobutrazol in peanut and soil. Journal of Southern Agriculture, 2017, 48(8): 1421-1426. (in Chinese) | |
[29] | 徐忠山, 刘景辉, 逯晓萍, 陈晓晶, 张博文, 张兴隆, 周祎, 杨彦明. 施用有机肥提高黑土土壤酶活性、增加细菌数量及种类多样性. 中国土壤与肥料, 2020(4): 50-55. |
XU Z S, LIU J H, LU X P, CHEN X J, ZHANG B W, ZHANG X L, ZHOU Y, YANG Y M. The application of organic fertilizer improves the activity of the soil enzyme, increases the number and the species variety of bacteria in black soil. Soils and Fertilizers Sciences in China, 2020(4): 50-55. (in Chinese) | |
[30] | 吴济南, 王丽玲, 王惟帅, 杜慧玲. 尿素与多效唑配施对苯磺隆胁迫下土壤酶活性的影响. 中国水土保持科学, 2011, 9(4): 110-116. |
WU J N, WANG L L, WANG W S, DU H L. Effect of combined application of urea and paclobutrazol on soil enzyme activity under tribenuron-methyl stress. Science of Soil and Water Conservation, 2011, 9(4): 110-116. (in Chinese) | |
[31] | 黄冬芬, 郇恒福, 刘国道, 白昌军. 铝和镉及其复合污染对砖红壤酶活性的影响. 热带作物学报, 2013, 34(12): 2413-2418. |
HUANG D F, HUAN H F, LIU G D, BAI C J. The influence of aluminum and cadmium pollution on soil enzyme activities in a latosol. Chinese Journal of Tropical Crops, 2013, 34(12): 2413-2418. (in Chinese) | |
[32] | 孙锋, 赵灿灿, 李江涛, 陈思宇, 谷艳芳. 与碳氮循环相关的土壤酶活性对施用氮磷肥的响应. 环境科学学报, 2014, 34(4): 1016-1023. |
SUN F, ZHAO C C, LI J T, CHEN S Y, GU Y F. Response of soil enzyme activities in soil carbon and nitrogen cycles to the application of nitrogen and phosphate fertilizer. Acta Scientiae Circumstantiae, 2014, 34(4): 1016-1023. (in Chinese) | |
[33] |
NOSSA C W, OBERDORF W E, YANG LY, AAS J A, PASTER B J, DESANTIS T Z, BRODIE E L, MALAMUD D, POLES M A, PEI Z H. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World Journal of Gastroenterology, 2010, 16(33): 4135-4144.
doi: 10.3748/wjg.v16.i33.4135 |
[34] |
MUKHERJEE P K, CHANDRA J, RETUERTO M, SIKAROODI M, BROWN R E, JUREVIC R, SALATA R A, LEDERMAN M M, GILLEVET P M, GHANNOUM M A. Oral mycobiome analysis of HIV-infected patients: Identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathogens, 2014, 10(3): e1003996.
doi: 10.1371/journal.ppat.1003996 |
[35] | 赵峥, 褚长彬, 周德平, 王庆峰, 吴淑杭. 葡萄废果酵素肥对葡萄园土壤细菌多样性的影响. 果树学报, 2020, 37(8): 1207-1217. |
ZHAO Z, CHU C B, ZHOU D P, WANG Q F, WU S H. Effects of ferment fertilizer from waste grape berry on soil bacterial diversity in vineyards. Journal of Fruit Science, 2020, 37(8): 1207-1217. (in Chinese) | |
[36] |
JIANG X L, WANG Y N, XIE H, LI R Q, WEI J L, LIU Y. Environmental behavior of paclobutrazol in soil and its toxicity on potato and taro plants. Environmental Science and Pollution Research, 2019, 26(26): 27385-27395.
doi: 10.1007/s11356-019-05947-9 |
[37] | 杜林森, 唐美铃, 祝贞科, 魏亮, 魏晓梦, 周萍, 葛体达, 王久荣, 邹冬生, 吴金水. 长期施肥对不同深度稻田土壤碳氮水解酶活性的影响特征. 环境科学, 2018, 39(8): 3901-3909. |
DU L S, TANG M L, ZHU Z K, WEI L, WEI X M, ZHOU P, GE T D, WANG J R, ZOU D S, WU J S. Effects of long-term fertilization on enzyme activities in profile of paddy soil profiles. Environmental Science, 2018, 39(8): 3901-3909. (in Chinese) | |
[38] | 李娟, 王文丽, 赵旭. 生物肥料对当归生长及土壤酶活性、微生物多样性的影响. 广东农业科学, 2020, 47(6): 39-46. |
LI J, WANG W L, ZHAO X. Effects of biological fertilizers on Angelica sinensis growth and soil enzyme activity and microbial diversity. Guangdong Agricultural Sciences, 2020, 47(6): 39-46. (in Chinese) | |
[39] | 于会丽, 徐国益, 路绪强, 长俊杰, 邵微, 任言, 邓云, 司鹏. 微生物菌剂对连作西瓜土壤微环境及果实品质的影响. 果树学报, 2020, 37(7): 1025-1035. |
YU H L, XU G Y, LU X Q, ZHANG J J, SHAO W, REN Y, DENG Y, SI P. Effects of microbial agents on soil microenvironment and fruit quality of watermelon under continuous cropping. Journal of Fruit Science, 2020, 37(7): 1025-1035. (in Chinese) | |
[40] | 袁志华, 程波, 常玉海, 马兴. 15%多效唑可湿性粉剂对土壤微生物多样性的影响研究. 农业环境科学学报, 2008, 27(5): 1848-1852. |
YUAN Z H, CHENG B, CHANG Y H, MA X. Influence of paclobutrazol on microbial diversity in soil. Journal of Agro-Environment Science, 2008, 27(5): 1848-1852. (in Chinese) | |
[41] | 孟会生, 洪坚平, 杨毅, 王向英, 李廷亮, 栗丽. 配施磷细菌肥对复垦土壤细菌多样性及磷有效性的影响. 应用生态学报, 2016, 27(9): 3016-3022. |
MENG H S, HONG J P, YANG Y, WANG X Y, LI T L, LI L. Effect of applying phosphorus bacteria fertilizer on bacterial diversity and phosphorus availability in reclaimed soil. Chinese Journal of Applied Ecology, 2016, 27(9): 3016-3022. (in Chinese) | |
[42] | 袁红朝, 吴昊, 葛体达, 李科林, 吴金水, 王久荣. 长期施肥对稻田土壤细菌、古菌多样性和群落结构的影响. 应用生态学报, 2015, 26(6): 1807-1813. |
YUAN H Z, WU H, GE T D, LI K L, WU J S, WANG J R. Effects of long-term fertilization on bacterial and archaeal diversity and community structure within subtropical red paddy soils. Chinese Journal of Applied Ecology, 2015, 26(6): 1807-1813. (in Chinese) | |
[43] | 宋宇, 王鹏, 韦月平. 不同稻田共作模式对土壤细菌群落结构的影响. 西北农业学报, 2020, 29(2): 216-223. |
SONG Y, WANG P, WEI Y P. Effects of different co-cultivation patterns of rice field on soil bacterial communities structure. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(2): 216-223. (in Chinese) | |
[44] | 朱英波, 史凤玉, 张瑞敬, 武云鹏. 黑龙江大豆轮作和连作土壤细菌群落多样性比较. 植物保护学报, 2014, 41(4): 403-409. |
ZHU Y B, SHI F Y, ZHANG R J, WU Y P. Comparison of bacterial diversity in rotational and continuous soybean cropping soils in Heilongjiang. Journal of Plant Protection, 2014, 41(4): 403-409. (in Chinese) | |
[45] | 朱琳, 曾椿淋, 李雨青, 俞冰倩, 高凤, 魏巍, 许艳丽. 基于高通量测序的大豆连作土壤细菌群落多样性分析. 大豆科学, 2017, 36(3): 419-424. |
ZHU L, ZENG C L, LI Y Q, YU B Q, GAO F, WEI W, XU Y L. The characteristic of bacterial community diversity in soybean field with continuous cropping based on the high-throughput sequencing. Soybean Science, 2017, 36(3): 419-424. (in Chinese) | |
[46] | 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征. 生态环境学报, 2020, 29(1): 141-148. |
GE Y L, SUN T. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil. Ecology and Environmental Sciences, 2020, 29(1): 141-148. (in Chinese) | |
[47] | 谢玉清, 茆军, 王玮, 张志东, 朱静, 顾美英, 唐琦勇, 宋素琴, 黄伟, 王博, 张丽娟. 大蒜根腐病根际土壤真菌群落结构及多样性分析. 中国农学通报, 2020, 36(13): 145-153. |
XIE Y Q, MAO J, WANG W, ZHANG Z D, ZHU J, GU M Y, TANG Q Y, SONG S Q, HUANG W, WANG B, ZHANG L J. Structures and biodiversity of fungal communities in rhizosphere soil of root rot diseased garlic. Chinese Agricultural Science Bulletin, 2020, 36(13): 145-153. (in Chinese) | |
[48] | 苏小惠, 白玉超, 佘玮, 杨瑞芳, 崔丹丹, 李林林, 王继龙, 崔国贤. 不同苎麻品种根际微生物多样性群落结构分析. 中国麻业科学, 2019, 41(3): 114-121. |
SU X H, BAI Y C, SHE W, YANG R F, CUI D D, LI L L, WANG J L, CUI G X. Microbial community structures and diversities in different ramie varieties rhizosphere soils. Plant Fiber Sciences in China, 2019, 41(3): 114-121. (in Chinese) | |
[49] | 燕红梅, 张欣钰, 檀文君, 陈卫民. 5种植物根际真菌群落结构与多样性. 应用与环境生物学报, 2020, 26(2): 364-369. |
YAN H M, ZHANG X Y, TAN W J, CHEN W M. Biodiversity and composition of rhizosphere fungal communities associated with five plant species. Chinese Journal of Applied and Environmental Biology, 2020, 26(2): 364-369. (in Chinese) | |
[50] | 肖礼, 黄懿梅, 赵俊峰, 周俊英, 郭泽慧, 刘洋. 土壤真菌组成对黄土高原梯田种植类型的响应. 中国环境科学, 2017, 37(8): 3151-3158. |
XIAO L, HUANG Y M, ZHAO J F, ZHOU J Y, GUO Z H, LIU Y. High-throughput sequencing sevealed soil fungal communities under three terrace agrotypes on the loess plateau. China Environmental Science, 2017, 37(8): 3151-3158. (in Chinese) | |
[51] | 李晶晶, 续勇波. 连作年限对设施百合土壤微生物多样性的影响. 土壤通报, 2020, 51(2): 343-351. |
LI J J, XU Y B. Effects of continuous cropping years of lily on soil microbial diversities under greenhouse cultivation. Chinese Journal of Soil Science, 2020, 51(2): 343-351. (in Chinese) |
[1] | 王炫栋, 宋振, 兰赫婷, 江樱姿, 齐文杰, 刘晓阳, 蒋冬花. 杨梅园土壤优势放线菌的分离及其防病促生功能[J]. 中国农业科学, 2023, 56(2): 275-286. |
[2] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[3] | 夏芊蔚,陈浩,姚宇阗,笪达,陈健,石志琦. “优标”水稻体系对稻田土壤环境的影响[J]. 中国农业科学, 2022, 55(17): 3343-3354. |
[4] | 龚小雅,石记博,方凌,方亚鹏,吴凤芝. 淹水对辣椒连作土壤化学性质与微生物群落结构的影响[J]. 中国农业科学, 2022, 55(12): 2472-2484. |
[5] | 邵美琪,赵卫松,苏振贺,董丽红,郭庆港,马平. 盐胁迫下枯草芽孢杆菌NCD-2对番茄促生作用及对土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(21): 4573-4584. |
[6] | 袁武,靳振江,程跃扬,贾远航,梁锦桃,邱江梅,潘复静,刘德深. 岩溶湿地和稻田的土壤酶活性与CO2和CH4排放特征[J]. 中国农业科学, 2020, 53(14): 2897-2906. |
[7] | 徐梦,徐丽君,程淑兰,方华军,卢明珠,于光夏,杨艳,耿静,曹子铖,李玉娜. 人工草地土壤有机碳组分与微生物群落对施氮补水的响应[J]. 中国农业科学, 2020, 53(13): 2678-2690. |
[8] | 张梦阳,夏浩,吕波,丛铭,宋文群,姜存仓. 短期生物炭添加对不同类型土壤细菌和氨氧化微生物的影响[J]. 中国农业科学, 2019, 52(7): 1260-1271. |
[9] | 仇存璞, 陈晓芬, 刘明, 李委涛, 吴萌, 江春玉, 冯有智, 李忠佩. 两种典型水稻土中秸秆碳转化的微生物过程[J]. 中国农业科学, 2019, 52(13): 2268-2279. |
[10] | 张承,王秋萍,周开拓,吴小毛,龙友华,李姣红,尹显慧. 猕猴桃园套种吉祥草对土壤酶活性及果实产量、品质的影响[J]. 中国农业科学, 2018, 51(8): 1556-1567. |
[11] | 成艳红,黄欠如,武琳,黄尚书,钟义军,孙永明,张昆,章新亮. 稻草覆盖和香根草篱对红壤坡耕地土壤酶活性和微生物群落结构的影响[J]. 中国农业科学, 2017, 50(23): 4602-4612. |
[12] | 于淑婷,赵亚丽,王育红,刘卫玲,孟战赢,穆心愿,程思贤,李潮海. 轮耕模式对黄淮海冬小麦夏玉米两熟区的土壤改良效应[J]. 中国农业科学, 2017, 50(11): 2150-2165. |
[13] | 郭芸,孙本华,王颖,魏静,高明霞,张树兰,杨学云. 长期施用不同肥料塿土PLFA指纹特征[J]. 中国农业科学, 2017, 50(1): 94-103. |
[14] | 尚杰,耿增超,王月玲,陈心想,赵军. 施用生物炭对 土微生物量碳、氮及酶活性的影响[J]. 中国农业科学, 2016, 49(6): 1142-1151. |
[15] | 杨林生,张宇亭,黄兴成,张跃强,赵亚南,石孝均. 长期施用含氯化肥对稻-麦轮作体系土壤生物肥力的影响[J]. 中国农业科学, 2016, 49(4): 686-694. |
|