中国农业科学 ›› 2020, Vol. 53 ›› Issue (8): 1594-1605.doi: 10.3864/j.issn.0578-1752.2020.08.009
收稿日期:
2019-07-12
接受日期:
2019-11-06
出版日期:
2020-04-16
发布日期:
2020-04-29
通讯作者:
张玉玲
作者简介:
马原,E-mail: mayuan275@163.com。
基金资助:
MA Yuan,CHI MeiJing,ZHANG YuLing(),FAN QingFeng,YU Na,ZOU HongTao
Received:
2019-07-12
Accepted:
2019-11-06
Online:
2020-04-16
Published:
2020-04-29
Contact:
YuLing ZHANG
摘要:
【目的】分析东北黑土旱地改稻田后土壤团聚体组成及其稳定性、各粒级团聚体有机碳、全氮含量及其 13C、 15N自然丰度值的动态变化,探讨旱地改稻田后土壤团聚体有机碳、全氮的赋存能力及稳定性,揭示旱地改稻田后土壤团聚体及其有机碳、全氮的演变规律。【方法】选择东北典型黑土旱地土壤(种植大豆年限大于60年,作为对照)和改种不同年限的稻田土壤(3、5、10、17、20和25年,改稻田前种植作物均为大豆),利用土壤团聚体湿筛分离技术和稳定同位素分析技术,研究旱地改稻田后土壤团聚体有机碳、全氮的动态变化特征。【结果】在0—60 cm土层,与对照土壤相比,改种水稻各年限土壤中2—0.25 mm团聚体组成有所减少,0.25—0.053 mm和<0.053 mm团聚体组成有所增加,>2 mm团聚体组成的变化无明显规律,但旱地改稻田不同年限均以2—0.053 mm团聚体为主;团聚体平均重量直径(MWD)与>2 mm团聚体组成之间呈显著线性正相关关系(P<0.01),与0.25—0.053 mm、<0.053 mm团聚体组成之间均呈显著线性负相关关系(P<0.01或P<0.05);水稳性团聚体组成变化受水稻种植年限和土层深度的显著影响,而MWD的变化则受土层深度的显著影响。与对照土壤相比,在0—40 cm土层,2—0.25 mm、0.25—0.053 mm团聚体有机碳和全氮含量在改种水稻3年时均有所下降,在改种水稻3—25年间均随水稻种植年限延长大体上呈增加趋势。总体上,2—0.25 mm、0.25—0.053 mm团聚体是赋存有机碳和全氮的主要粒级;在0—60 cm土层,>2 mm团聚体有机碳、全氮含量与其团聚体组成之间呈显著正相关关系(P<0.01或P<0.05),在0—20 cm土层,2—0.25 mm团聚体有机碳、全氮含量与其团聚体组成之间也呈显著正相关关系(P<0.01或P<0.05);<2 mm团聚体有机碳和全氮含量的变化受水稻种植年限影响显著,而>0.25 mm团聚体有机碳和全氮含量的变化则受土层深度影响显著。与对照土壤相比,各粒级团聚体中δ 13C在改种水稻3年时均明显增加,在改种水稻5年时均明显下降,在改种水稻5—25年间变化不明显,各粒级团聚体中δ 15N在改种水稻25年间均略有下降。总体上,在改稻田3—25年间,团聚体中δ 13C、δ 15N的变化受水稻种植年限和土层深度的显著影响,其数值均随粒级的减少而增加,相同年限各粒级团聚体δ 13C随着土层的加深而增大,δ 15N无明显变化规律。【结论】东北典型黑土旱地改稻田25年间,土壤中非水稳性大团聚体遭受破坏形成了粒径较小的团聚体,2—0.053 mm水稳性团聚体是有机碳、全氮固存的主要载体,较小粒级团聚体赋存的有机碳较为稳定,其稳定性随水稻种植年限延长、土层加深而增强。
马原,迟美静,张玉玲,范庆峰,虞娜,邹洪涛. 黑土旱地改稻田土壤水稳性团聚体有机碳和全氮的变化特征[J]. 中国农业科学, 2020, 53(8): 1594-1605.
MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil[J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
表1
供试土壤的地理信息及理化性质"
旱地改稻田年限 Years of the conversion from upland to paddy field (a) | 地理坐标 Geographic coordinate | 土层 Soil depth (cm) | 有机碳 Soil organic carbon (g·kg-1) | δ13C (‰) | 全氮 Total nitrogen (g·kg-1) | δ15N (‰) | C/N | pH |
---|---|---|---|---|---|---|---|---|
0 | 127.533° E, 47.005° N | 0—20 | 28.60 | -24.72 | 2.34 | 9.25 | 12.25 | 5.99 |
20—40 | 22.25 | -24.51 | 1.71 | 10.43 | 12.97 | 5.97 | ||
40—60 | 15.34 | -24.35 | 1.26 | 10.82 | 12.12 | 5.82 | ||
3 | 127.518° E, 47.001° N | 0—20 | 16.23 | -24.04 | 1.39 | 6.63 | 11.64 | 6.07 |
20—40 | 14.78 | -23.67 | 1.24 | 7.84 | 11.98 | 5.95 | ||
40—60 | 13.25 | -23.52 | 1.12 | 8.07 | 11.69 | 5.99 | ||
5 | 127.520° E, 47.002° N | 0—20 | 24.09 | -24.78 | 1.99 | 6.71 | 12.13 | 5.79 |
20—40 | 24.50 | -24.58 | 1.94 | 7.31 | 12.62 | 6.23 | ||
40—60 | 21.63 | -23.52 | 1.78 | 7.28 | 12.15 | 6.10 | ||
10 | 127.528° E, 46.990° N | 0—20 | 23.93 | -24.99 | 1.83 | 6.05 | 13.28 | 5.88 |
20—40 | 22.88 | -24.57 | 1.76 | 7.50 | 12.95 | 5.54 | ||
40—60 | 22.02 | -24.41 | 1.68 | 6.52 | 11.33 | 5.49 | ||
17 | 127.537° E, 46.997° N | 0—20 | 29.39 | -24.91 | 2.35 | 6.93 | 10.95 | 6.11 |
20—40 | 28.90 | -24.58 | 2.24 | 6.48 | 12.86 | 5.93 | ||
40—60 | 25.01 | -24.62 | 2.00 | 6.44 | 12.53 | 5.73 | ||
20 | 127.519° E, 46.999° N | 0—20 | 31.61 | -25.23 | 2.49 | 4.69 | 12.69 | 6.26 |
20—40 | 26.08 | -24.53 | 2.04 | 4.59 | 12.76 | 6.27 | ||
40—60 | 25.71 | -24.73 | 1.99 | 4.98 | 12.94 | 6.07 | ||
25 | 127.538° E, 46.995° N | 0—20 | 36.36 | -25.25 | 2.74 | 7.06 | 13.46 | 6.03 |
20—40 | 28.20 | -25.10 | 2.12 | 7.08 | 13.28 | 6.28 | ||
40—60 | 19.56 | -24.66 | 2.08 | 7.80 | 9.72 | 6.34 |
表3
旱地改稻田后不同年限土壤团聚体有机碳和全氮含量"
年限 Year (a) | 土层深度 Soil depth (cm) | >2 mm | 2-0.25 mm | 0.25-0.053 mm | <0.053 mm | ||||
---|---|---|---|---|---|---|---|---|---|
OC (g·kg-1) | TN (g·kg-1) | OC (g·kg-1) | TN (g·kg-1) | OC (g·kg-1) | TN (g·kg-1) | OC (g·kg-1) | TN (g·kg-1) | ||
0 | 0-20 | 4.2±0.1 | 0.3±0.0 | 14.0±1.5 | 1.1±0.1 | 7.7±1.0 | 0.6±0.1 | 4.0±0.5 | 0.3±0.1 |
20-40 | 3.2±0.3 | 0.2±0.0 | 10.2±0.7 | 0.8±0.1 | 7.1±0.5 | 0.5±0.1 | 3.1±0.2 | 0.2±0.0 | |
40-60 | 1.1±0.5 | 0.1±0.0 | 7.8±2.1 | 0.6±0.2 | 4.6±0.2 | 0.4±0.0 | 2.8±0.9 | 0.2±0.1 | |
3 | 0-20 | 2.3±0.4 | 0.2±0.0 | 5.7±0.1 | 0.4±0.0 | 6.1±0.6 | 0.5±0.1 | 3.4±0.4 | 0.3±0.0 |
20-40 | 0.5±0.1 | 0.0±0.0 | 4.7±0.4 | 0.4±0.0 | 6.0±1.0 | 0.5±0.1 | 4.4±0.9 | 0.4±0.1 | |
40-60 | 0.7±0.2 | 0.1±0.0 | 4.9±0.3 | 0.4±0.0 | 4.9±1.5 | 0.4±0.1 | 3.7±1.1 | 0.3±0.1 | |
5 | 0-20 | 4.4±0.7 | 0.4±0.8 | 10.1±0.5 | 0.8±0.1 | 7.3±1.2 | 0.6±0.1 | 3.9±0.4 | 0.3±0.0 |
20-40 | 1.6±0.5 | 0.1±0.0 | 8.2±0.5 | 0.6±0.0 | 9.8±0.6 | 0.8±0.1 | 5.2±0.6 | 0.4±0.1 | |
40-60 | 0.6±0.3 | 0.1±0.0 | 6.6±1.1 | 0.5±0.0 | 8.7±1.0 | 0.7±0.1 | 5.7±0.8 | 0.5±0.1 | |
10 | 0-20 | 2.6±0.5 | 0.2±0.0 | 8.2±1.6 | 0.6±0.1 | 9.1±1.0 | 0.7±0.1 | 5.1±0.7 | 0.4±0.1 |
20-40 | 2.4±1.3 | 0.2±0.1 | 7.1±1.0 | 0.6±0.1 | 8.8±0.8 | 0.7±0.0 | 5.7±0.8 | 0.5±0.1 | |
40-60 | 0.6±0.2 | 0.0±0.0 | 6.4±0.5 | 0.5±0.1 | 9.2±1.2 | 0.7±0.1 | 6.4±0.7 | 0.5±0.1 | |
17 | 0-20 | 8.3±1.0 | 0.7±0.2 | 11.2±0.1 | 0.9±0.2 | 6.3±0.9 | 0.5±0.2 | 3.5±0.3 | 0.3±0.1 |
20-40 | 6.9±0.9 | 0.5±0.1 | 9.0±1.9 | 0.6±0.1 | 8.7±2.4 | 0.6±0.2 | 4.6±0.9 | 0.3±0.0 | |
40-60 | 0.7±0.1 | 0.1±0.0 | 8.8±0.8 | 0.7±0.1 | 9.3±0.1 | 0.8±0.1 | 6.8±0.9 | 0.4±0.0 | |
20 | 0-20 | 3.1±0.3 | 0.2±0.0 | 11.3±1.1 | 0.8±0.1 | 11.4±1.6 | 0.8±0.1 | 6.0±0.6 | 0.4±0.0 |
20-40 | 1.9±0.9 | 0.1±0.0 | 9.9±1.5 | 0.7±0.1 | 8.4±0.5 | 0.7±0.1 | 6.2±0.7 | 0.5±0.1 | |
40-60 | 2.2±0.7 | 0.2±0.1 | 11.4±0.6 | 0.7±0.1 | 7.6±0.4 | 0.8±0.1 | 4.4±0.5 | 0.3±0.0 | |
25 | 0-20 | 5.9±0.8 | 0.4±0.1 | 15.2±1.8 | 1.1±0.2 | 10.9±1.9 | 0.8±0.2 | 4.4±1.3 | 0.3±0.1 |
20-40 | 4.1±1.9 | 0.3±0.2 | 10.7±1.1 | 0.8±0.1 | 9.6±0.6 | 0.7±0.1 | 4.3±1.3 | 0.3±0.1 | |
40-60 | 1.6±0.4 | 0.2±0.1 | 5.8±0.9 | 0.8±0.2 | 5.9±0.7 | 0.7±0.1 | 4.9±0.9 | 0.5±0.1 | |
双因素方差分析的P值P values of two-ways ANOVA | |||||||||
年限Year | 0.030* | 0.070 ns | 0.000*** | 0.000*** | 0.000*** | 0.001*** | 0.004** | 0.009** | |
土层Soil depth | 0.000*** | 0.000*** | 0.000*** | 0.000*** | 0.004** | 0.884 ns | 0.328 ns | 0.143 ns | |
年限×土层 Years×Soil depth | 0.680 ns | 0.550 ns | 0.790 ns | 0.220 ns | 0.960 ns | 0.436 ns | 0.228 ns | 0.281 ns |
表5
旱地改稻田后不同年限土壤团聚体中的δ13C和δ15N"
年限 Year (a) | 土层深度 Soil depth (cm) | >2 mm | 0.25 mm | 0.25-0.053 mm | <0.053 mm | ||||
---|---|---|---|---|---|---|---|---|---|
δ13C (‰) | δ15N (‰) | δ13C (‰) | δ15N (‰) | δ13C (‰) | δ15N (‰) | δ13C (‰) | δ15N (‰) | ||
0 | 0-20 | -24.1±0.2 | 6.5±0.2 | -24.1±0.1 | 6.7±0.4 | -24.1±0.2 | 6.7±0.3ab | -24.1±0.2 | 7.0±0.2 |
20-40 | -24.2±0.1 | 6.8±0.1 | -24.1±0.1 | 7.3±0.2 | -23.9±0.1 | 7.4±0.2ab | -23.8±0.2 | 7.4±0.0 | |
40-60 | -24.1±0.1 | 6.2±0.3 | -23.7±0.1 | 7.0±0.1 | -23.8±0.0 | 6.6±0.3ab | -23.8±0.1 | 7.0±0.3 | |
3 | 0-20 | -23.7±0.2 | 5.4±0.5 | -23.6±0.1 | 6.2±0.4 | -23.3±0.1 | 6.3±0.3ab | -23.2±0.1 | 6.3±0.2 |
20-40 | -23.7±0.3 | 6.1±0.4 | -23.4±0.3 | 6.3±0.1 | -23.3±0.2 | 6.6±0.2ab | -23.0±0.3 | 6.5±0.3 | |
40-60 | -23.7±0.6 | 4.7±0.6 | -23.2±0.4 | 5.8±0.3 | -23.0±0.4 | 6.1±0.2ab | -23.1±0.3 | 6.0±0.3 | |
5 | 0-20 | -24.3±0.3 | 6.9±0.5 | -24.3±0.2 | 6.7±0.4 | -24.2±0.2 | 6.8±0.2ab | -24.0±0.1 | 6.0±0.3 |
20-40 | -24.5±0.1 | 6.2±0.1 | -24.3±0.1 | 6.7±0.1 | -24.1±0.1 | 6.7±0.0ab | -24.0±0.1 | 6.8±0.1 | |
40-60 | -24.6±0.1 | 5.9±0.3 | -23.9±0.2 | 6.6±0.2 | -23.9±0.2 | 7.0±0.3ab | -23.6±0.1 | 6.7±0.2 | |
10 | 0-20 | -24.7±0.1 | 6.0±0.4 | -24.7±0.1 | 5.7±0.3 | -24.3±0.2 | 6.1±0.3ab | -24.1±0.2 | 6.1±0.2 |
20-40 | -24.5±0.1 | 5.8±0.1 | -24.3±0.1 | 6.2±0.1 | -24.0±0.2 | 6.5±0.3ab | -23.9±0.2 | 6.4±0.1 | |
40-60 | -24.4±0.4 | 6.0±0.1 | -24.0±0.2 | 6.7±0.2 | --23.9±0.2 | 6.9±0.2ab | -23.8±0.1 | 7.0±0.2 | |
17 | 0-20 | -24.6±0.3 | 6.2±0.1 | -24.6±0.2 | 6.1±0.1 | -24.5±0.1 | 6.1±0.3b | -24.3±0.1 | 6.3±0.4 |
20-40 | -24.2±0.1 | 6.3±0.2 | -23.9±0.1 | 6.6±0.2 | -23.9±0.1 | 6.7±0.1ab | -23.8±0.0 | 6.5±0.2 | |
40-60 | -24.5±0.3 | 6.5±0.1 | -24.0±0.3 | 7.0±0.1 | -24.1±0.2 | 7.0±0.1ab | -23.9±0.2 | 7.3±0.2 | |
20 | 0-20 | -24.7±0.1 | 6.2±0.1 | -24.5±0.1 | 6.4±0.1 | -24.2±0.1 | 6.7±0.1ab | -24.1±0.1 | 6.6±0.1 |
20-40 | -23.8±0.4 | 6.5±0.3 | -24.0±0.2 | 6.9±0.3 | -24.0±0.2 | 7.1±0.2ab | -23.7±0.1 | 7.2±0.0 | |
40-60 | -23.9±0.1 | 7.0±00.3 | -23.8±0.2 | 7.0±0.2 | -23.7±0.2 | 7.1±0.2ab | -23.7±0.2 | 7.0±0.1 | |
25 | 0-20 | -24.7±0.3 | 5.7±0.1 | -24.6±0.1 | 6.0±0.2 | -24.3±0.2 | 6.2±0.2ab | -24.2±0.2 | 6.3±0.2 |
20-40 | -24.2±0.3 | 6.6±0.2 | -24.0±0.3 | 6.9±0.1 | -23.9±0.4 | 7.5±0.5a | -23.8±0.3 | 7.7±0.2 | |
40-60 | -24.5±0.5 | 6.4±0.5 | -24.3±0.7 | 6.2±0.5 | -24.1±0.6 | 6.2±0.4ab | -23.9±0.6 | 6.2±0.4 | |
双因素方差分析的P值 P values of two-ways ANOVA | |||||||||
年限Year | 0.020* | 0.010** | 0.010** | 0.000*** | 0.000*** | 0.045* | 0.000*** | 0.020* | |
土层Soil depth | 0.280 ns | 0.490 ns | 0.000*** | 0.003** | 0.010** | 0.020** | 0.020* | 0.000*** | |
年限×土层 Years×Soil depth | 0.690 ns | 0.100 ns | 0.810 ns | 0.132 ns | 0.970 ns | 0.035* | 0.950 ns | 0.130 ns |
[1] | WANG Y, ZHANG J H, ZHANG Z H . Influences of intensive tillage on water-stable aggregate distribution on a steep hillslope. Soil and Tillage Research, 2015,151:82-92. |
[2] | HUANG R, LAN M L, LIU J, GAO M . Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning. Environmental Science & Pollution Research, 2017,24(36):1-11. |
[3] | SIX J, BOSSUYT H, DEGRYZE S, DENEF K . A history of research on the link between (Micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 2004,79(1):7-31. |
[4] | LIU Y, HU C, HU W, WANG L, LI Z G, PAN J F, CHEN F . Stable isotope fractionation provides information on carbon dynamics in soil aggregates subjected to different long-term fertilization practices. Soil and Tillage Research, 2018,177:54-60. |
[5] | 贾树海, 张佳楠, 张玉玲 . 东北黑土区旱田改稻田后土壤有机碳、全氮的变化特征, 中国农业科学, 2017,50(7):1252-1262. |
JIA S H, ZHANG J N, ZHANG Y L . Changes of the characteristics of soil organic carbon and total nitrogen after conversation from upland to paddy field in black soil region of Northeast China. Scientia Agricultura Sinica, 2017,50(7):1252-1262. (in Chinese) | |
[6] | ZHAO J S, CHEN S, HU R G, LI Y Y . Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil and Tillage Research, 2017,167:73-79. |
[7] | 徐香茹, 汪景宽 . 土壤团聚体与有机碳稳定机制的研究进展. 土壤通报, 2017,48(6):1523-1529. |
XU X R, WANG J K . A review on different stabilized mechanisms of soil aggregates and organic carbon. Chinese Journal of Soil Science, 2017,48(6):1523-1529. (in Chinese) | |
[8] | ZHENG H B, LIU W R, ZHENG J Y, LUO Y, LI R P, WANG H, QI H . Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China, PLoS One, 2018,13(6):e199523. |
[9] | ZOU P, FU J R, CAO Z H, YE J, YU Q G . Aggregate dynamics and associated soil organic matter in topsoils of two 2,000-year paddy soil chronosequences. Journal of Soils & Sediments, 2015,15(3):510-522. |
[10] | WANG P, LIU Y L, LI L Q, CHENG K, ZHENG J F, ZHANG X H, ZHENG J W, JOSEPH S, PAN G X . Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Scientific Reports, 2015,5:15704. |
[11] | 李昌新, 黄山, 彭现宪, 黄欠如, 张卫建 . 南方红壤稻田与旱地土壤有机碳及其组分的特征差异. 农业环境科学学报, 2009,28(3):606-611. |
LI C X, HUANG S, PENG X X, HUANG Q R, ZHANG W J . Differences in soil organic carbon fractions between paddy field and upland field in red soil region of South China. Agro-Environment Science, 2009, 28(3):606-611. (in Chinese) | |
[12] | YAN X, ZHOU H, ZHU Q H, WANG X F, ZHANG Y Z, YU X C, PENG X . Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in Southern China. Soil and Tillage Research, 2013,130:42-51. |
[13] | SUN Y N, HUANG S, YU X C, ZHANG W J . Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in Subtropical China. Plant and Soil, 2015,397(1):189-200. |
[14] | HUANG S, PAN X H, GUO J, QIAN C R, ZHANG W J . Differences in soil organic carbon stocks and fraction distributions between rice paddies and upland cropping systems in China. Journal of Soils and Sediments, 2014,14(1):89-98. |
[15] | PAN G X, WU L S, LI L Q, ZHANG X H, GONG W, WOOD Y . Organic carbon stratification and size distribution of three typical paddy soils from Taihu lake region, China. Environmental Sciences, 2008,20(4):456-463. |
[16] | 毛霞丽, 陆扣萍, 何丽芝, 宋照亮, 徐祖祥, 杨文叶, 徐进, 王海龙 . 长期施肥对浙江稻田土壤团聚体及其有机碳分布的影响. 土壤学报, 2015(4):828-838. |
MAO X L, LU K P, HE L Z, SONG Z L, XU Z X, YANG W Y, XU J, WANG H L . Effect of long-term fertilizer application on distribution of aggregate-associated organic carbon in paddy doil. Acta Pedologica Sinica, 2015(4):828-838. (in Chinese) | |
[17] | 陈晓芬, 李忠佩, 刘明, 江春玉 . 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响. 中国农业科学, 2013,46(5):950-960. |
CHEN X F, LI Z P, LIU M, JIANG C Y . Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of Subtropical China. Scientia Agricultura Sinica, 2013,46(5):950-960. (in Chinese) | |
[18] | 王欣欣, 符建荣, 邹平, 陈维, 叶静, 俞巧钢, 姜丽娜, 王强 . 长期植稻年限序列水稻土团聚体有机碳分布特征. 应用生态学报, 2013,24(3):719-724. |
WANG X X, FU J R, ZOU P, CHEN W, YE J, YU Q G, JIANG L N, WANG Q . Distribution characteristics of aggregates organic carbon in a paddy soil chronosequence. Chinese Journal of Applied Ecology, 2013,24(3):719-724. (in Chinese) | |
[19] | WANG H, GUAN D S, ZHANG R D, CHEN Y J, HU Y T, XIAO L . Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecological Engineering, 2014,70:206-211. |
[20] | 徐文静, 丛耀辉, 张玉玲, 段鹏鹏, 范庆锋, 张玉龙 . 黑土区水稻土水稳性团聚体有机碳及其颗粒有机碳的分布特征. 水土保持学报, 2016,30(4):210-215. |
XU W J, CONG Y H, ZHANG Y L, DUAN P P, FAN Q F, ZHANG Y L . Distribution of organic carbon and partivulate organic carbon in water-stable aggregates of paddy soil in black soil area. Journal of Soil and Water Conversion, 2016,30(4):210-215. (in Chinese) | |
[21] | 窦森, 张晋京 . 用δ 13C值研究土壤有机质周转的方法及其评价 . 吉林农业大学学报, 2001,23(2):64-67. |
DOU S, ZHANG J J . Introduction of a method for studying turnover of soil organic matter. Journal of Jilin Agricultural University, 2001,23(2):64-67. (in Chinese) | |
[22] | BAI E, BOUTTON T W, LIU F, WU X B, HALLMARK C T, ARCHER S R . Spatial variation of soil δ 13C and its relation to carbon input and soil texture in a subtropical lowland woodland . Soil Biology & Biochemistry, 2012,44(1):102-112. |
[23] | PERI P L, LADD B, PEPPER D A, BONSER S P, LAFFAN S W, AMELUNG W . Carbon (δ 13C) and nitrogen (δ 15N) stable isotope composition in plant and soil in Southern Patagonia's Native Forests . Global Change Biology, 2012,18(1):311-321. |
[24] | KULSAWAT W, PORNTEPKASEMSAN B, NOCHIT P . Paddy soil profile dstribution of δ 13C subjected to rice straw amendment and burning . Applied Mechanics and Materials, 2019,886:3-7. |
[25] | GUNINA A, KUZYAKOV Y . Pathways of Litter C by Formation of aggregates and SOM density fractions: implications from 13C natural abundance . Soil Biology and Biochemistry, 2014,71:95-104. |
[26] | LIM S S, KWAK J H, LEE K S, CHANG S X, YOON K S, KIM H Y, CHOI W J . Soil and plant nitrogen pools in paddy and upland ecosystems have contrasting δ 15N . Biology and Fertility of Soils, 2015,51(2):231-239. |
[27] | LIU Y, LIU W Z, WU L H, LIU C, WANG L, CHEN F, LI Z G . Soil aggregate-associated organic carbon dynamics subjected to different types of land use: evidence from 13C natural abundance . Ecological Engineering, 2018,122:295-302. |
[28] | SIX J, ELLIOTT E T, PAUSTIAN K, DORAN J W . Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998,62(5):1367-1377. |
[29] | ZHAO J S, CHEN S, HU R G, LI Y L . Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil and Tillage Research, 2017,167:73-79. |
[30] | VAN VEEN A J, KUIKMAN P J . Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry, 1990,11(3):213-223. |
[31] | JIANG X J, XIE D T . Combining ridge with no-tillage in lowland rice-based cropping system: long-term effect on soil and rice yield. Pedosphere, 2009,19(4):515-522. |
[32] | 郝翔翔, 杨春葆, 苑亚茹 . 连续秸秆还田对黑土团聚体中有机碳含量及土壤肥力的影响. 中国农学通报, 2013,29(35):263-269. |
HAO X X, YANG C B, YUAN Y R . Effects of continuous straw returning on organic carbon content in aggregates and fertility of black soil. Chinese Agricultural Science Bulletin, 2013,29(35):263-269. (in Chinese) | |
[33] | 徐虎, 张敬业, 蔡岸冬, 王小利, 张文菊 . 外源有机物料碳氮在红壤团聚体中的残留特征. 中国农业科学, 2015,48(23):4660-4668. |
XU H, ZHANG J Y, CAI A D, WANG X L, ZHANG W J . Retention characteristic of carbon and nitrogen from amendments in different size aggregates of red soil. Scientia Agricultura Sinica, 2015,48(23):4660-4668. (in Chinese) | |
[34] | RABBI S M F, WILSON B R, LOCKWOOD P V, DANIEL H, YOUNG I M . Aggregate hierarchy and carbon mineralization in two oxisols of new south wales, Australia. Soil and Tillage Research, 2015,146:193-203. |
[35] | 高崇升, 王建国 . 黑土农田土壤有机碳演变研究进展. 中国生态农业学报, 2011,19(6):1468-1474. |
GAO C S, WANG J G . A review of researches on evolution of soil organic carbon in mollisols farmland. Chinese Journal of Eco- Agriculture, 2011,19(6):1468-1474. (in Chinese) | |
[36] | CHEN Z D, TI J S, CHEN F . Soil aggregates response to tillage and residue management in a double paddy rice soil of the Southern China. Nutrient Cycling in Agroecosystems, 2017,109(9):1-12. |
[37] | WANG B S, GAO L L, YU W S, WEI X Q, LI J, LI S P, SONG X J, LIANG G P, CAI D X, WU X P . Distribution of soil aggregates and organic carbon in deep soil under long-term conservation tillage with residual retention in dryland. Journal of Arid Land, 2019,11(2):241-254. |
[38] | KÖGEL-KNABNER I, AMELUNG W, CAO Z H, FIEDLER S, FRENZEL P, JAHN R, KALBITZ K, KÖIBI A, SCHLOTER M . Biogeochemistry of paddy soils. Geoderma, 2010,157(1):1-14. |
[39] | QIAN J, LIU J J, WANG P F, WANG C, HU J, LI K, LU B, TIAN X, GUAN W Y . Effects of riparian land use changes on soil aggregates and organic carbon. Ecological Engineering, 2018,112:82-88. |
[40] | 慈恩, 杨林章, 倪九派, 高明, 谢德体 . 不同区域水稻土的氮素分配及δ 15N特征 . 水土保持学报, 2009,23(2):103-108. |
CI E, YANG L Z, NI J P, GAO M, XIE D T . Distribution and δ 15N character of nitrogen in paddy soils located in different regions . Journal of Soil and Water Conservation, 2009,23(2):103-108. (in Chinese) | |
[41] | CHOI W J, RO H M . Differences in isotopic fractionation of nitrogen in water-saturated and unsaturated soils. Soil Biology and Biochemistry, 2003,35(3):483-486. |
[1] | 高佳蕊,方胜志,张玉玲,安晶,虞娜,邹洪涛. 东北黑土不同开垦年限稻田土壤有机氮矿化特征[J]. 中国农业科学, 2022, 55(8): 1579-1588. |
[2] | 张学林, 吴梅, 何堂庆, 张晨曦, 田明慧, 李晓立, 侯小畔, 郝晓峰, 杨青华, 李潮海. 秸秆分解对两种类型土壤无机氮和氧化亚氮排放的影响[J]. 中国农业科学, 2022, 55(4): 729-742. |
[3] | 杨滨娟,李萍,胡启良,黄国勤. 紫云英与油菜混播对稻田土壤N2O排放及相关功能基因丰度的影响[J]. 中国农业科学, 2022, 55(4): 743-754. |
[4] | 秦贞涵,王琼,张乃于,金玉文,张淑香. 黑土有效磷阈值区间的磷形态特征及对土壤化学性质的响应[J]. 中国农业科学, 2022, 55(22): 4419-4432. |
[5] | 吴俊,郭大千,李果,郭熙,钟亮,朱青,国佳欣,叶英聪. 基于CARS-BPNN的江西省土壤有机碳含量高光谱预测[J]. 中国农业科学, 2022, 55(19): 3738-3750. |
[6] | 王楚涵,刘菲,高健永,张慧芳,谢英荷,曹寒冰,谢钧宇. 减氮覆膜下土壤有机碳组分含量的变化特征[J]. 中国农业科学, 2022, 55(19): 3779-3790. |
[7] | 侯慧芝,张绪成,尹嘉德,方彦杰,王红丽,于显枫,马一凡,张国平,雷康宁. 旱地化肥分层和深施对春小麦水肥利用及产量的影响[J]. 中国农业科学, 2022, 55(17): 3289-3302. |
[8] | 高仁才,陈松鹤,马宏亮,莫飘,柳伟伟,肖云,张雪,樊高琼. 秋闲期秸秆覆盖与减氮优化根系分布提高冬小麦产量及水氮利用效率[J]. 中国农业科学, 2022, 55(14): 2709-2725. |
[9] | 崔帅,刘烁然,王寅,夏晨真,焉莉,冯国忠,高强. 吉林省旱地土壤有效硫含量及其与土壤有机质和全氮的关系[J]. 中国农业科学, 2022, 55(12): 2372-2383. |
[10] | 任俊波,杨雪丽,陈平,杜青,彭西红,郑本川,雍太文,杨文钰. 种间距离对玉米-大豆带状套作土壤理化性状及根系空间分布的影响[J]. 中国农业科学, 2022, 55(10): 1903-1916. |
[11] | 王碧胜,于维水,武雪萍,高丽丽,李景,宋霄君,李生平,卢晋晶,郑凤君,蔡典雄. 不同耕作措施下添加秸秆对土壤有机碳及其相关因素的影响[J]. 中国农业科学, 2021, 54(6): 1176-1187. |
[12] | 郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应[J]. 中国农业科学, 2021, 54(3): 596-607. |
[13] | 毛安然,赵护兵,杨慧敏,王涛,陈秀文,梁文娟. 不同覆盖时期和覆盖方式对旱地冬小麦经济和环境效应的影响[J]. 中国农业科学, 2021, 54(3): 608-618. |
[14] | 黄明,吴金芝,李友军,付国占,赵凯男,张振旺,杨中帅,侯园泉. 耕作方式和氮肥用量对旱地小麦产量、蛋白质含量和土壤硝态氮残留的影响[J]. 中国农业科学, 2021, 54(24): 5206-5219. |
[15] | 张梦亭, 刘萍, 黄丹丹, 贾淑霞, 张晓珂, 张士秀, 梁文举, 陈学文, 张延, 梁爱珍. 东北黑土线虫群落对长期免耕后土壤扰动的响应[J]. 中国农业科学, 2021, 54(22): 4840-4850. |
|