中国农业科学 ›› 2022, Vol. 55 ›› Issue (4): 743-754.doi: 10.3864/j.issn.0578-1752.2022.04.010
收稿日期:
2021-01-21
接受日期:
2021-05-14
出版日期:
2022-02-16
发布日期:
2022-02-23
通讯作者:
黄国勤
作者简介:
杨滨娟,Tel:0791-83828143;E-mail:基金资助:
YANG BinJuan(),LI Ping,HU QiLiang,HUANG GuoQin()
Received:
2021-01-21
Accepted:
2021-05-14
Online:
2022-02-16
Published:
2022-02-23
Contact:
GuoQin HUANG
摘要:
【目的】探究绿肥混播对稻田土壤N2O的减排效果和机制,筛选既高产稳产,又减排的适合南方双季稻区发展应用的绿肥混播种植模式。【方法】比较不同紫云英与油菜混播比例(单播紫云英(CK1)、单播油菜(CK2))、3/4紫云英+1/4油菜(3/4M + 1/4R)、1/2紫云英+1/2油菜(1/2M + 1/2R)、1/4紫云英+3/4油菜(1/4M + 3/4R))对稻田N2O排放规律及相关功能基因的影响。【结果】(1)作物种类影响N2O排放。各处理的N2O排放规律基本一致,其中冬作季N2O排放主要集中在冬季绿肥的盛花期,早晚稻季主要集中在水稻的分蘖、灌浆和成熟期。总体来看,稻田N2O排放主要集中在水稻季,早稻季的N2O排放量低于晚稻季;2018年稻田N2O排放通量总体比2019年高。(2)各处理的早稻N2O累积排放量差异均不显著。连续两年单播处理的N2O累积排放量低于混播各处理,其中2019年处理CK1最低,处理3/4M+1/4R的N2O周年累积排放量在各混播处理中最低。(3)整体来看,晚稻土壤的amoA-AOA和amoA-AOB基因拷贝数比早稻要高,amoA-AOA基因拷贝数比amoA-AOB高1—2个数量级。晚稻的土壤nirS、nirK、nosZ基因拷贝数比早稻要高,其中nirS基因拷贝数比nirK和nosZ高1—2个数量级。紫云英与油菜混播提高了土壤amoA-AOA和amoA-AOB基因丰度,amoA-AOA基因为优势功能基因,而且提高了土壤nirS、nirK、nosZ基因丰度,nirS基因占主导地位。反硝化基因拷贝数比硝化基因拷贝数高1—3个数量级,反硝化作用对N2O排放贡献更大。【结论】“3/4紫云英+1/4油菜-早稻-晚稻”种植模式在保证高产和高肥力的情况下,N2O排放量相对较低,是较理想的种植模式。
杨滨娟,李萍,胡启良,黄国勤. 紫云英与油菜混播对稻田土壤N2O排放及相关功能基因丰度的影响[J]. 中国农业科学, 2022, 55(4): 743-754.
YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields[J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
表1
实时荧光定量PCR扩增引物"
基因名 Gene | 引物名称 Primer | 引物序列 Primer sequences (5′-3′) | 定量PCR反应程序 Quantitative PCR reaction procedure |
---|---|---|---|
amoA-AOA | amoAF | STAATGGTCTGGCTTAGACG[ | 995℃ 5 min 95℃ 30s |
amoAR | GCGGCCATCCATCTGTATGT[ | 58℃ 30 s | |
amoA-AOB | amoA-1F | GGGGTTTCTACTGGTGGT[ | 72℃ 30 s |
amoA-2R | CCCCTCKGSAAAGCCTTCTTC[ | 72℃ 5 min | |
nirS | nirs-cd3aF | GTSAACGTSAAGGARACSGG[ | 16℃ 1 min |
nirS-R3cd | GASTTCGGRTGSGTCTTGA[ | 35 cycle | |
nirK | nirK1040 | GCCTCGATCAGRTTRTGGTT[ | |
nirK876 | ATYGGCGGVCAYGGCGA[ | ||
nosZ | NosZ2F | CGCRACGGCAASAAGGTSMSSGT[ | |
NosZ2R | CAKRTGCAKSGCRTGGCAGAA[ |
表2
各处理N2O累积排放量"
年份 Year | 处理 Treatment | N2O累积排放量Cumulative N2O emission (kg·hm-2) | |||
---|---|---|---|---|---|
冬作季Winter crop season | 早稻季Early rice season | 晚稻季Late rice season | 总计Total | ||
2018 | CK1 | 0.17±0.03 c | 0.15±0.03 a | 0.22±0.10 a | 0.55±0.08 a |
CK2 | 0.26±0.06 b | 0.13±0.02 a | 0.15±0.12 a | 0.54±0.17 a | |
3/4M+1/4R | 0.18±0.08 c | 0.22±0.06 a | 0.28±0.05 a | 0.68±0.08 a | |
1/2M+1/2R | 0.33±0.08 a | 0.19±0.06 a | 0.22±0.02 a | 0.74±0.01 a | |
1/4M+3/4R | 0.24±0.09 b | 0.17±0.05 a | 0.29±0.05 a | 0.70±0.05 a | |
2019 | CK1 | -0.11±0.02 b | 0.10±0.05 a | 0.24±0.02 cd | 0.23±0.08 b |
CK2 | -0.02±0.02 a | 0.13±0.02 a | 0.16±0.01 d | 0.27±0.05 b | |
3/4M+1/4R | -0.04±0.02 a | 0.16±0.03 a | 0.27±0.02 bc | 0.39±0.05 b | |
1/2M+1/2R | -0.01±0.02 a | 0.19±0.03 a | 0.41±0.01 a | 0.59±0.02 a | |
1/4M+3/4R | 0.01±0.01 a | 0.20±0.02 a | 0.35±0.06 ab | 0.56±0.02 a |
[1] | 黄国勤. 长江经济带稻田耕作制度绿色发展探讨. 中国生态农业学报(中英文), 2020,28(1):1-7. doi:10.13930/j.cnki.cjea.190500. |
HUANG G Q. Green development of paddy field farming systems in the Yangtze River Economic Belt. Chinese Journal of Eco-Agriculture, 2020,28(1):1-7. doi:10.13930/j.cnki.cjea.190500. (in Chinese) | |
[2] | 杨滨娟, 黄国勤. 双季稻田冬种紫云英“双减双增”绿色高效循环农业模式. 江苏农业科学, 2018,46(16):51-56. |
YANG B J, HUANG G Q. A green and efficiency recycling agriculture mode of milk vetch with “double-reduction and double- increment”. Jiangsu Agricultural Sciences, 2018,46(16):51-56. (in Chinese) | |
[3] | 张永亮, 潘东, 吴明浩. 苜蓿+禾草混播方式对二龄混播草地牧草产量的影响. 草业科学, 2018,35(9):2210-2219. |
ZHANG Y L, PAN D, WU M H. Effect of mixed alfalfa and grass cultivation on the forage yield of grasslands after two-year mixed sowing. Pratacultural Science, 2018,35(9):2210-2219. (in Chinese) | |
[4] | 王家琴, 王仕玥, 陆家环, 杨绍华. 非豆科绿肥与豆科绿肥混播对绿肥鲜草生长的影响. 现代农业科技, 2010(12):250-253. |
WANG J Q, WANG S Y, LU J H, YANG S H. Effects of mixed planting of non-leguminous green manure and leguminous green manure on the growth of green manure. Modern Agricultural Science and Technology, 2010(12):250-253. (in Chinese) | |
[5] | 杨滨娟, 孙松, 陈洪俊, 黄国勤. 稻田水旱轮作系统的能值分析和可持续评价. 生态科学, 2017,36(1):123-131. |
YANG B J, SUN S, CHEN H J, HUANG G Q. Research on emergy analysis and sustainability evaluation under paddy-upland rotation systems. Ecological Science, 2017,36(1):123-131. (in Chinese) | |
[6] | 张玉铭, 胡春胜, 张佳宝, 董文旭, 王玉英, 宋利娜. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展. 中国生态农业学报, 2011,19(4):966-975. |
ZHANG Y M, HU C S, ZHANG J B, DONG W X, WANG Y Y, SONG L N. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chinese Journal of Eco-Agriculture, 2011,19(4):966-975. (in Chinese) | |
[7] | IPCC. Intergovernmental Panel on Climate Change 2007: The Physical Science Basis. Cambridge University Press, 2007. |
[8] | ZOU J W, HUANG Y, ZHENG X H, WANG Y S. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmospheric Environment, 2007,41:8030-8042. |
[9] | YOSHIDA M, ISHII S, FUJII D, OTSUKA S, SENOO K. Identification of active denitrifiers in rice paddy soil by DNA- and RNA-based analyses. Microbes and Environments, 2012,27:456-461. |
[10] | OLSSON P A, HANSSON M C, BURLEIGH S H. Effect of P availability on temporal dynamics of carbon allocation and glomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza. Applied and Environmental Microbiology, 2006,72:4115-4120. |
[11] | TEJADA M, GONZALEZ J L, GARCIA-MARTINEZ A M, PARRADO J. Effects of different green manures on soil biological properties and maize yield. Bioresource Technology, 2008,99(6):1758-1767. |
[12] | 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016,24(4):403-415. doi:10.13930/j.cnki.cjea.160061. |
LI L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chinese Journal of Eco-Agriculture, 2016,24(4):403-415. doi:10.13930/j.cnki.cjea.160061. (in Chinese) | |
[13] | 王艳秋, 高嵩涓, 曹卫东, 李景环, 聂军, 徐昌旭, 白金顺, 曾闹华, 周国朋. 多年冬种紫云英对两种典型双季稻田土壤肥力及硝化特征的影响. 草业学报, 2017,26(2):180-189. doi:10.11686/cyxb2016281. |
WANG Y Q, GAO S J, CAO W D, LI J H, NIE J, XU C X, BAI J S, ZENG N H, ZHOU G P. Fertility and nitrification characteristics of two typical paddy soils after application of milk vetch (Astragalus sinicus) for 8 years. Acta Prataculturae Sinica, 2017,26(2):180-189. doi:10.11686/cyxb2016281. (in Chinese) | |
[14] | 高嵩涓. 冬绿肥—水稻模式下的土壤微生物特征及硝化作用调控机制[D]. 北京: 中国农业大学, 2018. |
GAO S J. Soil microbial community and the regulation mechanisms of nitrification in winter green manure-rice cropping system[D]. Beijing: China Agricultural University, 2018. (in Chinese) | |
[15] | LIU G, MA J, YANG Y T, YU H Y, ZHANG G B, XU H. Effects of straw incorporation methods on nitrous oxide and methane emissions from a wheat-rice rotation system. Pedosphere, 2019,29(2):204-215. doi:10.1016/S1002-0160(17)60410-7. |
[16] | CHEN Z M, DING W X, XU Y H, MÜLLER C, YU H Y, FAN J L. Increased N2O emissions during soil drying after waterlogging and spring thaw in a record wet year. Soil Biology and Biochemistry, 2016,101:152-164. doi:10.1016/j.soilbio.2016.07.016. |
[17] | FRANCIS C A, ROBERTS K J, BEMAN J M, SANTORO A E, OAKLEY B B. Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(41):14683-14688. doi:10.1073/pnas.0506625102. |
[18] | ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene AmoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997,63(12):4704-4712. doi:10.1128/aem.63.12.4704-4712.1997. |
[19] | THROBÄCK I N, ENWALL K, JARVIS Å, HALLIN S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology, 2004,49(3):401-417. doi:10.1016/j.femsec.2004.04.011. |
[20] | BRAKER G, FESEFELDT A, WITZEL K P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Applied and Environmental Microbiology, 1998,64(10):3769-3775. doi:10.1128/AEM.64.10.3769-3775.1998. |
[21] | HENRY S, BRU D, STRES B, HALLET S, PHILIPPOT L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Applied and Environmental Microbiology, 2006,72(8):5181-5189. doi:10.1128/AEM.00231-06. |
[22] | 王晓萌, 孙羽, 王麒, 宋秋来, 曾宪楠, 冯延江. 稻田温室气体排放与减排研究进展. 黑龙江农业科学, 2018(7):149-154. doi:10.11942/j.issn1002-2767.2018.07.0149. |
WANG X M, SUN Y, WANG Q, SONG Q L, ZENG X N, FENG Y J. Research progress on greenhouse gas emission and emission reduction in rice fields. Heilongjiang Agricultural Sciences, 2018(7):149-154. doi:10.11942/j.issn1002-2767.2018.07.0149. (in Chinese) | |
[23] | 李虎, 邱建军, 王立刚, 任天志. 中国农田主要温室气体排放特征与控制技术. 生态环境学报, 2012,21(1):159-165. doi:10.16258/j.cnki.1674-5906.2012.01.025. |
LI H, QIU J J, WANG L G, REN T Z. The characterization of greenhouse gases fluxes from croplands of China and mitigation technologies. Ecology and Environmental Sciences, 2012,21(1):159-165. doi:10.16258/j.cnki.1674-5906.2012.01.025. (in Chinese) | |
[24] | 唐海明, 肖小平, 孙继民, 汤文光, 汪柯, 李微艳, 杨光立. 种植不同冬季作物对稻田甲烷、氧化亚氮排放和土壤微生物的影响. 生态环境学报, 2014,23(5):736-742. doi:10.16258/j.cnki.1674-5906.2014.05.022. |
TANG H M, XIAO X P, SUN J M, TANG W G, WANG K, LI W Y, YANG G L. Effects of different winter covering crops cultivation on methane and nitrous oxide emission fluxes and soil microorganism in double-cropping paddy field. Ecology and Environmental Sciences, 2014,23(5):736-742. doi:10.16258/j.cnki.1674-5906.2014.05.022. (in Chinese) | |
[25] | 胡玉麟, 汤水荣, 陶凯, 何秋香, 田伟, 秦兴华, 伍延正, 孟磊. 优化施肥模式对我国热带地区水稻-豇豆轮作系统N2O和CH4排放的影响. 环境科学, 2019,40(11):5182-5190. doi:10.13227/j.hjkx.201905095. |
HU Y L, TANG S R, TAO K, HE Q X, TIAN W, QIN X H, WU Y Z, MENG L. Effects of optimizing fertilization on N2O and CH4 emissions in a paddy-cowpea rotation system in the tropical region of China. Environmental Science, 2019,40(11):5182-5190. doi:10.13227/j.hjkx.201905095. (in Chinese) | |
[26] | 王肖娟, 王永强, 赵双玲, 李丽, 苏天潮, 刘小武. 不同灌溉方式及施肥量对稻田土壤N2O排放的影响. 大麦与谷类科学, 2018,35(3):1-4, 21. doi:10.14069/j.cnki.32-1769/s.2018.03.001. |
WANG X J, WANG Y Q, ZHAO S L, LI L, SU T C, LIU X W. Effects of drip irrigation and flood irrigation under different application rates of nitrogen fertilizer on N2O emission in rice field. Barley and Cereal Sciences, 2018,35(3):1-4, 21. doi:10.14069/j.cnki.32-1769/s.2018.03.001. (in Chinese) | |
[27] | 张岳芳, 周炜, 王子臣, 陈留根, 朱普平, 盛婧, 郑建初. 氮肥施用方式对油菜生长季氧化亚氮排放的影响. 农业环境科学学报, 2013,32(8):1690-1696. |
ZHANG Y F, ZHOU W, WANG Z C, CHEN L G, ZHU P P, SHENG J, ZHENG J C. Effects of nitrogen fertilizer application modes on nitrous oxide emissions during growing season of oilseed rape(Brassica napus). Journal of Agro-Environment Science, 2013,32(8):1690-1696. (in Chinese) | |
[28] | 田伟, 伍延正, 汤水荣, 胡玉麟, 赖倩倩, 文冬妮, 孟磊, 吴川德. 不同施肥模式对热区晚稻水田CH4和N2O排放的影响. 环境科学, 2019,40(5):2426-2434. doi:10.13227/j.hjkx.201808221. |
TIAN W, WU Y Z, TANG S R, HU Y L, LAI Q Q, WEN D N, MENG L, WU C D. Effects of different fertilization modes on greenhouse gas emission characteristics of paddy fields in hot areas. Environmental Science, 2019,40(5):2426-2434. doi:10.13227/j.hjkx.201808221. (in Chinese) | |
[29] | GOLDBERG S D, GEBAUER G. N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought. Soil Biology and Biochemistry, 2009,41(9):1986-1995. doi:10.1016/j.soilbio.2009.07.001. |
[30] | 常单娜, 刘春增, 李本银, 吕玉虎, 潘兹亮, 高嵩涓, 曹卫东. 翻压紫云英对稻田土壤还原物质变化特征及温室气体排放的影响. 草业学报, 2018,27(12):133-144. doi:10.11686/cyxb2018029. |
CHANG D N, LIU C Z, LI B Y, LÜ Y H, PAN Z L, GAO S J, CAO W D. Effects of incorporating Chinese milk vetch on reductive material characteristics and greenhouse gas emissions in paddy soil. Acta Prataculturae Sinica, 2018,27(12):133-144. doi:10.11686/cyxb2018029. (in Chinese) | |
[31] | 聂江文, 王幼娟, 吴邦魁, 刘章勇, 朱波. 紫云英还田对早稻直播稻田温室气体排放的影响. 农业环境科学学报, 2018,37(10):2334-2341. doi:10.11654/jaes.2018-0195. |
NIE J W, WANG Y J, WU B K, LIU Z Y, ZHU B. Effect of Chinese milk vetch incorporation on greenhouse gas emissions from early-rice direct-seeding paddy fields. Journal of Agro-Environment Science, 2018,37(10):2334-2341. doi:10.11654/jaes.2018-0195. (in Chinese) | |
[32] | 唐海明, 肖小平, 帅细强, 汤文光, 林叶春, 汤海涛, 杨光立. 双季稻田种植不同冬季作物对甲烷和氧化亚氮排放的影响. 生态学报, 2012,32(5):1481-1489. doi:10.5846/stxb201101230115. |
TANG H M, XIAO X P, SHUAI X Q, TANG W G, LIN Y C, TANG H T, YANG G L. Effects of different winter covering crops cultivation on methane(CH4)and nitrous oxide(N2O)emission fluxes from double-cropping paddy field. Acta Ecologica Sinica, 2012,32(5):1481-1489. doi:10.5846/stxb201101230115. (in Chinese) | |
[33] | 魏云霞. 紫云英与油菜、黑麦草混播种植和利用效应研究[D]. 武汉: 华中农业大学, 2013. |
WEI Y X. Study on cultivation and utilization of the mixture cropping of Chinese milk vetch with rape and ryegrass[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese) | |
[34] | 朱波, 易丽霞, 胡跃高, 曾昭海, 唐海明, 肖小平, 杨光立. 黑麦草鲜草翻压还田对双季稻CH4与N2O排放的影响. 农业工程学报, 2011,27(12):241-245. doi:10.3969/j.issn.1002-6819.2011.12.045. |
ZHU B, YI L X, HU Y G, ZENG Z H, TANG H M, XIAO X P, YANG G L. Effects of ryegrass incorporation on CH4 and N2O emission from double rice paddy soil. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(12):241-245. doi:10.3969/j.issn.1002-6819.2011.12.045. (in Chinese) | |
[35] | 纪钦阳, 张璟钰, 王维奇. 施肥量对福州平原稻田CH4和N2O通量的影响. 亚热带农业研究, 2015,11(4):246-253. doi:10.13321/j.cnki.subtrop.agric.res.2015.04.006. |
JI Q Y, ZHANG J Y, WANG W Q. Effect of fertilization rate on CH4 and N2O emission in paddy fields in Fuzhou plain. Subtropical Agriculture Research, 2015,11(4):246-253. doi:10.13321/j.cnki.subtrop.agric.res.2015.04.006. (in Chinese) | |
[36] | 钟川, 杨滨娟, 张鹏, 李萍, 黄国勤. 基于冬种不同作物的水旱轮作模式对水稻产量及稻田CH4、N2O排放的影响. 核农学报, 2019,33(2):379-388. doi:10.11869/j.issn.100-8551.2019.02.0379. |
ZHONG C, YANG B J, ZHANG P, LI P, HUANG G Q. Effect of paddy-upland rotation with different winter corps on rice yield and CH4 and N2O emissions in paddy fields. Journal of Nuclear Agricultural Sciences, 2019,33(2):379-388. doi:10.11869/j.issn.100-8551.2019.02.0379. (in Chinese) | |
[37] | 秦红灵, 陈安磊, 盛荣, 张文钊, 邢肖毅, 魏文学. 稻田生态系统氧化亚氮(N2O)排放微生物调控机制研究进展及展望. 农业现代化研究, 2018,39(6):922-929. doi:10.13872/j.1000-0275.2018.0092. |
QIN H L, CHEN A L, SHENG R, ZHANG W Z, XING X Y, WEI W X. A review on the microbial regulation mechanism of N2O production and emission of rice paddy ecosystems. Research of Agricultural Modernization, 2018,39(6):922-929. doi:10.13872/j.1000-0275.2018.0092. (in Chinese) | |
[38] | 李双双, 陈晨, 段鹏鹏, 许欣, 熊正琴. 生物质炭对酸性菜地土壤N2O排放及相关功能基因丰度的影响. 植物营养与肥料学报, 2018,24(2):414-423. doi:10.11674/zwyf.17272. |
LI S S, CHEN C, DUAN P P, XU X, XIONG Z Q. Effects of biochar application on N2O emissions and abundance of nitrogen related functional genes in an acidic vegetable soil. Plant Nutrition and Fertilizer Science, 2018,24(2):414-423. doi:10.11674/zwyf.17272. (in Chinese) | |
[39] | 谭立山. 农业土壤N2O产生途径及其影响因素研究进展. 亚热带农业研究, 2017,13(3):196-204. doi:10.13321/j.cnki.subtrop.agric.res.2017.03.011. |
TAN L S. Advances in N2O generation pathway in agricultural soils and major influencing factors. Subtropical Agriculture Research, 2017,13(3):196-204. doi:10.13321/j.cnki.subtrop.agric.res.2017.03.011. (in Chinese) | |
[40] | LIMMER A W, STEELE K W. Denitrification potentials: measurement of seasonal variation using a short-term anaerobic incubation technique. Soil Biology and Biochemistry, 1982,14(3):179-184. doi:10.1016/0038-0717(82)90020-7. |
[41] | 李萍. 紫云英与油菜混播对稻田土壤肥力、N2O排放及相关功能基因丰度的影响[D]. 南昌: 江西农业大学, 2020. |
LI P. Effects of the mixture of Chinese milk vetch and rape on soil fertility, N2O emission and abundance of related functional genes in paddy fields[D]. Nanchang: Jiangxi Agricultural University, 2020. (in Chinese) | |
[42] | 李勇先. 稻田土壤中氧化亚氮的释放机制及控制[D]. 杭州: 浙江大学, 2003. |
LI Y X. Mechanism and control of N2O emission from paddy soils[D]. Hangzhou: Zhejiang University, 2003. (in Chinese) |
[1] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[2] | 高佳蕊,方胜志,张玉玲,安晶,虞娜,邹洪涛. 东北黑土不同开垦年限稻田土壤有机氮矿化特征[J]. 中国农业科学, 2022, 55(8): 1579-1588. |
[3] | 巢成生,王玉乾,沈欣杰,代晶,顾炽明,李银水,谢立华,胡小加,秦璐,廖星. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172-1188. |
[4] | 谢伶俐,韦丁一,章子爽,徐劲松,张学昆,许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系[J]. 中国农业科学, 2022, 55(24): 4793-4807. |
[5] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
[6] | 白非,白桂萍,王春云,李真,龚德平,黄威,程雨贵,汪波,王晶,徐正华,蒯婕,周广生. 翻耕深度对遮阴油菜根系生长和养分吸收利用的影响[J]. 中国农业科学, 2022, 55(14): 2726-2739. |
[7] | 李正刚,汤亚飞,佘小漫,于琳,蓝国兵,何自福. 侵染萝卜的油菜花叶病毒广东分离物分子特征及其致病性分析[J]. 中国农业科学, 2022, 55(14): 2752-2761. |
[8] | 张学林,何堂庆,张晨曦,田明慧,李晓立,吴梅,周亚男,郝晓峰. 丛枝菌根真菌对玉米生育期土壤N2O排放的影响[J]. 中国农业科学, 2022, 55(10): 2000-2012. |
[9] | 李建鑫,王文平,胡璋健,师恺. 模拟酸雨对番茄光合作用和病害发生的影响及油菜素内酯对其缓解效应[J]. 中国农业科学, 2021, 54(8): 1728-1738. |
[10] | 袁圆,汪波,周广生,刘芳,黄俊生,蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响[J]. 中国农业科学, 2021, 54(8): 1613-1626. |
[11] | 雷豪杰,李贵春,柯华东,魏崃,丁武汉,徐驰,李虎. 滴灌施肥对两种典型作物系统土壤N2O排放的影响及其调控差异[J]. 中国农业科学, 2021, 54(4): 768-779. |
[12] | 龙卫华,浦惠明,高建芹,胡茂龙,张洁夫,陈松. 油菜高油酸种质的创建及高油酸性状遗传与生理特性的分析[J]. 中国农业科学, 2021, 54(2): 261-270. |
[13] | 李小勇,顾炽明,刘康,廖星,黄威,杨志远,秦璐. 施氮量对迟播油菜氮素利用和产量品质的影响[J]. 中国农业科学, 2021, 54(17): 3726-3736. |
[14] | 王鲲娇,任涛,陆志峰,鲁剑巍. 不同镁供应浓度对油菜苗期生长和生理特性的影响[J]. 中国农业科学, 2021, 54(15): 3198-3206. |
[15] | 白晨阳,何菡子,贾才华,李晓华,任奕林,叶俊,汪波,蒯婕,周广生. 机械收获方式对油菜籽粒关键性状的影响[J]. 中国农业科学, 2021, 54(14): 2991-3003. |
|