中国农业科学 ›› 2020, Vol. 53 ›› Issue (6): 1214-1223.doi: 10.3864/j.issn.0578-1752.2020.06.013

• 专题:土壤活性有机碳 • 上一篇    下一篇

长期施肥对黑土水稳性团聚体稳定性及有机碳分布的影响

张秀芝1,2,李强1,高洪军1,彭畅1,朱平1(),高强2()   

  1. 1 吉林省农业科学院农业资源与环境研究所,长春130033
    2 吉林农业大学资源与环境学院,长春130118
  • 收稿日期:2019-06-05 接受日期:2019-09-12 出版日期:2020-03-16 发布日期:2020-04-09
  • 通讯作者: 朱平,高强
  • 作者简介:张秀芝,Tel:0431-87063170;E-mail:zhangxiuzhi2006@163.com。
  • 基金资助:
    国家重点研发计划(2018YFD0800905);国家重点研发计划(2016YFD0800103);中欧农田土壤质量评价及提升技术合作项目(2016YFE0112700-3)

Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon

XiuZhi ZHANG1,2,Qiang LI1,HongJun GAO1,Chang PENG1,Ping ZHU1(),Qiang GAO2()   

  1. 1 Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033
    2 College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun 130118
  • Received:2019-06-05 Accepted:2019-09-12 Online:2020-03-16 Published:2020-04-09
  • Contact: Ping ZHU,Qiang GAO

摘要:

【目的】基于黑土长期定位试验平台,研究不同施肥方式下土壤水稳性团聚体和有机碳分布特征,以期揭示化肥和有机肥长期施用对土壤肥力的影响,为实现黑土合理培肥提供理论指导。【方法】依托37年黑土长期定位试验,采集CK(不施肥)、NPK(化肥)、M2(常量有机肥)、M2NPK(常量有机肥配施化肥)、M4(高量有机肥)、M4NPK(高量有机肥配施化肥)处理0—20 cm土层的土壤样品,利用湿筛法分析水稳性团聚体稳定性及有机碳在不同粒级团聚体中的分配特征。【结果】长期有机无机配施以及施高量有机肥显著降低大团聚体比例,提高微团聚体比例。长期施用化肥及常量有机肥并未明显改变团聚体的分布。M2NPK、M4NPK、M4处理的大团聚体比例较CK处理分别降低32.7%、45.8%和55.4%,而微团聚体的比例较CK处理分别提高73.2%、102.5%和123.9%。长期有机无机配施及高量有机肥的施用显著降低表层土壤水稳性团聚体的稳定性。长期施肥显著增加土壤有机碳含量,增加量为CK的1.12—2.06倍,施用有机肥及有机无机配施处理有机碳含量增加更为显著。长期施用有机肥可以增加各粒级水稳性团聚体中有机碳的含量,且随着粒径的变小,各处理有机碳含量的增加幅度逐渐减小。各处理水稳性大团聚体中有机碳含量显著高于微团聚体,这表明有机碳主要分布在大团聚体中。长期施高量有机肥及配施化肥显著降低了大团聚体对有机碳的贡献率,增大了微团聚体的贡献率,即微团聚体有机碳贡献率高于大团聚体,而其他处理大团聚体有机碳贡献率高于微团聚体。【结论】黑土长期施用化肥对团聚体的分布及团聚体有机碳含量没有显著影响。高量有机肥以及有机无机配施显著降低了大团聚体的比例,进而降低土壤团聚体的稳定性。长期施用有机肥显著增加土壤及各粒级团聚体中有机碳含量。高量有机肥及配施化肥显著降低了大团聚体有机碳贡献率,有机碳贡献率的优势粒级为微团聚体。

关键词: 长期施肥, 黑土, 水稳性团聚体, 有机碳含量, 有机碳贡献率

Abstract:

【Objective】Based on the long-term fertilization experiment station, in aims to study the influences on the soil fertility by long-term application of chemical fertilizer and manure, the characteristics of water stable aggregates and structure of organic carbon was analyzed under different fertilizer application conditions.【Method】0-20 cm soil samples were collected from the 37-year long-term field experiment, including six treatments: CK (no fertilizer), NPK (chemical fertilizer alone), M2 (normal manure application), M2NPK (the chemical fertilizer combined with normal manure rate), M4 (high quantity manure application), and M4NPK (the chemical fertilizer combined with high quantity manure rate). Stability of water stable aggregates and distribution of organic carbon in aggregates were analyzed by wet sieve method.【Result】The proportion of large aggregates was reduced,while the proportion of micro aggregates was increased significantly under long-term application of organic and chemical fertilizer and high amount of organic fertilizer conditions. There was not significant change for the distribution of aggregates under long-term application of chemical fertilizer and constant organic fertilizer conditions. Compared with CK, the proportions in macro-aggregate of M2NPK, M4NPK and M4 were reduced by 32.7%, 45.8% and 55.4%, respectively, and the proportion of that in micro-aggregate were increased by 73.2%, 102.5% and 123.9%, respectively. The stability of surface soil water stable aggregates was reduced significantly under long-term organic combined chemical fertilizer and high amount of organic fertilizer conditions. The soil organic carbon content was increased significantly by 1.12-2.06 times as much as CK under long-term fertilization condition, and the increase of organic carbon content was more significantly in organic fertilizer and organic combined with chemical fertilizer. The content of organic carbon in soil water stable aggregates of each size was increased under long-term organic fertilizer application, while the increase of organic carbon content in each treatment was gradually decreased with the decrease of particle size. Organic carbon content in the water stable macro-aggregate was significantly higher than that in the micro-aggregate, indicating that the organic carbon was mainly distributed in the macro-aggregate. The contribution rate of organic carbon in macro-aggregate was reduced significantly, and the contribution rate of organic carbon was increased significantly in micro-aggregate under long-term application of high amount of organic and combined with chemical fertilizer. The contribution rate of organic carbon in other treatments was higher in macro-aggregates than in micro-aggregates.【Conclusion】There were no significant effect for distribution and organic carbon content in aggregates under long-term chemical fertilization. The proportion of macro-aggregates and the stability of soil aggregates were reduced significantly under high amount of organic fertilizer and combination of organic and chemical fertilizer. The content of organic carbon in the aggregates was increased significantly under long-term application of organic fertilizer. The contribution rate of organic carbon in macro-aggregates was reduced significantly under high amount of organic fertilizer and combined with chemical fertilizer. The micro-aggregate was the dominant aggregate size of the organic carbon contribution rate.

Key words: long-term fertilization, black soil, water stable aggregates, content of organic carbon, contribution rate of organic carbon