中国农业科学 ›› 2020, Vol. 53 ›› Issue (22): 4613-4622.doi: 10.3864/j.issn.0578-1752.2020.22.008

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

秸秆还田量对黑土区土壤及团聚体有机碳变化特征和 固碳效率的影响

高洪军,彭畅,张秀芝,李强,朱平(),王立春()   

  1. 吉林省农业科学院农业资源与环境研究所,长春 130033
  • 收稿日期:2020-03-23 接受日期:2020-04-27 出版日期:2020-11-16 发布日期:2020-11-28
  • 通讯作者: 朱平,王立春
  • 作者简介:高洪军,Tel:0431-87063170;E-mail:ghj- 1975@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0300201-3);吉林省农业科技创新工程杰出青年项目(CXGC2017JQ008);农业农村部公益性行业农业科研专项(201503136-6)

Effects of Corn Straw Returning Amounts on Carbon Sequestration Efficiency and Organic Carbon Change of Soil and Aggregate in the Black Soil Area

GAO HongJun,PENG Chang,ZHANG XiuZhi,LI Qiang,ZHU Ping(),WANG LiChun()   

  1. Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033
  • Received:2020-03-23 Accepted:2020-04-27 Online:2020-11-16 Published:2020-11-28
  • Contact: Ping ZHU,LiChun WANG

摘要:

【目的】 探讨不同秸秆还田量下土壤及团聚体有机碳的变化特征,阐明土壤及团聚体有机碳储量变化对外源有机碳累积投入的响应关系,揭示黑钙土土壤及团聚体固碳效应和土壤有机碳定量提升机理。【方法】 于 2012 年4月在吉林省农安县玉米主产区设置了玉米秸秆还田量田间定位试验,共设计4个处理:秸秆还田量0(SA0)、秸秆还田量4 500 kg·hm -2(SA300)、秸秆还田量9 000 kg·hm -2(SA600)、秸秆还田量13 500 kg·hm -2(SA900)。利用多年试验土壤有机碳储量与外源有机碳投入的数据分析其量化关系和固碳效率。通过湿筛法筛分>2 mm、2—0.25 mm、0.25—0.053 mm和<0.053 mm粒级团聚体,分析不同粒级团聚体有机碳储量变化特征及固碳效应。 【结果】 长期秸秆还田能显著提高土壤有机碳含量,秸秆还田SA600和SA900两处理土壤有机碳含量均显著高于秸秆不还田(SAO)、低量秸秆还田(SA300)(P<0.05),并且后3年SA900和SA600两处理土壤有机碳含量差异达显著水平。2015—2018年间,SA900处理土壤有机碳较SA0处理分别依次提高了11.0%、15.8%、17.2%、23.1%。土壤总有机碳储量与外源有机碳输入呈极显著正线性相关关系(P<0.01),其中土壤总固碳效率为12.9%。与秸秆不还田(SA0)相比,秸秆还田SA600和SA900两处理均显著提高了各粒级团聚体有机碳含量(P<0.05),尤其是对大团聚体(>0.25 mm)有机碳含量增加贡献更大。高量秸秆还田(SA900)处理的>2 mm和2—0.25 mm粒级团聚体有机碳储量较秸秆不还田(SA0)处理分别提高了45.5%和47.7%。除<0.053 mm团聚体外,其他粒级土壤团聚体有机碳储量增加量与累积碳投入量增加量呈显著正线性相关关系(P<0.05);大粒级团聚体固碳效率显著高于小粒级团聚体,>2 mm 和2—0.25 mm粒级团聚体固碳效率分别为4.9%和13.6%。依据秸秆还田下土壤固碳效率,预测未来10年内土壤有机碳储量要提升10%、20%、30%,每年需额外分别投入风干玉米秸秆约5.99、11.98、17.97 t·hm -2。 【结论】 玉米秸秆还田能显著促进黑钙土土壤及团聚体有机碳累积,并且土壤有机碳含量均随秸秆还田量和试验年限的延长而增加,有机碳主要集中固持在大团聚体中。表明秸秆还田是黑土区土壤肥力提升的重要培育措施,大团聚体有机碳可作为评价土壤有机碳变化对不同土壤培肥措施快速响应的重要指标之一。

关键词: 秸秆还田量, 黑土区, 土壤有机碳, 团聚体, 固碳效率

Abstract:

【Objective】 The objective of this study was to explore the organic carbon changes of soil and aggregate, to reveal the quantitative relationship between organic carbon stocks and additional organic carbon input, and to clarify the carbon fixation effect of soil and aggregates, and the mechanism of quantitative enhancement for organic carbon.【Method】 The field fixed experiment about straw returning amount was set up in the main corn production area of Nong'an County, Jilin Province in April 2012. The treatments included four different corn straw returning amounts of 0 (SA0), 4 500 (SA300), 9 000 (SA600), and 13 500 kg·hm -2 (SA900). The record information related to soil organic carbon (SOC) stocks and additional organic carbon input during the 7 years were used to analyze the quantitative relationship and carbon sequestration efficiency. Soil samples were separated into >2 mm, 2-0.25 mm, 0.25-0.053 mm, and <0.053 mm by using the wet sieving method in order to analyze the organic carbon of aggregates and carbon fixation effect. 【Result】 The results showed corn straw returning could significantly increase SOC content, the SOC under SA900 and SA600 were significantly larger than that under SAO and SA300, There were significant differences in soil organic carbon content between SA900 and SA600 treatments in the last three years. Compared with SA0 treatment, from 2015 to 2018, SA900 increased soil organic carbon by 11.0%, 15.8%, 17.2% and 23.1%, respectively. Significantly positive linear correlation was observed between the SOC stocks and additional organic carbon input (P<0.01), and the sequestration efficiency of total organic carbon was 12.9%. Compared with SA0 treatment, SA600 and SA900 treatments significantly increased organic carbon contents of aggregates (P<0.05), especially in the macroaggregates; the organic carbon storage of SA900 treatment increased by 45.5% and 47.7% in the >2 mm and 2-0.25 mm of aggregates, respectively. Except for <0.053 mm aggregate, there was a significant positive linear correlation between the increase of organic carbon storage and cumulative carbon input in other particle aggregates. The carbon sequestration efficiency (CSE) of larger size aggregates was significantly higher than that of smaller size aggregates, and >2 mm and 2-0.25 mm size aggregates were 4.9% and 13.6%, respectively. According to the soil carbon sequestration efficiency, the soil organic carbon storage should be increased by 10%, 20% and 30% in the next 10 years, and about 5.99, 11.98 and 17.97 t·hm -2 of air-dried corn straw should be added each year, respectively.【Conclusion】Corn straw returning could significantly promote the accumulation of organic carbon in soil and aggregates of Chernozem. The content of soil organic carbon increased with the increase of the amount of straw returning and the experimental years, while the organic carbon sequestration was mainly distributed in the macroaggregates. The results showed that straw returning to field was an important fertilization to improve soil fertility in black soil area, and the macroaggregate organic carbon could be used as an important index to evaluate the rapid response of soil organic carbon to different soil fertility measures

Key words: amount of straw returning field, black soil area, soil organic carbon, aggregate, carbon sequestration efficiency