Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (12): 2398-2409.doi: 10.3864/j.issn.0578-1752.2018.12.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Breeding by Molecular Writing (BMW): the Future Development of Animal Breeding

LIU ZhiGuo1, WANG BingYuan1, MU Yulian1, WEI Hong2, CHEN JunHai3, LI Kui1   

  1. 1Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, 2Army Medical University, Department of Laboratory Animal Science, College of Basic Medical Sciences, Chongqing 400038, 3 Shenzhen Jinxinnong Technology Co., LTD, Shenzhen 518106, Guangdong
  • Received:2017-10-18 Online:2018-06-16 Published:2018-06-16

Abstract: With the rapid development of genomics and genome editing techniques, and the extensive application of techniques such as microinjection and somatic cell nuclear transfer, a new set of breeding strategies and methods has gradually formed, which we named breeding by molecular writing (BMW). Using BMW, directional breeding of new varieties can be achieved by molecular-level genome editing, which can not only break down reproductive barriers separating different taxa, allowing the cross-species introduction of new traits, but also enable single-nucleotide insertion, deletion, and substitution in individual genomes. This can include the precise integration of exogenous genes; precise deletion and substitution of endogenous genes; and replication, deletion, and substitution of SNP loci. The main advantage of BMW is the rapid and efficient gathering of several beneficial traits into one species, while significantly reducing unintended effects. Molecular writing can be used for the following tasks: (1) identification and verification of new breeding markers; (2) cross-species molecular writing; (3) base sequence deletion in genomes; and (4) molecular writing within species. The BMW technique allows the introduction of only one or several target genes or SNPs and the rapid acquisition of new stable genetic varieties with pronounced target characters without sexual hybridization, and can then create new varieties in combination with conventional breeding methods. BMW can achieve genetic (or molecular) hybridization breeding at the individual and group levels, acquiring molecular heterosis, efficiently resolving several long-standing difficulties in breeding, and significantly improving breeding efficiency. It has strong potential for application in livestock and poultry breeding, and is a key part of the future of breeding. This paper discusses the basic concepts, research methods, research contents, and current research status of breeding by molecular writing in detail, and presents the prospects of applying BMW, providing references for researchers and practitioners in fields such as animal breeding and livestock and poultry reproduction.

Key words: breeding, breeding by molecular writing, gene editing, somatic cell nuclear transfer, gene knockout

[1]    MUSUNURU K. The hope and hype of CRISPR-Cas9 genome editing: A review. JAMA Cardiology, 2017, 2(8): 914-919.
[2]    刘志国. CRISPR/Cas9系统介导基因编辑的研究进展.畜牧兽医学报, 2014, 45(10): 1567-1583.
LIU Z G. Research progress on CRISPR/Cas9 mediated genome editing. Acta Veterinaria et Zootechnica Sinica, 2014, 45(10): 1567-1583.(in Chinese)
[3]    RUAN J X, XU J, CHEN-TSAI R Y, LI K. Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Research, 2017, 26(6): 715-726.
[4]   TELUGU B P, PARK K-E,PARK C-H. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mammalian Genome, 2017, 28(7-8): 338-347.
[5]    M NORET S, TESSON L, REMY S, USAL C, OUISSE L-H, BRUSSELLE L, CHENOUARD V,ANEGON I. Advances in transgenic animal models and techniques. Transgenic Research, 2017, 26(5): 703-708.
[6]    DEKELVER R, OU L, LAOHARAWEE K, TOM S, RADEKE R, ROHDE M, SPROUL S, PRZYBILLA M, KONIAR B L, PODETZ-PEDERSEN K, COOKSLEY R D, HOLMES M C, MCIVOR R S, WHITLEY C B,WECHSLER T. ZFN-mediated in vivo genome editing results in phenotypic correction in murine MPS I and MPS II models. Molecular Genetics And Metabolism, 2017, 120(1): S41.
[7]    TAYLOR L, CARLSON D F, NANDI S, SHERMAN A, FAHRENKRUG S C,MCGREW M J. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development, 2017, 144(5): 928.
[8]    CHEN Y, YU J, NIU Y, QIN D, LIU H, LI G, HU Y, WANG J, LU Y, KANG Y, JIANG Y, WU K, LI S, WEI J, HE J, WANG J, LIU X, LUO Y, SI C, BAI R, ZHANG K, LIU J, HUANG S, CHEN Z,
WANG S, CHEN X, BAO X, ZHANG Q, LI F, GENG R, LIANG A, SHEN D, JIANG T, HU X, MA Y, JI W,SUN Y E. Modeling rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell, 2017, 169(5): 945-955.e10.
[9]    LI X P, YANG Y, BU L, GUO X G, TANG C C, SONG J, FAN N N, ZHAO B T, OUYANG Z, LIU Z M, ZHAO Y, YI X L, QUAN L Q, LIU S C, YANG Z G, OUYANG H, CHEN Y E, WANG Z, LAI L X. Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Research, 2014, 24(4): 501-504.
[10]   RUAN J, LI H, XU K, WU T, WEI J, ZHOU R, LIU Z, MU Y, YANG S, OUYANG H, CHEN-TSAI R Y,LI K. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Scientific Reports, 2015, 5: 14253.
[11]   GAO Y, WU H, WANG Y, LIU X, CHEN L, LI Q, CUI C, LIU X, ZHANG J,ZHANG Y. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 2017, 18(1): 13-13.
[12]   WELLS K D, BARDOT R, WHITWORTH K M, TRIBLE B R, FANG Y, MILEHAM A, KERRIGAN M A, SAMUEL M S, PRATHER R S,ROWLAND R R. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus. Journal of Virology, 2017, 91(2):e01521.
[13]   GROBET L, ROYO MARTIN L J, PONCELET D, PIROTTIN D, BROUWERS B, RIQUET J, SCHOEBERLEIN A, DUNNER S, MENISSIER F, MASSABANDA J, FRIES R, HANSET R,GEORGES M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71-74.
[14]   LILLICO S G, PROUDFOOT C, KING T J, TAN W, ZHANG L, MARDJUKI R, PASCHON D E, REBAR E J, URNOV F D, MILEHAM A J, MCLAREN D G,WHITELAW C B A. Mammalian interspecies substitution of immune modulatory alleles by genome editing. Scientific Reports, 2016, 6: 21645.
[15]   YANG L H, G ELL M, NIU D, GEORGE H, LESHA E, GRISHIN D, AACH J, SHROCK E, XU W, POCI J, CORTAZIO R, WILKINSON R A, FISHMAN J A,CHURCH G. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 2015, 350(6264): 1101.
[16]   NIU D, WEI H-J, LIN L, GEORGE H, WANG T, LEE I H, ZHAO H-Y, WANG Y, KAN Y, SHROCK E, LESHA E, WANG G, LUO Y, QING Y, JIAO D, ZHAO H, ZHOU X, WANG S, WEI H, G ELL M, CHURCH G M,YANG L. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science, 2017.
[17]   DAVID C. Super-muscly pigs created by small genetic tweak. Nature, 2015, (523): 13-14.
[18]   WANG K K, OUYANG H, XIE Z C, YAO C G, GUO N N, LI M J, JIAO H P,PANG D X. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Scientific Reports, 2015, 5: 16623.
[19]   BI Y, HUA Z, LIU X, HUA W, REN H, XIAO H, ZHANG L, LI L, WANG Z, LAIBLE G, WANG Y, DONG F,ZHENG X. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Scientific Reports, 2016, 6: 31729.
[20]   YU S, LUO J, SONG Z, DING F, DAI Y, LI N. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 2011, 21(11): 1638-1640.
[21]   KUROIWA Y, KASINATHAN P, MATSUSHITA H, SATHIYASELAN J, SULLIVAN E J, KAKITANI M, TOMIZUKA K, ISHIDA I,ROBL J M. Sequential targeting of the genes encoding immunoglobulin- mu and prion protein in cattle. Nature Genetics, 2004, 36(7): 775-780.
[22]   DENNING C, BURL S, AINSLIE A, BRACKEN J, DINNYES A, FLETCHER J, KING T, RITCHIE M, RITCHIE W A, ROLLO M, DE SOUSA P, TRAVERS A, WILMUT I,CLARK A J. Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nature Biotechnology, 2001, 19(6): 559-562.
[23]   YU G, CHEN J, YU H, LIU S, CHEN J, XU X, SHA H, ZHANG X, WU G, XU S,CHENG G. Functional disruption of the prion protein gene in cloned goats. Journal of General Virology, 2006, 87(4): 1019-1027.
[24]   ZHU C, LI B, YU G, CHEN J, YU H, CHEN J, XU X, WU Y, ZHANG A,CHENG G. Production of Prnp-/- goats by gene targeting in adult fibroblasts. Transgenic Research, 2009, 18(2): 163-171.
[25]   WHITWORTH K M, ROWLAND R R, EWEN C L, TRIBLE B R, KERRIGAN M A, CINO-OZUNA A G, SAMUEL M S, LIGHTNER J E, MCLAREN D G, MILEHAM A J, WELLS K D,PRATHER R S. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotechnology, 2015, 34(1): 20-22.
[26]   BURKARD C, LILLICO S G, REID E, JACKSON B, MILEHAM A J, AIT-ALI T, WHITELAW C B, ARCHIBALD A L. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. Plos Pathogens, 2017, 13(2): e1006206.
[27]   WHITWORTH K M, LEE K, BENNE J A, BEATON B P, SPATE L D, MURPHY S L, SAMUEL M S, MAO J, O'GORMAN C, WALTERS E M, MURPHY C N, DRIVER J, MILEHAM A, MCLAREN D, WELLS K D,PRATHER R S. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biology of Reproduction, 2014, 91(3): 1-13.
[28]   魏迎辉, 刘志国, 徐奎, EVANNA HUYHN, PAUL DYCE, 李继良, 周伟良, 董树仁, 冯保亮, 牟玉莲, JULANG LI, 李奎. CD163双等位基因编辑猪的制备及传代. 中国农业科学, 2018, 51(4): 770-777.
WEI Y H, LIU Z G, XU K, EVANNA H, PAUL D, LI J L, ZHOU W L, DONG S R, FENG B L, MU Y L, LI J, LI K. Generation  and propagation of cluster of differentiation 163 biallelic gene editing pigs. Scientia Agricultura Sinica, 2018, 51(4): 770-777.(in Chinese)
[29]   VAN LAERE A S, NGUYEN M, BRAUNSCHWEIG M, NEZER C, COLLETTE C, MOREAU L, ARCHIBALD A L, HALEY C S, BUYS N, TALLY M, ANDERSSON G, GEORGES M, ANDERSSON L. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 2003, 425(6960): 832-836.
[30]   GRAF B, SENN M. Behavioural and physiological responses of calves to dehorning by heat cauterization with or without local anaesthesia. Applied Animal Behaviour Science, 1999, 62(2): 153-171.
[31]   LONG C R, GREGORY K E. Inheritance of the horned, scurred, and polled condition in cattle. Journal of Heredity, 1978, 69(6): 395-400.
[32]   MEDUGORAC I, SEICHTER D, GRAF A, RUSS I, BLUM H, G PEL K H, ROTHAMMER S, F RSTER M, KREBS S. Bovine polledness – An autosomal dominant trait with allelic heterogeneity. Plos One, 2012, 7(6): e39477.
[33]   TAN W F, CARLSON D F, LANCTO C A, GARBE J R, WEBSTER D A, HACKETT P B, FAHRENKRUG S C. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences, 2013, 110(41): 16526-16531.
[34]   LYALL J, IRVINE R M, SHERMAN A, MCKINLEY T J, NUNEZ A, PURDIE A, OUTTRIM L, BROWN I H, ROLLESTON-SMITH G, SANG H, TILEY L. Suppression of avian influenza transmission in genetically modified chickens. Science, 2011, 331(6014): 223-226.
[35]   RUIZ-HERNANDEZ R, MWANGI W, PEROVAL M, SADEYEN J R, ASCOUGH S, BALKISSOON D, STAINES K, BOYD A, MCCAULEY J, SMITH A, BUTTER C. Host genetics determine susceptibility to avian influenza infection and transmission dynamics. Scientific Reports, 2016, 6: 26787.
[36]   LEDFORD H, Salmon is first transgenic animal to win US approval for food. Nature. 2015.
[37]   王大元. 美国转基因三文鱼商业化的启示.科学通报, 2016, 61(3): 289-295.
Wang D Y. Implications of US GMO salmon approved for commercial food use. Chinese Science Bulletin, 2016, 61(3):289-295. (in Chinese)
[38]   WALTZ E. First genetically engineered salmon sold in Canada. Nature, 2017, 548: 148.
[39]   LIN S, STAAHL B T, ALLA R K, DOUDNA J A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife, 2014, 3: e04766.
[40]   MA Y, CHEN W, ZHANG X, YU L, DONG W, PAN S, GAO S, HUANG X, ZHANG L. Increasing the efficiency of CRISPR/Cas9- mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein. RNA Biology, 2016, 13(7): 605-612.
[41]   YANG D, SCAVUZZO M A, CHMIELOWIEC J, SHARP R, BAJIC A, BOROWIAK M. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Scientific Reports, 2016, 6: 21264.
[42]   RICHARDSON C D, RAY G J, DEWITT M A, CURIE G L, CORN J E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nature Biotechnology, 2016, 34(3): 339-344.
[43]   HENDEL A, BAK R O, CLARK J T, KENNEDY A B, RYAN D E, ROY S, STEINFELD I, LUNSTAD B D, KAISER R J, WILKENS A B, BACCHETTA R, TSALENKO A, DELLINGER D, BRUHN L, PORTEUS M H. Chemically modified guide RNAs enhance CRISPR- Cas genome editing in human primary cells. Nature Biotechnology, 2015, 33(9): 985-989.
[44]   YU C, LIU Y, MA T, LIU K, XU S, ZHANG Y, LIU H, LA RUSSA M, XIE M, DING S, QI LEIS. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 2015, 16(2): 142-147.
[45]   NISHIDA K, ARAZOE T, YACHIE N, BANNO S, KAKIMOTO M, TABATA M, MOCHIZUKI M, MIYABE A, ARAKI M, HARA K Y, SHIMATANI Z, KONDO A. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016. Doi:10.1126/Science.aaf8729.
[46]   KOMOR A C, KIM Y B, PACKER M S, ZURIS J A, LIU D R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420-424.
[47]   PAN Y, SHEN N, JUNG-KLAWITTER S, BETZEN C, HOFFMANN G F, HOHEISEL J D, BLAU N. CRISPR RNA-guided FokI nucleases repair a PAH variant in a phenylketonuria model. Scientific Reports, 2016, 6: 35794.
[48]   TERAO M, TAMANO M, HARA S, KATO T, KINOSHITA M, TAKADA S. Utilization of the CRISPR/Cas9 system for the efficient production of mutant mice using crRNA/tracrRNA with Cas9 nickase and FokI-dCas9. Experimental Animals, 2016, 65(3): 275-283.
[49]   SLAYMAKER I M, GAO L, ZETSCHE B, SCOTT D A, YAN W X, ZHANG F. Rationally engineered Cas9 nucleases with improved specificity. Science, 2015, 351(6268): 84.
[50]   KLEINSTIVER B P, PATTANAYAK V, PREW M S, TSAI S Q, NGUYEN N T, ZHENG Z, JOUNG J K. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529: 490-495.
[51]   FU Y, SANDER J D, REYON D, CASCIO V M, JOUNG J K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014, 32(3): 279-284.
[52] CHO S W, KIM S, KIM Y, KWEON J, KIM H S, BAE S, KIM J  S. Analysis of off-target effects of CRISPR/Cas-derived RNA- guided endonucleases and nickases. Genome Research, 2014, 24(1): 132-141.
[53]   HUANG S, WEIGEL D, BEACHY R N, LI J. A proposed regulatory framework for genome-edited crops. Nature Genetics, 2016, 48(2): 109-111.
[54]   WALTZ E. Gene-edited CRISPR mushroom escapes US regulation. Nature, 2016, 532: 158-159.
[55]   GAO C. The future of CRISPR technologies in agriculture. Nature Reviews Molecular Cell Biology, 2018. Doi:10.1038/nrm.2018.2
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[3] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[4] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[5] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[6] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[7] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[8] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[9] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[10] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[11] YANG Min,XU HuaWei,WANG CuiLing,YANG Hu,WEI YueRong. Using CRISPR/Cas9-mediated Targeted Mutagenesis of ZmFKF1 Delayed Flowering Time in Maize [J]. Scientia Agricultura Sinica, 2021, 54(4): 696-707.
[12] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[13] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[14] CAI Ni,YAN DuoZi,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Adhesin Gene mad2 Knockout and Functional Effects on Biological Characteristics and Inducing Plant Responses in Metarhizium anisopliae [J]. Scientia Agricultura Sinica, 2021, 54(22): 4800-4812.
[15] ZHANG Xingping,QIAN Qian,ZHANG JiaNan,DENG XingWang,WAN JianMin,XU Yunbi. Transforming and Upgrading Off-Season Breeding in Hainan Through Molecular Plant Breeding [J]. Scientia Agricultura Sinica, 2021, 54(18): 3789-3804.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!