Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
SUPER WOMAN 2 (SPW2) maintains organ identity in spikelets by inhibiting the expression of floral homeotic genes OsMADS3, OsMADS58, OsMADS13, and DROOPING LEAF
ZHUANG Hui, LAN Jin-song, YANG Qiu-ni, ZHAO Xiao-yu, LI Yu-huan, ZHI Jing-ya, SHEN Ya-lin, HE Guang-hua, LI Yun-feng
2024, 23 (1): 59-76.   DOI: 10.1016/j.jia.2023.07.010
Abstract287)      PDF in ScienceDirect      

Flower organ identity in rice is mainly determined by the A-, B-, C- and E-class genes, with the majority encoding MADS-box transcription factors.  However, few studies have investigated how the expression of these floral organ identity genes is regulated during flower development.  In this study, we identified a gene named SUPER WOMAN 2 (SPW2), which is necessary for spikelet/floret development in rice by participating in the regulation of the expression of pistil identity genes such as OsMADS3, OsMADS13, OsMADS58 and DL.  In the spw2 mutant, ectopic stigma/ovary-like tissues were observed in the non-pistil organs, including sterile lemma, lemma, palea, lodicule, and stamen, suggesting that the identities of these organs were severely affected by mutations in SPW2SPW2 was shown to encode a plant-specific EMF1-like protein that is involved in H3K27me3 modification as an important component of the PRC2 complex.  Expression analysis showed that the SPW2 mutation led to the ectopic expression of OsMADS3, OsMADS13, OsMADS58, and DL in non-pistil organs of the spikelet.  The ChIP-qPCR results showed significant reductions in the levels of H3K27me3 modification on the chromatin of these genes.  Thus, we demonstrated that SPW2 can mediate the process of H3K27me3 modification of pistil-related genes to regulate their expression in non-pistil organs of spikelets in rice.  The results of this study expand our understanding of the molecular mechanism by which SPW2 regulates floral organ identity genes through epigenetic regulation.

Reference | Related Articles | Metrics
Improved crop protection and biodiversity of the agroecosystem by reduced tillage in rice paddy fields in southern China
LU Qi-qi, SONG Yuan-feng, PAN Ke-qing, LI Yun, TANG Ming-xin, ZHONG Guo-hua, LIU Jie
2022, 21 (8): 2345-2356.   DOI: 10.1016/S2095-3119(21)63802-9
Abstract221)      PDF in ScienceDirect      

Agricultural sustainability has benefited from the broad adoption of conservation agriculture (CA) practices for decades, in which the reduction of mechanical disturbances to soil (also known as reduced tillage, RT) is one of the most essential principles for CA implementation.  Many studies have recommended the advantages of CA practices in the promotion of biodiversity, but the integrated impacts on crop productivity and biodiversity remain unclear.  Since CA has been applied in rice production in the subtropical area of southern China for several years, the effects of CA, particularly the RT methods, need to be evaluated for the local and long-term adoption.  In this study, we established an integrated network to illustrate how the reduction of tillage intensity influenced organisms including invertebrates (such as rice pests and their predators), pathogens and weeds, and then led to an impact on rice yield.  The two-year study demonstrated that major rice pests, such as rice planthoppers, stem borers and apple snails, were effectively controlled by RT practice.  Similarly, the occurrence of common diseases declined with less tillage.  Compared to the conventional tillage (CT) treatment, the density of weeds in paddy fields deceased significantly in the RT treatment.  In addition, the diversity and richness of pest predators increased remarkably in paddy fields where either reduced or no tillage was applied, which highlighted the significance of a CA strategy for the promotion of biodiversity in the agroecosystem.  More importantly, the rice yield gradually increased after the two-year reduction of tillage.  Taken together, our results suggest that the reduction of tillage intensity is beneficial for the protection of rice crops from various pests, and facilitates the sustainability of the agroecosystem and rice yield, which provides a solid basis and novel insights for the establishment of sustainable agroecosystems by CA-related practices in rice production in southern China.

Reference | Related Articles | Metrics
Assessment of the potential toxicity of insecticidal compounds to Peristenus spretus, a parasitoid of mirid bugs
ZHAO Man, LI Yun-he, NIU Lin-lin, CHEN Lin, LIANG Ge-mei
2022, 21 (5): 1424-1435.   DOI: 10.1016/S2095-3119(20)63597-3
Abstract144)      PDF in ScienceDirect      
With the increased cultivation of Bt crops in China, Apolygus lucorum and other mirid bugs have emerged as important agricultural pests because they are insensitive to the Bt proteins.  In addition, the reduction of pesticide applications after planting Bt crops also increases the severity of mirid bug outbreaks.  Peristenus spretus is a parasitoid of mirid nymphs, but its sensitivity to Bt proteins is not known.  In the current study, we developed a dietary exposure assay to assess the effects of Bt proteins (Cry1Ab, Cry1Ac, Cry1F, Cry2Aa, and Cry2Ab) on P. spretus adults using a diet consisting of a 10% honey solution with or without Bt proteins at 400 µg g–1 diet.  The results showed that the survival and reproduction of P. spretus adults were reduced by the cysteine protease inhibitor E-64 (a positive control) but were not affected by any of the five Bt proteins.  The activities of digestive, detoxifying, and antioxidant enzymes in P. spretus were also unaffected by diets containing the Cry proteins, but they were significantly affected by the diet containing E-64.  We then developed a tri-trophic bioassay to determine the effects of the five Bt proteins on P. spretus larvae and pupae.  In this assay, A. lucorum nymphs fed an artificial diet containing Cry proteins were used as the hosts for P. spretus.  The results of the tri-trophic assay indicated that neither the pupation rate nor the eclosion rate of the P. spretus parasitoids were significantly affected by the presence of high concentrations of Bt proteins in the parasitized A. lucorum nymphs.  The overall results indicate that these two assays can be used to evaluate the toxicity of insecticidal compounds to P. spretus and that the tested Cry proteins are not toxic to P. spretus.  
Reference | Related Articles | Metrics
The rhizospheric microbiome becomes more diverse with maize domestication and genetic improvement
HUANG Jun, LI Yun-feng, MA Yuan-ying, LI Yan-sheng, JIN Jian, LIAN Teng-xiang
2022, 21 (4): 1188-1202.   DOI: 10.1016/S2095-3119(21)63633-X
Abstract188)      PDF in ScienceDirect      
Domestication and genetic improvement of maize improve yield and stress tolerance due to changes in morphological and physiological properties, which likely alter rhizosphere microbial diversity.  Understanding how the evolution of maize germplasm impacts its rhizobacterial traits during the growth stage is important for optimizing plant-microbe associations and obtaining yield gain in domesticated germplasms.  In this study, a total of nine accessions representing domestication and subsequent genetic improvement were selected.  We then sequenced the plant DNA and rhizobacterial DNA of teosinte, landraces and inbred lines at the seedling, flowering and maturity stages in a field trial.  Moreover, the soil chemical properties were determined at the respective stages to explore the associations of soil characteristics with bacterial community structures.  The results showed that domestication and genetic improvement increased the rhizobacterial diversity and substantially altered the rhizobacterial community composition.  The core microbiome in the rhizosphere differed among germplasm groups.  The co-occurrence network analysis demonstrated that the modularity in the bacterial network of the inbred lines was greater than those of teosinte and the landraces.  In conclusion, the increased diversity of the rhizobacterial community with domestication and genetic improvement may improve maize resilience to biotic stresses and soil nutrient availability to plants. 
Reference | Related Articles | Metrics
miR-99a-5p inhibits target gene FZD5 expression and steroid hormone secretion from goat ovarian granulosa cells
ZHU Lu, JING Jing, QIN Shuai-qi, LU Jia-ni, ZHU Cui-yun, ZHENG Qi, LIU Ya, FANG Fu-gui, LI Yun-sheng, ZHANG Yun-hai, LING Ying-hui
2022, 21 (4): 1137-1145.   DOI: 10.1016/S2095-3119(21)63766-8
Abstract188)      PDF in ScienceDirect      
MicroRNA (miRNA) has vital regulatory effects on the proliferation, differentiation and secretion of ovarian granulosa cells, but the role of miR-99a-5p in goat ovarian granulosa cells (GCs) is unclear.  Both miR-99a-5p and Frizzled-5 (FZD5) were found to be expressed in GCs in goat ovaries via fluorescence in situ hybridization and immunohistochemistry, respectively, and FZD5 was verified (P<0.001) as a target gene of miR-99a-5p by double luciferase reporter gene experiments.  Furthermore, FZD5 mRNA and protein expression were both found to be regulated (P<0.05) by miR-99a-5p in GCs.  Moreover, the overexpression of miR-99a-5p or knockdown of FZD5 suppressed (P<0.05) estradiol and progesterone secretion from the GCs, as determined by ELISA.  In summary, miR-99a-5p inhibits target gene FZD5 expression and estradiol and progesterone synthesis in GCs.  Our study thus provides seminal data and new insights into the regulatory mechanisms of follicular development in the goat and other animals.
Reference | Related Articles | Metrics
First record of the golden potato nematode Globodera rostochiensis in Yunnan and Sichuan provinces of China
JIANG Ru, PENG Huan, LI Yun-qing, LIU Hui, ZHAO Shou-qi, LONG Hai-bo, HU Xian-qi, GE Jian-jun, LI Xing-yue, LIU Miao-yan, SHAO Bao-lin, PENG De-liang
2022, 21 (3): 898-899.   DOI: 10.1016/S2095-3119(21)63845-5
Abstract460)      PDF in ScienceDirect      
The potato cyst nematodes (PCN) Globodera rostochiensis (Wollenweber) Skarbilovich, 1959 is considered the most damaging nematode pest of potato worldwide that causes significant yield losses, and this nematode is recognized and listed as a quarantine nematode in many countries (EPPO 2017).  China is currently the largest producer of potato in the world, while the total production is also the highest (Guan and Cai 2019).  The survey for cyst nematodes on potato were conducted in Yunnan and Sichuan provinces of China during 2018–2020, numerous cysts were observed on potato roots in Huize County and Ludian County of Yunnan Province, Zhaojue County and Yuexi County of Sichuan Province.  Cysts and second-stage juveniles (J2s) were isolated from each soil sample using the Cobb decanting and sieving method.  The morphology of cysts and J2s and molecular analysis established the identity of this species as golden cyst nematode Globodera rostochiensis (Subbotin et al. 2010).  For morphological analysis, the cysts were characterized by smoothly rounded with a small projecting neck, brown and golden color, terminal cone was absent and circumfenestrate.  The key morphometrics of cysts (n=25) were: length excluding neck 705±24 (689–747) μm, width 698±28 (678–759) μm, number of cuticular ridges between anus and vulval fenestra 17.3±1.7 (14–19); fenestral diameter 13.6±1.1 (12.25–15.45) μm; distance from anus to the edge of fenestra 63.7±11.3 (48.23–79.14) μm; Granek’s ratio 4.7±0.7 (3.92–5.75).  The key morphometrics of J2s (n=25): body length 453.9±16.6 (440–496) μm, stylet length 21.9±1.0 (20.3–24.3) μm, tail length 51.1±3.2 (45.5–55.5) μm, and hyaline region length 24.4±2.5 (21.7–29.9) μm.  Morphology of the cysts and J2 were consistent with those of G. rostochiensis (Subbotin et al. 2010; EPPO 2017).  Moreover, the identification result was confirmed by PCR using universal primers TW81 (5´-GTTTCCGTAGGTGAACCTGC-3´) and AB28 (5´-ATATGCTTAAGTTCAGCGGGT-3´) for ITS region and D2A (5´-TTTTTTGGGCATCCTGAGGTTTAT-3´) D3B (5´-AGCACCTAAACTTAAAACATAATGAAAATG-3´) for rDNA-28S region, respectively.  The ITS rDNA sequences (GenBank accessions MZ042365, MZ042366, MZ042369, and MZ042370) exhibited 99.83% identity match to G. rostochiensis sequences available in the GenBank (GQ294513).  Sequence from the 28S region (GenBank accessions MZ057595, MZ057596, MZ057599, and MZ057600) was 99.33% similar to those of G. rostochiensis isolate from MF773722.  The species was also confirmed with species-specific primers ITS5 (5´-GGAAGTAAAAGTCGTAACAAGG-3´) and PITSr3 (5´-AGCGCAGACATGCCGCAA-3´) (Bulman and Marshall 1997), a single 434-bp fragment was obtained from Huize, Ludian, Zhaojue and Yuexi populations.  The pathog enicity testing of Huize, Ludian, Zhaojue and Yuexi, three weeks-old potato plants (cv. Qinshu 9)

were inoculated with 2 000 eggs, and cultured in an incubator at 23°C/20°C with a 16 h/8 h light/dark photoperiod.  After three months inoculation, 36±7.2 cysts and females were extracted from the infested potato roots, no females and cysts were observed on control plants.  


This is the first report of potato golden cyst nematode G. rostochiensis in China.  



Reference | Related Articles | Metrics
Switches in transcriptome functions during seven skeletal muscle development stages from fetus to kid in Capra hircus
LING Ying-hui, ZHENG Qi, JING Jing, SUI Meng-hua, ZHU Lu, LI Yun-sheng, ZHANG Yun-hai, LIU Ya, FANG Fu-gui, ZHANG Xiao-rong
2021, 20 (1): 212-226.   DOI: 10.1016/S2095-3119(20)63268-3
Abstract217)      PDF in ScienceDirect      
Skeletal muscle accounts for about 40% of mammalian body weight, the development of which is a dynamic, complex and precisely regulated process that is critical for meat production. We here described the transcriptome expression profile in 21 goat samples collected at 7 growth stages from fetus to kid, including fetal 45 (F45), 65 (F65), 90 (F90), 120 (F120), and 135 (F135) days, and birth 1 (B1) day and 90 (B90) days kids.  Paraffin sections combined with RNA-seq data of the 7 stages divided the transcriptomic functions of skeletal muscle into 4 states: before F90, F120, F135 and B1, and B90.  And the dynamic expression of all 4 793 differentially expressed genes (DEGs) was identified.  Furthermore, DEGs were clustered by weighted gene correlation network analysis into 4 modules (turquoise, grey, blue and brown) that corresponded to these 4 states.  Functional and pathway analysis indicated that the active genes in the stages before F90 (turquoise) were closely related to skeletal muscle proliferation.  The DEGs in the F120-related module (grey) were found to participate in the regulation of skeletal muscle structure and skeletal muscle development by regulating tRNA.  The brown module (F135 and B1) regulated fatty acid biological processes to maintain the normal development of muscle cells.  The DEGs of B90 high correlation module (blue) were involved the strengthening and power of skeletal muscle through the regulation of actin filaments and tropomyosin.  Our current data thus revealed the internal functional conversion of the goat skeletal muscle in the growth from fetus to kid.  The results provided a theoretical basis for analyzing the involvement of mRNA in skeletal muscle development.
 
Reference | Related Articles | Metrics
Gene mapping and candidate gene analysis of aberrant-floral spikelet 1 (afs1) in rice (Oryza sativa L.)
ZHANG Ting, YOU Jing, YU Guo-ling, ZHANG Yi, CHEN Huan, LI Yi-dan, YE Li, YAO Wan-yue, TU Yu-jie, LING Ying-hua, HE Guang-hua, LI Yun-feng
2020, 19 (4): 921-930.   DOI: 10.1016/S2095-3119(19)62847-9
Abstract136)      PDF in ScienceDirect      
The spikelet is a unique inflorescence structure in grasses.  However, the molecular mechanism that regulates its development remains unclear, and we therefore characterize a spikelet mutant of rice (Oryza sativa L.), aberrant-floral spikelet 1 (afs1), which was derived from treatment of Xinong 1B with ethyl methanesulfonate.  In the afs1 mutant, the spikelet developed an additional lemma-like organ alongside the other normally developed floral organs, and the paleae were degenerated to differing degrees with or without normally developed inner floral organs.  Genetic analysis revealed that the afs1 phenotype was controlled by a single recessive gene.  The AFS1 gene was mapped between the insertion/deletion (InDel) marker Indel19 and the simple sequence repeat marker RM16893, with a physical distance of 128.5 kb on chromosome 4.  Using sequence analysis, we identified the deletion of a 5-bp fragment and a transversion from G to A within LOC_Os04g32510/ LAX2, which caused early termination of translation in the afs1 mutant.  These findings suggest that AFS1 may be a new allele of LAX2, and is involved in the development of floral organs by regulating the expression of genes related to their development.  The above results provide a new view on the function of LAX2, which may also regulate the development of spikelets.
 
Reference | Related Articles | Metrics
No detrimental effect of Bt maize pollen containing Cry1Ab/2Aj or Cry1Ac on adult green lacewings Chrysoperla sinica Tjeder
LIU Yan-min, LI Yun-he, CHEN Xiu-ping, SONG Xin-yuan, SHEN Ping, PENG Yu-fa
2019, 18 (4): 893-899.   DOI: 10.1016/S2095-3119(17)61887-2
Abstract224)      PDF (759KB)(183)      
Adult Chrysoperla sinica Tjeder is a common pollen feeder in maize fields.  They are thus directly exposed to insecticidal proteins by consumption of genetically engineered maize pollen containing Bacillus thuringiensis (Bt) proteins.  Here we assessed the potential effects of Cry1Ab/2Aj- or Cry1Ac-containing Bt maize pollen on the fitness of adult C. sinica via a dietary-exposure assay under laboratory conditions.  Survival, pre-oviposition, fecundity and adult dry weight did not differ between adult C. sinica consuming Bt or the corresponding non-Bt maize pollen.  The stability of the Cry protein in the food sources and uptake of the Cry protein by adult C. sinica during the feeding experiment were confirmed by ELISA.  These results demonstrate that adult C. sinica are not affected by the consumption of Cry1Ab/2Aj- or Cry1Ac-containing maize pollen, suggesting that production of Bt maize expressing cry1Ab/2Aj or cry1Ac genes will pose a negligible risk to adult C. sinica.
 
Reference | Related Articles | Metrics
Identification and QTL mapping of Z550, a rice backcrossed inbred line with increased grains per panicle
WANG Shi-ming, CUI Guo-qing, WANG Hui, MA Fu-ying, XIA Sai-sai, LI Yun-feng, YANG Zheng-lin, LING Ying-hua, ZHANG Chang-wei, HE Guang-hua, ZHAO Fang-ming
2019, 18 (3): 526-531.   DOI: 10.1016/S2095-3119(18)61996-3
Abstract253)      PDF (310KB)(469)      
An elite backcrossed inbred line Z550 with increased grains per panicle was identified from advanced backcrosses between Nipponbare and Xihui 18 by simple sequence repeat (SSR) marker-assisted selection (MAS).  Z550 carries 13 substitution segments distributed on chromosomes 1, 6, 7, 8, 9, 10, and 12, with an average substitution length of 1.68 Mb.  Compared with the Nipponbare parental line, plant height, panicle length, spikelets per panicle, grains per panicle, and grain weight for Z550 were significantly increased.  While the grain width of Z550 was significantly narrower, and the seed setting ratio (81.43%) was significantly lower than that of Nipponbare, it is still sufficient for breeding purposes.  Quantitative trait loci (QTLs) mapping for important agronomic traits was conducted with the F2 population derived from Nipponbare crossed with Z550 using the restricted maximum likelihood (REML) method.  A total of 16, including 12 previously unreported QTLs were detected, with contribution rates ranging from 1.46 to 10.49%.  Grains per panicle was controlled by 8 QTLs, 5 of which increased number of grains whereas 3 decreased it.  qGPP-1, with the largest contribution (10.49%), was estimated to increase grains per panicle by 30.67, while qGPP-9, with the minimum contribution rate (2.47%), had an effect of increasing grains per panicle by 15.79.  These results will be useful for further development of single segment substitution lines with major QTLs, and for research of their molecular functions via QTL cloning.
 
Reference | Related Articles | Metrics
Gene mapping and candidate gene analysis of multi-floret spikelet 3 (mfs3) in rice (Oryza sativa L.)
ZHENG Hao, ZHANG Jun, ZHUANG Hui, ZENG Xiao-qin, TANG Jun, WANG Hong-lei, CHEN Huan, LI Yan, LING Ying-hua, HE Guang-hua, LI Yun-feng
2019, 18 (12): 2673-2681.   DOI: 10.1016/S2095-3119(19)62652-3
Abstract164)      PDF in ScienceDirect      
Rice (Oryza sativa L.) is one of the most important food crops worldwide and a model monocot plant for gene function analysis, so it is an ideal system for studying flower development.  This study reports a mutant, named multi-floret spikelet 3 (mfs3), which is related to the spikelet development in rice and derived from the ethylmethane sulfonate (EMS)-treated rice cultivar XIDA 1B.  In mfs3, the main body of palea (bop) was degenerated severely and only glume-like marginal regions of palea (mrp) remained, while other floral organs developed normally, indicating that the palea identity was seriously influenced by the mutation.  It was also observed that the number of floral organs was increased in some spikelets, including 2 lemmas, 4 mrp, 4 lodicules, 8–10 stamens, and 2 pistils, which meant that the spikelet determinacy was lost to some degree in mfs3.  Furthermore, genetic analysis demonstrated that the mfs3 trait was controlled by a single recessive gene.  Using 426 F2 mutants derived from the cross between sterile line 56S and mfs3, the MULTI-FLORET SPIKELET 3 (MFS3) gene was mapped between the molecular markers RM19347 and RM19352 on Chr.6, with a physical distance of 106.3 kb.  Sequencing of candidate genes revealed that an 83-bp fragment loss and a base substitution occurred in the LOC_Os06g04540 gene in the mutant, confirming preliminarily that the LOC_Os06g04540 gene was the MFS3 candidate gene.  Subsequent qPCR analysis showed that the mutation caused the down-regulation of OsMADS1 and FON1 genes, and the up-regulation of OsIDS1 and SNB genes, which are all involved in the regulation of spikelet development.  The MFS3 mutation also significantly reduced the transcription of the REP gene, which is involved in palea development.  These results indicated that the MFS3 gene might be involved in the spikelet meristem determinacy and palea identity by regulating the expression of these related genes.
Reference | Related Articles | Metrics
Identification of the nitrogen-fixing Pseudomonas stutzeri major flagellar gene regulator FleQ and its role in biofilm formation and root colonization
MA Yao, ZHANG Qiu-lei, YANG Zhi-min, LI Yun, YAN Yong-liang, PING Shu-zhen, ZHANG Li-wen, LIN Min, LU Wei
2016, 15 (2): 339-348.   DOI: 10.1016/S2095-3119(15)61132-7
Abstract1871)      PDF in ScienceDirect      
Flagellar biosynthesis and motility are subject to a four-tiered transcriptional regulatory circuit in Pseudomonas, and the master regulator FleQ appears to be the highest-level regulator in this hierarchical regulatory cascade. Pseudomonas stutzeri A1501 is motile by a polar flagellum; however, the motility and regulatory mechanisms involved in this process are unknown. Here, we searched the A1501 genome for flagella and motility genes and found that approximately 50 genes, which were distributed in three non-contiguous chromosomal regions, contribute to the formation, regulation and function of the flagella. The non-polar mutation of fleQ impaired flagellar biosynthesis, motility and root colonization but enhanced biofilm formation. FleQ positively regulates the expression of flagellar class II–IV genes, suggesting a regulatory cascade that is coordinated similar to that of the well-known P. aeruginosa. Based on our results, we propose that flagellar genes in P. stutzeri A1501 are regulated in a cascade regulated by FleQ and that flagellum-driven motility properties may be necessary for competitive rhizosphere colonization.
Reference | Related Articles | Metrics
Identification of QTLs for grain size and characterization of the beneficial alleles of grain size genes in large grain rice variety BL129
GAO Xuan, ZHU Xu-dong, FANG Na, DUAN Peng-gen, WU Ying-bao, LUO Yue-hua, LI Yun-hai
2016, 15 (1): 1-9.   DOI: 10.1016/S2095-3119(15)61043-7
Abstract2422)      PDF in ScienceDirect      
Grain size is one of the most important agronomic components of grain yield. Grain length, width and thickness are controlled by multiple quantitative trait loci (QTLs). To understand genetic basis of large grain shape and explore the beneficial alleles for grain size improvement, we perform QTL analysis using an F2 population derived from a cross between the japonica variety Beilu 129 (BL129, wide and thick grain) and the elite indica variety Huazhan (HZ, narrow and long grain). A total number of eight major QTLs are detected on three different chromosomes. QTLs for grain width (qGW), grain thickness (qGT), brown grain width (qBGW), and brown grain thickness (qBGT) explained 77.67, 36.24, 89.63, and 39.41% of total phenotypic variation, respectively. The large grain rice variety BL129 possesses the beneficial alleles of GW2 and qSW5/ GW5, which have been known to control grain width and weight, indicating that the accumulation of the beneficial alleles causes large grain shape in BL129. Further results reveal that the rare gw2 allele from BL129 increases grain width, thickness and weight of the elite indica variety Huazhan, which is used as a parental line in hybrid rice breeding. Thus, our findings will help breeders to carry out molecular design breeding on rice grain size and shape.
Reference | Related Articles | Metrics
YGL9, encoding the putative chloroplast signal recognition particle 43 kDa protein in rice, is involved in chloroplast development
WANG Zhong-wei, ZHANG Tian-quan, XING Ya-di, ZENG Xiao-qin, WANG Ling, LIU Zhong-xian, SHI Jun-qiong, ZHU Xiao-yan, MA Ling, LI Yun-feng, LING Ying-hua, SANG Xian-chun, HE Guang-hua
2016, 15 (05): 944-953.   DOI: 10.1016/S2095-3119(15)61310-7
Abstract1656)      PDF in ScienceDirect      
    The nuclear-encoded light-harvesting chlorophyll a/b-binding proteins (LHCPs) are specifically translocated from the stroma into the thylakoid membrane through the chloroplast signal recognition particle (cpSRP) pathway. The cpSRP is composed of a cpSRP43 protein and a cpSRP54 protein, and it forms a soluble transit complex with LHCP in the chloroplast stroma. Here, we identified the YGL9 gene that is predicted to encode the probable rice cpSRP43 protein from a rice yellow-green leaf mutant. A phylogenetic tree showed that an important conserved protein family, cpSRP43, is present in almost all green photosynthetic organisms such as higher plants and green algae. Sequence analysis showed that YGL9 comprises a chloroplast transit peptide, three chromodomains and four ankyrin repeats, and the chromodomains and ankyrin repeats are probably involved in protein-protein interactions. Subcellular localization showed that YGL9 is localized in the chloroplast. Expression pattern analysis indicated that YGL9 is mainly expressed in green leaf sheaths and leaves. Quantitative real-time PCR analysis showed that the expression levels of genes associated with pigment metabolism, chloroplast development and photosynthesis were distinctly affected in the ygl9 mutant. These results indicated that YGL9 is possibly involved in pigment metabolism, chloroplast development and photosynthesis in rice.
Reference | Related Articles | Metrics
Global Analysis of Cytosine Methylation and Proteome Under Cold Treatment in Brassica napus
WEI Fang, HU Jie, CUI Ming-zhu, ZHANG Yan-hui, LI Yun-ling , TIAN Bao-ming
2014, 13 (10): 2170-2176.   DOI: 10.1016/S2095-3119(14)60838-8
Abstract1338)      PDF in ScienceDirect      
Cytosine methylation/demethylation plays pivotal roles in regulating gene expression at a genome-wide level. However, limited reports are available to reveal correlating changes of cytosine methylation and proteomic expression in Brassica napus so far. Therefore, in the present study, global cytosine methylation and proteome were analysed in B. napus after cold treatment by methylation-sensitive amplified polymorphism (MSAP) and two-dimensional protein electrophoresis technology (2-DE). The results showed that the lowered genome-wide DNA methylation status was revealed after cold treatment, and about 0.88% of discrepancy in DNA methylation was detected between the non-flowering and flowering plants after cold treatment. Moreover, the 52 significantly up-regulated proteins emerged in comparison with the 36 down-regulated proteins, as well as the 14 proteins exclusively detected in the flowering plants. Intriguingly the 8 specifically expressed proteins in the non-flowering plants disappeared in the flowering plants with cold treatment. Therefore, these present data proved that the correlating changes of cytosine methylation and proteomic expression were evidenced under cold treatment in B. napus.
Reference | Related Articles | Metrics
Combining Ability and Breeding Potential of Rapeseed Elite Lines for Pod Shatter Resistance
LIU Jia, MEI De-sheng, LI Yun-chang, CUI Jia-cheng, WANG Hui, PENG Peng-fei, FU Li , HU Qiong
2013, 12 (3): 552-555.   DOI: 10.1016/S2095-3119(13)60256-7
Abstract1510)      PDF in ScienceDirect      
Pod shatter resistance of rapeseed is of great importance for modern farming practice. In order to determine the combining ability of elite inbred lines and the breeding potential of rapeseed hybrids in terms of pod shatter resistance, analysis of a 6×6 incomplete diallel cross was conducted at two locations. Results showed that a significant variation existed among breeding lines and their F1 hybrids for pod shatter resistant index (SRI), pod length and width. Pod shatter resistance was significantly positively correlated with pod length. The general combining ability (GCA) effects (GCA=1.58) played a more important role than specific combining ability (SCA) effects (SCA=0.20) for pod shatter trait. The elite lines R1, 1019B and 1055B displayed significant positive GCA effects for pod shatter resistance. Four crosses (1019B×R1, 1015B×R1, 6098B×R1, and 8908B×R1) with high mean performance and positive SCA effects were recommended for developing new hybrids for mechanical harvest in the middle reaches of the Yangtze River.
Reference | Related Articles | Metrics
Characteristics and Driven Factors of Nitrous Oxide and Carbon Dioxide Emissions in Soil Irrigated with Treated Wastewater
XUE Yan-dong, YANG Pei-ling, LUO Yuan-pei, LI Yun-kai, REN Shu-mei, SU Yan-ping, NIU Yongtao
2012, 12 (8): 1354-1364.   DOI: 10.1016/S1671-2927(00)8666
Abstract1077)      PDF in ScienceDirect      
The reuse of treated wastewater in agricultural systems could partially help alleviate water resource shortages in developing countries. Treated wastewater differs from fresh water in that it has higher concentrations of salts, Escherichia coli and presence of dissolved organic matter, and inorganic N after secondary treatment, among others. Its application could thus cause environmental consequences such as soil salinization, ammonia volatilization, and greenhouse gas emissions. In an incubation experiment, we evaluated the characteristics and effects of water-filled pore space (WFPS) and N input on the emissions of nitrous oxide (N2O) and carbon dioxide (CO2) from silt loam soil receiving treated wastewater. Irrigation with treated wastewater (vs. distilled water) significantly increased cumulative N2O emission in soil (117.97 μg N kg-1). Cumulative N2O emissions showed an exponentially increase with the increasing WFPS in unamended soil, but the maximum occurred in the added urea soil incubated at 60% WFPS. N2O emissions caused by irrigation with treated wastewater combined with urea-N fertilization did not simply add linearly, but significant interaction (P<0.05) caused lower emissions than the production of N2O from the cumulative effects of treated wastewater and fertilizer N. Moreover, a significant impact on cumulative CO2 emission was measured in soil irrigated with treated wastewater. When treated wastewater was applied, there was significant interaction between WFPS and N input on N2O emission. Hence, our results indicated that irrigation with treated wastewater should cause great concern for increasing global warming potential due to enhanced emission of N2O and CO2.
Reference | Related Articles | Metrics
Identification and Gene Mapping of a multi-floret spikelet 1 (mfs1) Mutant Associated with Spikelet Development in Rice
REN De-yong*, LI Yun-feng*, WANG Zeng, XU Fang-fang, GUO Shuang, ZHAO Fang-ming, SANG Xianchun, LING ing-hua, HE Guang-hua
2012, 12 (10): 1574-1579.   DOI: 10.1016/S1671-2927(00)8690
Abstract1647)      PDF in ScienceDirect      
In this study, a rice spikelet mutant, multi-floret spikelet 1 (mfs1), which was derived from ethylmethane sulfonate (EMS)- treated Jinhui 10 (Oryza sativa L. ssp. indica) exhibited pleiotropic defects in spikelet development. The mfs1 spikelet displayed degenerated the empty glume, elongated the rachilla, the extra lemma-like organ and degraded the palea. Additionally, mfs1 flowers produced varied numbers of inner floral organs. The genetic analysis revealed that the mutational trait was controlled by a single recessive gene. With 401 recessive individuals from the F2 segregation population, the MFS1 gene was finally mapped on chromosome 5, an approximate 350 kb region. The present study will be useful for cloning and functional analysis of MFS1, which would facilitate understanding of the molecular mechanism involved in spikelet development in rice.
Reference | Related Articles | Metrics
18S ribosomal RNA methyltransferase METTL5-mediated CDX2 translation regulates porcine early embryo development
XU Teng-teng, ZHANG Meng-ya, LIU Qiu-chen, WANG Xin, LUO Peng-fei, LIU Tong, YAN Ye-lian, ZHOU Na-ru, MA Yang-yang, YU Tong, LI Yun-sheng, CAO Zu-bing, ZHANG Yun-hai
DOI: 10.1016/j.jia.2023.10.013 Online: 19 October 2023
Abstract96)      PDF in ScienceDirect      

N6-methyladenosine (m6A) plays a key role in mammalian early embryonic development and cell lineage differentiation. However, the role and mechanisms of 18S ribosomal RNA (rRNA) m6A methyltransferase METTL5 in early embryonic development remain unclear. Here, we found that 18S rRNA m6A methyltransferase METTL5 plays an important role in porcine early embryonic development. METTL5 knockdown and overexpression significantly reduced the developmental efficiency of porcine early embryos and impaired cell lineage allocation. METTL5 knockdown apparently decreased the global translation efficiency in blastocyst, while METTL5 overexpression increased the global translation efficiency. Furthermore, METTL5 knockdown did not affect the abundance of CDX2 mRNA, but resulted in a significant reduction in CDX2 protein levels. Moreover, the low developmental efficiency and abnormal lineage distribution of METTL5 knockdown embryos could be rescued by CDX2 overexpression. Collectively, our results demonstrated that 18S rRNA methyltransferase METTL5 regulates porcine early embryonic development via modulating the translation of CDX2.

Reference | Related Articles | Metrics
MiR-21-5p ameliorates Busulfan-induced testicular dysfunction and maintains spermatogenesis
ZHANG Meng-fei, WAN Shi-cheng, CHEN Wen-bo, YANG Dong-hui, WANG Cong-liang, LI Ba-lun, Aili Aierken, DU Xiao-min, LI Yun-xiang, WU Wen-ping, WANG Yu-qi, XIE Fang-de, LUO Xuan, LI Na, LI Xue-ling, YANG Lei, Ahmed Hamed Arisha, HUA Jin-lian
DOI: 10.1016/j.jia.2024.02.004 Online: 07 March 2024
Abstract103)      PDF in ScienceDirect      
Spermatogonial stem cells (SSCs) are the key to maintaining production of the sperms and healthy offsprings, and also treating breeding livestock’s reproductive damage and infertility. MicroRNAs act a decisive role in regulating gene expression in many cells and tissues, including in processes such as proliferation, self-renewal, differentiation, and apoptosis of stem cells. However, the miRNA mechanism in regulation of SSCs is still unclear. Here, high-throughput sequencing was used to identify specific miRNAs. We confirmed that miR-21-5p was concentrated in both goat and mouse SSCs, and enhanced the proliferation and antiapoptotic ability of SSCs. In vivo experiments have shown that miR-21-5p resisted the damage of the chemotherapy drug Busulfan to germ cells, ameliorated Busulfan-induced testicular dysfunction, and maintained spermatogenesis. Further RNA-seq and target gene prediction revealed that SPRY1 and FASLG are targets of miR-21-5p, thereby activating downstream signaling pathways such as MAPK/ERK, PI3K-AKT, and apoptosis. In summary, miR-21-5p is crucial for the self-renewal and maintenance of SSCs. This study provides new avenues for treating breeding livestock’s reproductive damages, infertility, oligospermia, and other conditions.
Reference | Related Articles | Metrics