Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (10): 1574-1579    DOI: 10.1016/S1671-2927(00)8690
GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification and Gene Mapping of a multi-floret spikelet 1 (mfs1) Mutant Associated with Spikelet Development in Rice
REN De-yong*, LI Yun-feng*, WANG Zeng, XU Fang-fang, GUO Shuang, ZHAO Fang-ming, SANG Xianchun, LING ing-hua, HE Guang-hua
1.Key Laboratroy of Application and Safety Control of Genetically Modified Crops, Rice Research Institute, Southwest University, Chongqing 400716, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  In this study, a rice spikelet mutant, multi-floret spikelet 1 (mfs1), which was derived from ethylmethane sulfonate (EMS)- treated Jinhui 10 (Oryza sativa L. ssp. indica) exhibited pleiotropic defects in spikelet development. The mfs1 spikelet displayed degenerated the empty glume, elongated the rachilla, the extra lemma-like organ and degraded the palea. Additionally, mfs1 flowers produced varied numbers of inner floral organs. The genetic analysis revealed that the mutational trait was controlled by a single recessive gene. With 401 recessive individuals from the F2 segregation population, the MFS1 gene was finally mapped on chromosome 5, an approximate 350 kb region. The present study will be useful for cloning and functional analysis of MFS1, which would facilitate understanding of the molecular mechanism involved in spikelet development in rice.

Abstract  In this study, a rice spikelet mutant, multi-floret spikelet 1 (mfs1), which was derived from ethylmethane sulfonate (EMS)- treated Jinhui 10 (Oryza sativa L. ssp. indica) exhibited pleiotropic defects in spikelet development. The mfs1 spikelet displayed degenerated the empty glume, elongated the rachilla, the extra lemma-like organ and degraded the palea. Additionally, mfs1 flowers produced varied numbers of inner floral organs. The genetic analysis revealed that the mutational trait was controlled by a single recessive gene. With 401 recessive individuals from the F2 segregation population, the MFS1 gene was finally mapped on chromosome 5, an approximate 350 kb region. The present study will be useful for cloning and functional analysis of MFS1, which would facilitate understanding of the molecular mechanism involved in spikelet development in rice.
Keywords:  empty glume       gene mapping       mfs1 mutant       rice (Oryza sativa L.)       spikelet  
Received: 27 June 2011   Accepted:
Fund: 

This work was supported by funds from the National Natural Science Foundation of China (31071071), the Major Research Projects of Chongqing, China (CSTC, 2010AA1013), the Doctor Foundation of Southwest University, China (SWU110017), the Fundamental Research Funds for the Central Universities, China (XDJK2010C073).

Corresponding Authors:  Correspondence HE Guang-hua, Tel: +86-23-68250158, E-mail: hegh1968@yahoo.com.cn     E-mail:  hegh1968@yahoo.com.cn

Cite this article: 

REN De-yong*, LI Yun-feng*, WANG Zeng, XU Fang-fang, GUO Shuang, ZHAO Fang-ming, SANG Xianchun, LING ing-hua, HE Guang-hua. 2012. Identification and Gene Mapping of a multi-floret spikelet 1 (mfs1) Mutant Associated with Spikelet Development in Rice. Journal of Integrative Agriculture, 12(10): 1574-1579.

[1]Agrawal K G, Abe K, Yamazaki M, Miyao A, Hirochika A.2005. Conservation of the E-function for floral organidentity in rice revealed by the analysis of tissue cultureinducedloss of function mutants of the OsMADS1 gene.Plant Molecular Biology, 59, 125-135.

[2]Arber A. 1934. The Gramineae: a Study of Cereal, Bamboo,and Grasses. Cambridge University Press, Cambridge,UK.Bowman J L, Smyth D R, Meyerowitz E M. 1991. Geneticinteractions among floral homeotic genes ofArabidopsis. Development, 112, 1-20.

[3]Coen E S, Meyerowitz E M. 1991. The war of the whorls:genetic interactions controlling flower development.Nature, 353, 31-37.Colombo L, Franken J, Koetje E, van Went J, Dons H J,Angenent G C, van Tunen A J. 1995. The petunia MADSbox gene FBP11 determines ovule identity. The PlantCell, 7, 1859-1868.

[4]Cui R F, Han J K, Zhao S Z, Su K M, Wu F, Du X, Xu Q J,Chong K, Theissen G, Meng Z. 2010. Functionalconservation and diversification of class E floralhomeotic genes in rice (Oryza sativa). The PlantJournal, 6, 767-781.

[5]Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk P B,An G, Colombo L, Kater M M. 2007. The D-lineageMADS-box gene OsMADS13 controls ovule identityin rice. The Plant Journal, 52, 690-699.

[6]Gao X C, LiangWQ, Yin C S, Ji SM,Wang H M, Su X, GuoC, Kong H Z, Xue H W, Zhang D B. 2010. TheSEPALLATA-like gene OsMADS34 is required for riceinflorescence and spikelet development. PlantPhysiology, 153, 728-740.

[7]Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y,Kim S R, Lee YH, Cho YG,An G. 2000. leaf hull sterile 1is a homeotic mutation in a rice MADS box geneaffecting rice flower development. The Plant Cell, 12,871-884.

[8]Kaoru K, Masahiko M, Akio M, Hirohiko H, Junko K. 2010.PANICLE PHYTOMER2 (PAP2), encoding aSEPALLATA subfamily MADS-box protein, positivelycontrols spikelet meristem identity in rice. Plant andCell Physiology, 51, 47-57.

[9]Kellogg E A. 2001. Evolutionary history of the grasses.Plant Physiology, 125, 1198-1205.

[10]Kellogg EA. 2009. The evolutionary history of Ehrhartoideae,Oryzeae, and Oryza. Rice, 2, 1-14.

[11]Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J.2003. FRIZZY PANICLE is required to prevent theformation of axillary meristems and to establish floralmeristem identity in rice spikelets. Development, 130,3841-3850.

[12]Kosambi D D. 1944. The estimation of map distances fromrecombination values. Annals of Eugenics, 12, 172-175.

[13]Li H, Xue D, Gao Z, Yan M, Xu W, Xing Z, Huang D, QianQ, Xue Y B. 2009. A putative lipase gene EXTRAGLUME1 regulates both empty-glume fate and spikeletdevelopment in rice. The Plant Journal, 57, 593-605.

[14]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J,Lincoln S E, Newburg L. 1987. MAPMAKER: aninteractive computer package for constructing primarygenetic linkage maps of experimental and naturalpopulations. Genomics, 1, 174-181.

[15]Lee D Y, Lee J, Moon S, Park S Y, An G. 2006. The riceheterochronic gene SUPERNUMERARY BRACTregulates the transition from spikelet meristem to floralmeristem. The Plant Journal, 49, 64-78.

[16]Luo Q, Zhou K, Zhao X, Zheng Q, Xia H W, Xu J, Wu X,Yang H, Zhu L. 2005. Identification and fine mapping ofa mutant gene for palealess spikelet in rice. Planta,221, 222-230.

[17]Luo Z K, Yang Z L, Zhong B Q, Li Y F, Xie R, Zhao F M,Ling Y H, He G H. 2007. Genetic analysis and finemapping of a dynamic rolled leaf gene RL10 (t) in rice(Oryza sativa L.). Genome, 50, 811-817.

[18]Murray M G, Thompson W F. 1980. Rapid isolation of highmolecular weight plant DNA. Nucleic Acids Research,8, 4321- 4325.Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, SakaiH, Nagato Y. 2003. SUPERWOMAN1 and DROOPINGLEAF genes control floral organ identity in rice.Development, 130, 705-718.

[19]Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H,Uchida E, Nagato Y, Yoshida H. 2009. MOSAIC FLORALORGANS1, an AGL6-like MADS box gene, regulatesfloral organ identity and meristem fate in rice. The PlantCell, 21, 3008-3025.

[20]Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Pe ME, Colombo L, Kater M M. 2002. Comparative analysisof rice MADS box genes expressed during flowerdevelopment. Sexual Plant Reproduction, 15, 113-122.

[21]Rogers S O, Bendich A J. 1988. Extraction of DNA fromplant tissues. Plant Molecular Biology, 5, 69-76.

[22]Theissen G. 2001. Development of floral organ indentity:stories from the MADS house. Current Opinion inPlant Biology, 4, 75-85.

[23]Wang K J, Tang D, Hong L L, Xu WY, Huang J, Li M, Gu MH, Xue Y B, Cheng Z K. 2010. DEP and AFO regulatereproductive habit in rice. PLoS Genetics, 6, 1-9.

[24]Yamaguchi T, Lee D Y, Miyao A, Hirochika H,An G, HiranoH Y. 2006. Functional diversification of the two C-classgenes OsMADS3 and OsMADS58 in Oryza sativa. ThePlant Cell, 18, 15-18.

[25]YanofskyM F. 1995. Floral meristems to floral organs: genescontrolling early events in Arabidopsis flowerdevelopment. Annual Review of Plant Physiology andPlant Molecular Biology, 46, 167-168.

[26]Yao S G, Ohmori S, Kimizu M, Yoshida H. 2008. Unequalgenetic redundancy of rice PISTILLATA orthologs,OsMADS2 and OsMADS4, in lodicule and stamendevelopment. Plant and Cell Physiology, 49, 853-857.

[27]Yoshida A, Suzaki T, Tanaka W, Hirano H Y. 2009. Thehomeotic gene long sterile lemma (G1) specifies sterilelemma identity in the rice spikelet. Proceedings of theNational Academy of Sciences of the United States ofAmerica, 106, 20103-20108.

[28]Yuan Z, Gao S, Xue D W, Luo D, Li L T, Ding S Y, Yao X,Wilson Z A, Qian Q, Zhang D B. 2009. RETARDEDPALEA1 controls palea development and floralzygomorphy in rice. Plant Physiology, 149, 235-244.
[1] XU Shi-rui, JIANG Bo, HAN Hai-ming, JI Xia-jie, ZHANG Jin-peng, ZHOU Sheng-hui, YANG Xin-ming, LI Xiu-quan, LI Li-hui, LIU Wei-hua. Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in wheat background[J]. >Journal of Integrative Agriculture, 2023, 22(1): 52-62.
[2] NI Jin-long, WANG De-zheng, NI Da-hu, SONG Feng-shun, YANG Jian-bo, YAO Da-nian. Characterization and fine mapping of RTMS10, a semi-dominant reverse thermo-sensitive genic male sterile locus in rice[J]. >Journal of Integrative Agriculture, 2022, 21(2): 316-325.
[3] LI Hui-juan, JIAO Zhi-xin, NI Yong-jing, JIANG Yu-mei, LI Jun-chang, PAN Chao, ZHANG Jing, SUN Yu-long, AN Jun-hang, LIU Hong-jie, LI Qiao-yun, NIU Ji-shan. Heredity and gene mapping of a novel white stripe leaf mutant in wheat[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1743-1752.
[4] ZHAO Can, HUANG Heng, QIAN Zi-hui, JIANG Heng-xin, LIU Guang-ming, XU Ke, HU Ya-jie, DAI Qi-gen, HUO Zhong-yang. Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1487-1502.
[5] LIU Xi, YI Xin, YANG Yan-rong, HUANG Qian-qian. A rice geranylgeranyl reductase is essential for chloroplast development[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2592-2600.
[6] ZHU Mao-di, CHEN Xin-long, ZHU Xiao-yan, XING Ya-di, DU Dan, ZHANG Ying-ying, LIU Ming-ming, ZHANG Qiu-li, LU Xin, PENG Sha-sha, HE Guang-hua, ZHANG Tian-quan. Identification and gene mapping of the starch accumulation and premature leaf senescence mutant ossac4 in rice[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2150-2164.
[7] LI Yu-xiang, LIU Yang, WANG Yu-hui, DING Yan-feng, WANG Shao-hua, LIU Zheng-hui, LI Gang-hua. Effects of seedling age on the growth stage and yield formation of hydroponically grown long-mat rice seedlings[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1755-1767.
[8] ZHANG Ting, YOU Jing, YU Guo-ling, ZHANG Yi, CHEN Huan, LI Yi-dan, YE Li, YAO Wan-yue, TU Yu-jie, LING Ying-hua, HE Guang-hua, LI Yun-feng. Gene mapping and candidate gene analysis of aberrant-floral spikelet 1 (afs1) in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2020, 19(4): 921-930.
[9] HUANG Shuang-jie, ZHAO Chun-fang, ZHU Zhen, ZHOU Li-hui, ZHENG Qing-huan, WANG Cai-lin. Characterization of eating quality and starch properties of two Wx alleles japonica rice cultivars under different nitrogen treatments[J]. >Journal of Integrative Agriculture, 2020, 19(4): 988-998.
[10] XUE Pao1, ZHANG Ying-xin1, LOU Xiang-yang1, ZHU Ai-ke, CHEN Yu-yu, SUN Bin, YU Ping, CHENG Shi-hua, CAO Li-yong, ZHAN Xiao-deng .
Mapping and genetic validation of a grain size QTL qGS7.1 in rice (Oryza sativa L.)
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1838-1850.
[11] ZHENG Hao, ZHANG Jun, ZHUANG Hui, ZENG Xiao-qin, TANG Jun, WANG Hong-lei, CHEN Huan, LI Yan, LING Ying-hua, HE Guang-hua, LI Yun-feng. Gene mapping and candidate gene analysis of multi-floret spikelet 3 (mfs3) in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2673-2681.
[12] WANG Zhi-qin, ZHANG Wei-yang, YANG Jian-chang. Physiological mechanism underlying spikelet degeneration in rice[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1475-1481.
[13] WANG Ying, REN Yu-long, CHEN Sai-hua, XU Yang, ZHOU Kun-neng, ZHANG Long, MING Ming, WU Fu-qing, LIN Qi-bing, WANG Jiu-lin, GUO Xiu-ping, ZHANG Xin, LEI Cai-lin, CHENG Zhi-jun, WAN Jian-min. BRITTLE CULM16 (BRITTLE NODE) is required for the formation of secondary cell walls in rice nodes[J]. >Journal of Integrative Agriculture, 2017, 16(06): 1286-1293.
[14] ZHANG Rui-qi, HOU Fu, CHEN Juan, CHEN Shu-lin, XING Li-ping, FENG Yi-gao, CAO Ai-zhong. Agronomic characterization and genetic analysis of the supernume­r­ary spikelet in tetraploid wheat (Triticum turgidum L.)[J]. >Journal of Integrative Agriculture, 2017, 16(06): 1304-1311.
[15] LEI Wu-sheng1, 2, DING Yan-feng1, LI Gang-hua1, TANG She1, WANG Shao-hua1. Effects of soilless substrates on seedling quality and the growth of transplanted super japonica rice[J]. >Journal of Integrative Agriculture, 2017, 16(05): 1053-1063.
No Suggested Reading articles found!