Identification of the nitrogen-fixing Pseudomonas stutzeri major flagellar gene regulator FleQ and its role in biofilm formation and root colonization
MA Yao, ZHANG Qiu-lei, YANG Zhi-min, LI Yun, YAN Yong-liang, PING Shu-zhen, ZHANG Li-wen, LIN Min, LU Wei
1、College of Biological Sciences, China Agricultural University, Beijing 100094, P.R.China
2、Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
3、The Key Laboratory of Plant Pathology of Hubei Province/College of Plant Science and Technology, Huazhong Agricultural
University, Wuhan 430070, P.R.China
摘要 Flagellar biosynthesis and motility are subject to a four-tiered transcriptional regulatory circuit in Pseudomonas, and the master regulator FleQ appears to be the highest-level regulator in this hierarchical regulatory cascade. Pseudomonas stutzeri A1501 is motile by a polar flagellum; however, the motility and regulatory mechanisms involved in this process are unknown. Here, we searched the A1501 genome for flagella and motility genes and found that approximately 50 genes, which were distributed in three non-contiguous chromosomal regions, contribute to the formation, regulation and function of the flagella. The non-polar mutation of fleQ impaired flagellar biosynthesis, motility and root colonization but enhanced biofilm formation. FleQ positively regulates the expression of flagellar class II–IV genes, suggesting a regulatory cascade that is coordinated similar to that of the well-known P. aeruginosa. Based on our results, we propose that flagellar genes in P. stutzeri A1501 are regulated in a cascade regulated by FleQ and that flagellum-driven motility properties may be necessary for competitive rhizosphere colonization.
Abstract Flagellar biosynthesis and motility are subject to a four-tiered transcriptional regulatory circuit in Pseudomonas, and the master regulator FleQ appears to be the highest-level regulator in this hierarchical regulatory cascade. Pseudomonas stutzeri A1501 is motile by a polar flagellum; however, the motility and regulatory mechanisms involved in this process are unknown. Here, we searched the A1501 genome for flagella and motility genes and found that approximately 50 genes, which were distributed in three non-contiguous chromosomal regions, contribute to the formation, regulation and function of the flagella. The non-polar mutation of fleQ impaired flagellar biosynthesis, motility and root colonization but enhanced biofilm formation. FleQ positively regulates the expression of flagellar class II–IV genes, suggesting a regulatory cascade that is coordinated similar to that of the well-known P. aeruginosa. Based on our results, we propose that flagellar genes in P. stutzeri A1501 are regulated in a cascade regulated by FleQ and that flagellum-driven motility properties may be necessary for competitive rhizosphere colonization.
This work was supported by grants from the National Basic Research (973) Program of China (2015CB755700), the National High-Tech R&D (863) Program of China (2012AA02A703), the National Natural Science Foundation of China (31170081), and the Special Fund for Agro-scientific Research in the Public Interest, China (201103007), the Guangdong Innovative and Entrepreneurial Research Team Program, China (2013S033).
MA Yao, ZHANG Qiu-lei, YANG Zhi-min, LI Yun, YAN Yong-liang, PING Shu-zhen, ZHANG Li-wen, LIN Min, LU Wei.
2016.
Identification of the nitrogen-fixing Pseudomonas stutzeri major flagellar gene regulator FleQ and its role in biofilm formation and root colonization. Journal of Integrative Agriculture, 15(2): 339-348.
Aldridge P, Hughes K T. 2002. Regulation of flagellar assembly.Current Opinion in Microbiology, 5, 160-165
Alsohim A S, Taylor T B, Barrett G A, Gallie J, Zhang X X,Altamirano-Junqueira A E, Johnson L J, Rainey P B,Jackson R W. 2014. The biosurfactant viscosin produced byPseudomonas fluorescens SBW25 aids spreading motilityand plant growth promotion. Environmental Microbiology,16, 2267.
Arora S K, Ritchings B W, Almira E C, Lory S, Ramphal R.1997. A transcriptional activator, FleQ, regulates mucinadhesion and flagellar gene expression in Pseudomonasaeruginosa in a cascade manner. Journal of Bacteriology,179, 5574-5581
Bais H P, Fall R, Vivanco J M. 2004. Biocontrol of Bacillus subtilisagainst infection of arabidopsis roots by Pseudomonassyringae is facilitated by biofilm formation and surfactinproduction. Plant Physiology, 134, 307-319
Barahona E, Navazo A, Yousef-Coronado F, Aguirre de CárcerD, Martínez-Granero F, Espinosa-Urgel M, Martin M, RivilaR. 2010. Efficient rhizosphere colonization by Pseudomonasfluorescens F113 mutants unable to form biofilms on abioticsurfaces. Environmental Microbiology, 12, 3185-3195
Brian S, Doug D, Noel K, Carolyn N. 1987. Molecularcharacterization of cloned avirulence genes from Race 0and Race 1 of Pseudomonas syringae pv. Glycinea. Journalof Bacteriology, 169, 5789-5794
Van de Broek A, Lambrecht M, Vanderleyden J. 1998. Bacterialchemotactic motility is important for the initiation of wheatroot colonization by Azospirillum brasilense. Microbiology,144, 2599-2606
Caiazza N C, Merritt J H, Brothers K M, O’Toole G A. 2007.Inverse regulation of biofilm formation and swarming motilityby Pseudomonas aeruginosa PA14. Journal of Bacteriology,189, 3603-3612
Capdevila S, Martínez-Granero F M, Sánchez-ContrerasM, Rivilla R, Martín M. 2004. Analysis of Pseudomonasfluorescens F113 genes implicated in flagellar filamentsynthesis and their role in competitive root colonization.Microbiology, 150, 3889-3897
Claret L, Hughes C. 2002. Interaction of the atypical prokaryotictranscription activator FlhD2C2 with early promoters ofthe flagellar gene hierarchy. Journal of Molecular Biology,321, 185-199
Dasgupta N, Ferrell E P, Kanack K J, West S E, RamphalR. 2002. fleQ, the gene encoding the major flagellarregulator of Pseudomonas aeruginosa, is σ70 dependentand is downregulated by Vfr, a homolog of Escherichiacoli cyclic AMP receptor protein. Journal of Bacteriology,184, 5240-5250
Dasgupta N, Wolfgang M C, Goodman A L, Arora S K, Jyot J, LoryS, Ramphal R. 2003. A four-tiered transcriptional regulatorycircuit controls flagellar biogenesis in Pseudomonasaeruginosa. Molecular Microbiology, 50, 809-824
DeFlaun M F, Marshall B M, Kulle E P, Levy S B. 1994. Tn5insertion mutants of Pseudomonas fluorescens defectivein adhesion to soil and seeds. Applied and EnvironmentalMicrobiology, 60, 2637-2642
Espinosa Urgel M, Kolter R, Ramos J L. 2002. Root colonizationby Pseudomonas putida: Love at first sight. Microbiology,148, 341-343
Figurski D H, Meyer R J, Helinski D R. 1979. Suppression ofcole1 replication properties by the Inc P-1 plasmid RK2 inhybrid plasmids constructed in vitro. Journal of MolecularBiology, 133, 295-318
Jyot J, Dasgupta N, Ramphal R. 2002. FleQ, the majorflagellar gene regulator in Pseudomonas aeruginosa,binds to enhancer sites located either upstream oratypically downstream of the RpoN binding site. Journal ofBacteriology, 184, 5251-5260
Kirner S, Krauss S, Sury G, Lam S T, Ligon J M, van Pée K H.1996. The non-haem chloroperoxidase from Pseudomonasfluorescens and its relationship to pyrrolnitrin biosynthesis.Microbiology, 142, 2129-2135
Lazazzera B A. 2005. Lessons from DNA microarray analysis:the gene expression profile of biofilms. Current Opinion inMicrobiology, 8, 222-227
Liu X, Matsumura P. 1994. The FlhD/FlhC complex, atranscriptional activator of the Escherichia coli flagellarclass II operons. Journal of Bacteriology, 176, 7345-7351
Lugtenberg B J, Dekkers L, Bloemberg G V. 2001. Moleculardeterminants of rhizosphere colonization by Pseudomonas.Annual Review of Phytopathology, 39, 461-490
Lugtenberg B J J, Dekkers L C. 1999. What makes Pseudomonasbacteria rhizosphere competent? EnvironmentalMicrobiology, 1, 9-13
Mastropaolo M D, Silby M W, Nicoll J S, Levy S B. 2012.Novel genes involved in Pseudomonas fluorescens Pf0-1motility and biofilm formation. Applied and EnvironmentalMicrobiology, 78, 4318-4329
McCarter L L. 2006. Regulation of flagella. Current Opinion inMicrobiology, 9, 180-186
Moens S, Vanderleyden J. 1996. Functions of bacterial flagella.Critical Reviews in Microbiology, 22, 67-100
O’Toole G, Kaplan H B, Kolter R. 2000. Biofilm formation asmicrobial development. Annual Reviews in Microbiology,54, 49-79
Pfaffl M W. 2001. A new mathematical model for relativequantification in real-time RT-PCR. Nucleic Acids Research,29, 2002-2007
Rediers H, Bonnecarrere V, Rainey P B, Hamonts K,Vanderleyden J, de Mot R. 2003. Development andapplication of a dapB-based in vivo expression technologysystem to study colonization of rice by the endophyticnitrogen-fixing bacterium Pseudomonas stutzeri A15.Applied and Environmental Microbiology, 69, 6864-6874
Ritchings B W, Almira E C, Lory S, Ramphal R. 1995. Cloningand phenotypic characterization of fleS and fleR, newresponse regulators of Pseudomonas aeruginosa whichregulate motility and adhesion to mucin. Infection andImmunity, 63, 4868-4876
Robleto E A, López-Hernández I, Silby M W, Levy S B. 2003.Genetic analysis of the AdnA regulon in Pseudomonasfluorescens: Nonessential role of flagella in adhesion tosand and biofilm formation. Journal of Bacteriology, 185,453-460
Romero-Steiner S, Parales R E, Harwood C S, Houghton J E.1994. Characterization of the pcaR regulatory gene fromPseudomonas putida, which is required for the completedegradation of p-hydroxybenzoate. Journal of Bacteriology,176, 5771-5779
Santaella C, Schue M, Berge O, Heulin T, Achouak W. 2008.The exopolysaccharide of Rhizobium sp. YAS34 is notnecessary for biofilm formation on Arabidopsis thaliana andBrassica napus roots but contributes to root colonization.Environmental Microbiology, 10, 2150-2163
Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G,Puhler A. 1994. Small mobilizable multi-purpose cloningvectors derived from the Escherichia coli plasmids pK18 andpK19: selection of defined deletions in the chromosome ofCorynebacterium glutamicum. Gene, 145, 69-73
Soutourina O A, Bertin P N. 2003. Regulation cascade offlagellar expression in Gram-negative bacteria. FEMSMicrobiology Reviews, 27, 505-523
Starnbach M, Lory S. 1992. The filA (rpoF) gene of Pseudomonasaeruginosa encodes an alternative sigma factor required forflagellin synthesis. Molecular Microbiology, 6, 459-469
Staskawicz B, Dahlbeck D, Keen N, Napoli C. 1987. Molecularcharacterization of cloned avirulence genes from race 0 andrace 1 of Pseudomonas syringae pv. glycinea. Journal ofBacteriology, 169, 5789-5794
Totten P A, Lara J C, Lory S. 1990. The rpoN gene productof Pseudomonas aeruginosa is required for expressionof diverse genes, including the flagellin gene. Journal ofBacteriology, 172, 389-396
Windgassen M, Urban A, Jaeger K E. 2000. Rapid geneinactivation in Pseudomonas aeruginosa. FEMSMicrobiology Letters, 193, 201-205
Xie Z, Dou Y, Ping S, Chen M, Wang G, Elmerich C, Lin M.2006. Interaction between NifL and NifA in the nitrogenfixingPseudomonas stutzeri A1501. Microbiology, 152,3535-3542
Yan Y, Yang J, Dou Y, Chen M, Ping S, Jin Q. 2008. Nitrogenfixation island and rhizosphere competence traits in thegenome of root-associated Pseudomonas stutzeri A1501.Proceedings of the National Academy of Sciences of theUnited States of America, 105, 7564-7569
You C, Lin M, Fang X, Song W. 1995. Attachment of Alcaligenesto rice roots. Soil Biology and Biochemistry, 27, 463–466.