Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (1): 59-76    DOI: 10.1016/j.jia.2023.07.010
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
SUPER WOMAN 2 (SPW2) maintains organ identity in spikelets by inhibiting the expression of floral homeotic genes OsMADS3, OsMADS58, OsMADS13, and DROOPING LEAF

Hui Zhuang*, Jinsong Lan*, Qiuni Yang*, Xiaoyu Zhao, Yuhuan Li, Jingya Zhi, Yalin Shen, Guanghua He, Yunfeng Li#

Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

水稻的花器官特征主要由ABCE四类基因决定,它们大多编码MADS-box转录因子。然而,在花发育过程中,对于这些基因的表达如何被调控的研究很少。本研究报道了一个名为SUPER WOMAN 2SPW2)的基因,该基因在水稻的小穗/小花发育过程中通过调控雌蕊特征基因OsMADS3OsMADS13OsMADS58DL的表达发挥重要作用。SPW2突变导致小穗内的护颖、外稃、内稃、浆片和雄蕊中出现异位的柱头/子房状组织。通过图位克隆,我们揭示了SPW2编码一个植物特有的类EMF1蛋白,该蛋白是PRC2复合物的重要组成部分,并介导H3K27me3修饰。表达分析显示,SPW2突变导致OsMADS3OsMADS13OsMADS58DL在小穗的非雌蕊器官中异位表达。此外,ChIP-qPCR结果显示这些基因在染色质上的H3K27me3修饰水平显著降低。因此,我们的研究结果表明SPW2通过参与H3K27me3介导的雌蕊特征基因表观遗传沉默,进而调控它们在水稻小穗的非雌蕊器官中的表达。这项研究拓宽了我们对于SPW2通过表观遗传调控花器官特征基因的分子机制的认识。



Abstract  

Flower organ identity in rice is mainly determined by the A-, B-, C- and E-class genes, with the majority encoding MADS-box transcription factors.  However, few studies have investigated how the expression of these floral organ identity genes is regulated during flower development.  In this study, we identified a gene named SUPER WOMAN 2 (SPW2), which is necessary for spikelet/floret development in rice by participating in the regulation of the expression of pistil identity genes such as OsMADS3, OsMADS13, OsMADS58 and DL.  In the spw2 mutant, ectopic stigma/ovary-like tissues were observed in the non-pistil organs, including sterile lemma, lemma, palea, lodicule, and stamen, suggesting that the identities of these organs were severely affected by mutations in SPW2SPW2 was shown to encode a plant-specific EMF1-like protein that is involved in H3K27me3 modification as an important component of the PRC2 complex.  Expression analysis showed that the SPW2 mutation led to the ectopic expression of OsMADS3, OsMADS13, OsMADS58, and DL in non-pistil organs of the spikelet.  The ChIP-qPCR results showed significant reductions in the levels of H3K27me3 modification on the chromatin of these genes.  Thus, we demonstrated that SPW2 can mediate the process of H3K27me3 modification of pistil-related genes to regulate their expression in non-pistil organs of spikelets in rice.  The results of this study expand our understanding of the molecular mechanism by which SPW2 regulates floral organ identity genes through epigenetic regulation.

Keywords:  rice (Oryza sativa       spikelet        organ identity        H3K27me3

  
Received: 03 March 2023   Accepted: 20 June 2023
Fund: 

This work was supported by the Chongqing Modern Agricultural Industry Technology System, China (CQMAITS202301), the National Natural Science Foundation of China (32100287 and 31971919), the Natural Science Foundation of Chongqing, China (cstc2020jcyj-jqX0020 and cstc2021ycjh-bgzxm0066), and the China Postdoctoral Science Foundation Funded Project (2020M683219), and the Fundamental Research Funds for the Central Universities, China (SWU-XDJH202315).


About author:  Hui Zhuang, E-mail: amberzzh@163.com;#Correspondence Yunfeng Li, Tel: +86-23-68250158, E-mail: liyf1980@swu.edu.cn

Cite this article: 

ZHUANG Hui, LAN Jin-song, YANG Qiu-ni, ZHAO Xiao-yu, LI Yu-huan, ZHI Jing-ya, SHEN Ya-lin, HE Guang-hua, LI Yun-feng. 2024. SUPER WOMAN 2 (SPW2) maintains organ identity in spikelets by inhibiting the expression of floral homeotic genes OsMADS3, OsMADS58, OsMADS13, and DROOPING LEAF. Journal of Integrative Agriculture, 23(1): 59-76.

Agrawal G K, Abe K, Yamazaki M, Miyao A, Hirochika H. 2005. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Molecular Biology, 59, 125–135.

Alvarez J, Smyth D R. 1999. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development, 126, 2377–2386.

Arber A. 2010. The Gramineae: A Study of Cereal, Bamboo and Grass. Cambridge University Press.

Aubert D. 2001. EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. The Plant Cell, 13, 1865–1875.

Bommert P, Satoh-Nagasawa N, Jackson D, Hirano H Y. 2005. Genetics and evolution of inflorescence and flower development in grasses. Plant and Cell Physiology, 46, 69–78.

Bowman J L, Drews G N, Meyerowitz E M. 1991. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. The Plant Cell, 3, 749–758.

Calonje M, Sanchez R, Chen L J, Sung Z R. 2008. EMBRYONIC FLOWER1 participates in polycomb group-mediated AG gene silencing in Arabidopsis. The Plant Cell, 20, 277–291.

Cao R, Wang L J, Wang H B, Xia L, Erdjument-Bromage H, Tempst P, Jones R S, Zhang Y. 2002. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science, 298, 1039–1043.

Chen L J, Cheng J C, Castle L, Sung Z R. 1997. EMF genes regulate Arabidopsis inflorescence development. The Plant Cell, 9, 2011–2024.

Chen X M. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303, 2022–2025.

Chen Y H, Yang X Y, He K, Liu M H, Li J G, Gao Z F, Lin Z Q, Zhang Y F, Wang X X, Qiu X M, Shen Y P, Zhang L, Deng X H, Luo J C, Deng X W, Chen Z L, Gu H Y, Qu L J. 2006. The MYB transcription factor superfamily of Arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 60, 107–124.

Coen E S, Meyerowitz E M. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature, 353, 31–37.

Ditta G, Pinyopich A, Robles R, Pelaz S, Yanofsky M F. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology, 14, 1935–1940.

Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk P B F, An G, Colombo L, Kater M M. 2007. The D-lineage MADS-box gene OSMADS13 controls ovule identity in rice. The Plant Journal, 52, 690–699.

Dreni L, Kater M M. 2014. MADS reloaded: Evolution of the AGAMOUS subfamily genes. New Phytologist, 201, 717–732.

Dreni L, Pilatone A, Yun D, Erreni S, Pajoro A, Caporali E, Zhang D, Kater M M. 2011. Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy. The Plant Cell, 23, 2850–2863.

Duan Y L, Xing Z, Diao Z J, Xu W Y, Li S P, Du X Q, Wu G H, Wang C L, Lan T, Meng Z, Liu H Q, Wang F, Wu W R, Xue Y B. 2012. Characterization of Osmads6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice (Oryza sativa L.). Plant Molecular Biology, 80, 429–442.

Fornara F, Marziani G, Mizzi L, Kater M, Colombo L. 2003. MADS-box genes controlling flower development in rice. Plant Biology, 5, 16–22.

Fornara F, Pařenicová L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura M M, Colombo L, Kater M M. 2004. Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS-box genes. Plant Physiology, 135, 2207–2219.

Gao X C, Liang W Q, Yin C S, Ji S M, Wang H M, Su X, Guo C, Kong H Z, Xue H W, Zhang D B. 2010. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiology, 153, 728–740.

Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz E M, Coupland G. 1997. A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature, 386, 44–51.

Hong L L, Qian Q, Zhu K M, Tang D, Huang Z J, Gao L, Li M, Gu M H, Cheng Z K. 2010. ELE restrains empty glumes from developing into lemmas. Journal of Genetics and Genomics, 37, 101–115.

Horigome A, Nagasawa N, Ikeda K, Ito M, Itoh J I, Nagato Y. 2009. Rice OPEN BEAK is a negative regulator of class 1 knox genes and a positive regulator of class B floral homeotic gene. The Plant Journal, 58, 724–736.

Hoshikawa K. 1989. The Growing Rice Plant - An Anatomical Monograph. Nosan Gyoson Bunka Kyokai, Tokyo.

Hu Y, Wang L, Jia R, Liang W Q, Zhang X L, Xu J, Chen X F, Lu D, Chen M J, Luo Z J, Xie J Y, Cao L M, Xu B, Yu Y, Persson S, Zhang D B, Yuan Z. 2021. Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes. Journal of Experimental Botany, 72, 2434–2449.

Ikeda K, Sunohara H, Nagato Y. 2004. Developmental course of inflorescence and spikelet in rice. Breeding Science, 54, 147–156.

Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J I, Nagato Y. 2012. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. The Plant Journal, 69, 168–180.

Jeon J S. 2000. leafy hull sterile1 is a homeotic mutation in a rice MADS-box gene affecting rice flower development. The Plant Cell, 12, 871–884.

Kang H G, Joen J S, Lee S, An G. 1998. Identification of class B and class C floral organ identity genes from rice plants. Plant Molecular Biology, 38, 1021–1029.

Kater M M, Dreni L, Colombo L. 2006. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. Journal of Experimental Botany, 57, 3433–3444.

Kim S Y, Zhu T, Sung Z R. 2010. Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis. Plant Physiology, 152, 516–528.

Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J. 2010. PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant and Cell Physiology, 51, 47–57.

Köhler C, Villar C B R. 2008. Programming of gene expression by Polycomb Group proteins. Trends in Cell Biology, 18, 236–243.

Krogan N T, Hogan K, Long J A. 2012. APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development, 139, 4180–4190.

Kyozuka J, Kobayashi T, Morita M, Shimamoto K. 2000. Spatially and temporally regulated expression of rice MADS-box genes with similarity to Arabidopsis class A, B and C genes. Plant and Cell Physiology, 41, 710–718.

Lee S, Jeon J S, An K, Moon Y H, Lee S, Chung Y Y, An G. 2003. Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta, 217, 904–911.

Levy Y Y, Dean C. 1998. The transition to flowering. The Plant Cell, 10, 1973–1989.

Li H, Xue D W, Gao Z Y, Yan M X, Xu W Y, Xing Z, Huang D N, Qian Q, Xue Y B. 2009. A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. The Plant Journal, 57, 593–605.

Li H F, Liang W Q, Jia R D, Yin C S, Zong J, Kong H Z, Zhang D B. 2010. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Research, 20, 299–313.

Li Y F, Zeng X Q, Li Y, Wang L, Zhuang H, Wang Y, Tang J, Wang H L, Xiong M, Yang F Y, Yuan X Z, He G H. 2020. Multi-floret spikelet 2, a MYB transcription factor, determines spikelet meristem fate and floral organ identity in rice. Plant Physiology, 184, 988–1003.

Litt A, Kramer E M. 2010. The ABC model and the diversification of floral organ identity. Seminars in Cell & Developmental Biology, 21, 129–137.

Liu X, Yang C Y, Miao R, Zhou C L, Cao P H, Lan J, Zhu X J, Mou C L, Huang Y S, Liu S J, Tian Y L, Nguyen T L, Jiang L, Wan J M. 2018. DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling. Rice, 11, 1–12.

Lohmann J U, Weigel D. 2002. Building beauty: the genetic control of floral patterning. Developmental Cell, 2, 135–142.

Moon Y H, Chen L J, Pan R L, Chang H S, Zhu T, Maffeo D M, Sung Z R. 2003. EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. The Plant Cell, 15, 681–693.

Mozgova I, Köhler C, Henning L. 2015. Keeping the gate closed: Functions of the polycomb repressive complex PRC2 in development. The Plant Journal, 83, 121–132.

Müller J, Hart C M, Francis N J, Vargas M L, Simon J A. 2002. Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell, 111, 197–208.

Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. 2003. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 130, 705–718.

Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200–203.

Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Pè E M, Colombo L, Kater M M. 2002. Comparative analysis of rice MADS-box genes expressed during flower development. Sexual Plant Reproduction, 15, 113–122.

Prasad K, Parameswaran S, Vijayraghavan U. 2005. OsMADS1, a rice mads-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. The Plant Journal, 43, 915–928.

Prasad K, Vijayraghavan U. 2003. Double-stranded RNA interference of a rice PI/GLO paralog, OsMADS2, uncovers its second-whorl-specific function in floral organ patterning. Genetics, 165, 2301–2305.

Sang X C, Li Y F, Luo Z K, Ren D Y, Fang L K, Wang N, Zhao F M, Ling Y H, Yang Z L, Liu Y S. 2012. CHIMERIC FLORAL ORGANS1, encoding a Monocot-specific MADS-box protein, regulates floral organ identity in rice. Plant Physiology, 160, 788–807.

Schatlowski N, Creasey K, Goodrich J, Schubert D. 2008. Keeping plants in shape: Polycomb-group genes and histone methylation. Seminars in Cell & Developmental Biology, 19, 547–553.

Schubert D, Clarenz O, Goodrich J. 2005. Epigenetic control of plant development by polycomb-group proteins. Current Opinion in Plant Biology, 8, 553–561.

Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, Goodrich J. 2006. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. The EMBO Journal, 25, 4638–4649.

Schwartz Y B, Pirrotta V. 2007. Polycomb silencing mechanisms and the management of genomic programmes. Nature Reviews Genetics, 8, 9–22.

Schwartz Y B, Pirrotta V. 2008. Polycomb complexes and epigenetic states. Current Opinion in Cell Biology, 20, 266–273.

Siriwardana N S, Lamb R S. 2012. The poetry of reproduction: The role of LEAFY in Arabidopsis thaliana flower formation. International Journal of Developmental Biology, 56, 207–221.

Soltis D E, Chanderbali A S, Kim S, Buzgo M, Soltis P S. 2007. The ABC model and its applicability to basal angiosperms. Annals of Botany, 100, 155–163.

Theissen G, Melzer R, Rümpler F. 2016. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development, 143, 3259–3271.

Theissen G, Saedler H. 2001. Plant biology floral quartets. Nature, 409, 469–471.

Turck F, Roudier F, Farrona S, Martin-Magniette M L, Colot V. 2007. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genetics, 3, 855–866.

Wang H H, Zhang L, Cai Q, Hu Y, Jin Z M, Zhao X X, Fan W, Huang Q M, Luo Z J, Chen M J, Zhang D B, Yuan Z. 2015. OsMADS32 interacts with PI-like proteins and regulates rice flower development. Journal of Integrative Plant Biology, 57, 504–513.

Wang K J, Tang D, Hong L L, Xu W Y, Huang J, Li M, Gu M H, Xue Y B, Cheng Z K, Schnable P S. 2010. DEP and AFO regulate reproductive habit in rice. PLoS Genetics, 6, 1000818.

Wang L, Zeng X Q, Zhuang H, Shen Y L, Chen H, Wang Z W, Long J C, Ling Y H, He G H, Li Y F. 2017. Ectopic expression of OsMADS1 caused dwarfism and spikelet alteration in rice. Plant Growth Regulation, 81, 433–442.

Weigel D, Meyerowitz E M. 1994. The ABCs of floral homeotic genes. Cell, 78, 203–209.

Winter C M, Austin R S, Blanvillain-Baufumé S, Reback M A, Wagner D. 2011. LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Developmental Cell, 20, 430–443.

Wollmann H, Mica E, Todesco M, Long J A, Weigel D. 2010. On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development, 137, 3633–3642.

Wu M F, Sang Y, Bezhani S, Yamaguchi N, Han S K, Li Z, Su Y, Slewinski T L, Wagner D. 2012. SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 109, 3576–3581.

Xiao H, Tang J F, Li Y F, Wang W M, Li X B, Jin L, Xie R, Luo H F, Zhao X F, Meng Z, He G H, Zhu L H. 2009. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. The Plant Journal, 59, 789–801.

Xiao H, Wang Y, Liu D F, Wang W M, Li X B, Zhao X F, Xu J C, Zhai W X, Zhu L H. 2003. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Molecular Biology, 52, 957–966.

Xu J, Yang C Y, Yuan Z, Zhang D S, Gondwe M Y, Ding Z W, Liang W Q, Zhang D B, Zoe A. 2010. The aborted microspores regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. The Plant Cell, 22, 91–107.

Yadav S R, Prasad K, Vijayraghavan U. 2007. Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics, 176, 283–294.

Yamaguchi T, Lee D Y, Miyao A, Hirochika H, An G, Hirano H Y. 2006. Functional diversification of the two C-class MADS-box genes OsMADS3 and OsMADS58 in Oryza sativa. The Plant Cell, 18, 15–28.

Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H. 2004. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. The Plant Cell, 16, 500–509.

Yan D W, Zhang X M, Zhang L, Ye S H, Zeng L J, Liu J Y, Li Q, He Z H. 2015. CURVED CHIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development. The Plant Journal, 82, 12–24.

Yang C H, Chen L J, Sung Z R. 1995. Genetic regulation of shoot development in Arabidopsis: Role of the EMF genes. Developmental Biology, 169, 421–435.

Yoshida A, Ohmori Y, Kitano H, Taguchi-Shiobara F, Hirano H Y. 2012. ABERRANT SPIKELET AND PANICLE1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. The Plant Journal, 70, 327–339.

Yoshida A, Suzaki T, Tanaka W, Hirano H Y. 2009. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proceedings of the National Academy of Sciences of the United States of America, 106, 20103–20108.

Zhang T, Li Y F, Ma L, Sang X C, Ling Y H, Wang Y T, Yu P, Zhuang H, Huang J Y, Wang N, Zhao F M, Zhang C W, Yang Z L, Fang L K, He G H. 2017. LATERAL FLORET 1 induced the three-florets spikelet in rice. Proceedings of the National Academy of Sciences of the United States of America, 114, 9984–9989.

Zheng M, Wang Y H, Wang Y L, Wang C M, Ren Y L, Lv J, Peng C, Wu T, Liu K, Zhao S L, Liu X, Guo X P, Jiang L, Terzaghi W, Wan J M. 2015. DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa). New Phytologist, 206, 1476–1490.

Zhuang H, Wang H L, Zhang T, Zeng X Q, Li Y F. 2020. NONSTOP GLUMES1 encodes a C2H2 zinc finger protein that regulates spikelet development in rice. The Plant Cell, 32, 392–413.


No related articles found!
No Suggested Reading articles found!