Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (4): 921-930    DOI: 10.1016/S2095-3119(19)62847-9
Special Issue: 水稻遗传育种合辑Rice Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Gene mapping and candidate gene analysis of aberrant-floral spikelet 1 (afs1) in rice (Oryza sativa L.)
ZHANG Ting*, YOU Jing*, YU Guo-ling, ZHANG Yi, CHEN Huan, LI Yi-dan, YE Li, YAO Wan-yue, TU Yu-jie, LING Ying-hua, HE Guang-hua, LI Yun-feng  
Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops/Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
The spikelet is a unique inflorescence structure in grasses.  However, the molecular mechanism that regulates its development remains unclear, and we therefore characterize a spikelet mutant of rice (Oryza sativa L.), aberrant-floral spikelet 1 (afs1), which was derived from treatment of Xinong 1B with ethyl methanesulfonate.  In the afs1 mutant, the spikelet developed an additional lemma-like organ alongside the other normally developed floral organs, and the paleae were degenerated to differing degrees with or without normally developed inner floral organs.  Genetic analysis revealed that the afs1 phenotype was controlled by a single recessive gene.  The AFS1 gene was mapped between the insertion/deletion (InDel) marker Indel19 and the simple sequence repeat marker RM16893, with a physical distance of 128.5 kb on chromosome 4.  Using sequence analysis, we identified the deletion of a 5-bp fragment and a transversion from G to A within LOC_Os04g32510/ LAX2, which caused early termination of translation in the afs1 mutant.  These findings suggest that AFS1 may be a new allele of LAX2, and is involved in the development of floral organs by regulating the expression of genes related to their development.  The above results provide a new view on the function of LAX2, which may also regulate the development of spikelets.
 
Keywords:  rice        aberrant-floral spikelet 1        spikelet        gene mapping        yield  
Received: 05 August 2019   Accepted: 04 March 2020
Fund: This work was supported by the National Natural Science Foundation of China (31900612 and 31730063), the Fundamental Research Funds for the Central Universities, China (SWU5330500322), the National Key Research and Development Program of China (2017YFD0100202), and the Natural Science Foundation of Chongqing, China (CSTC2017jcyjBX0062).
Corresponding Authors:  Correspondence LI Yun-feng, Tel: +86-23-68250486, E-mail: liyf1980@swu.edu.cn    
About author:  ZHANG Ting, E-mail: tingwz@163.com; YOU Jing, E-mail: 809217201@qq.com; * These authors contributed equally to this study.

Cite this article: 

ZHANG Ting, YOU Jing, YU Guo-ling, ZHANG Yi, CHEN Huan, LI Yi-dan, YE Li, YAO Wan-yue, TU Yu-jie, LING Ying-hua, HE Guang-hua, LI Yun-feng. 2020. Gene mapping and candidate gene analysis of aberrant-floral spikelet 1 (afs1) in rice (Oryza sativa L.). Journal of Integrative Agriculture, 19(4): 921-930.

Bowman J L, Smyth D R, Meyerowitz E M. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112, 1–20.
Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D. 2010. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiology, 153, 728–740.
Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G, An G. 2000. leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. The Plant Cell, 12, 871–884.
Jin Y, Luo Q, Tong H N, Wang A J, Cheng Z J, Tang J F, Li D Y, Zhao X F, Li X B, Wan J M, Jiao Y L, Chu C C, Zhu L H. 2011. An AT-hook gene is required for palea formation and floral organ number control in rice. Developmental Biology, 359, 277–288.
Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1, 174–181.
Lee D Y, An G. 2012. Two AP2 family genes, supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. The Plant Journal, 69, 445–461.
Lee D Y, Lee J, Moon S, Park S Y, An G. 2007. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. The Plant Journal, 49, 64–78.
Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z, Liu G, Zhang H, Wu C, Chen G, Pan X. 2008. DH1, a LOB domain-like protein required for glume formation in rice. Plant Molecular Biology, 66, 491–502.
Li H, Liang W, Jia R, Yin C, Zong J, Kong H, Zhang D. 2010. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Research, 20, 299–313.
Lin X, Wu F, Du X, Shi X, Liu Y, Liu S, Hu Y, Theissen G, Meng Z. 2014. The pleiotropic SEPALLATA-like gene OsMADS34 reveals that the ‘empty glumes’ of rice (Oryza sativa) spikelets are in fact rudimentary lemmas. New Phytologist, 202, 689–702.
Liu H, Guo S, Xu Y, Li C, Zhang Z, Zhang D, Xu S, Zhang C, Chong K. 2014. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiology, 165, 160–174.
Liu M, Li H, Su Y, Li W, Shi C. 2016. G1/ELE functions in the development of rice lemmas in addition to determining identities of empty glumes. Frontiers in Plant Science, 7, 1006.
Lombardo F, Yoshida H. 2015. Interpreting lemma and palea homologies: A point of view from rice floral mutants. Frontiers in Plant Science, 6, 61.
Luo Z, Yang Z L, Zhong B Q, Li Y F, Xie R, Zhao F M, Ling Y H, He G H. 2007. Genetic analysis and fine mapping of a dynamic rolled leaf gene, RL10(t), in rice (Oryza sativa L.). Genome, 50, 811–817.
Michelmore R W, Paran I, Kesseli R V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88, 9828–9832.
Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4326.
Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H. 2009. MOSAIC FLORAL ORGANS1, an AGL6-Like MADS box gene, regulates floral organ identity and meristem fate in rice. The Plant Cell, 21, 3008–3025.
Ren D Y, Li Y F, Zhao F M, Sang X C, Shi J Q, Wang N, Guo S, Ling Y H, Zhang C W, Yang Z L, He G H. 2013. MULTI-FLORET SPIKELET1, which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice. Plant Physiology, 162, 872–884.
Ren D Y, Xu Q K, Qiu Z N, Cui Y J, Zhou T T, Zeng D L, Guo L B, Qian Q. 2019. FON4 prevents the multi-floret spikelet in rice. Plant Biotechnology Journal, 17, 1007–1009.
Sang X C, Li Y F, Luo Z K, Ren D Y, Fang L K, Wang N, Zhao F M, Ling Y H, Yang Z , Liu Y S, He G H. 2012. CHIMERIC FLORAL ORGANS1, Encoding a monocot-specific MADS box protein, regulates floral organ identity in rice. Plant Physiology, 160, 788–807.
Sun Q, Zhou D X. 2008. Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proceedings of the National Academy of Sciences of the United States of America, 105, 13679–13684.
Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang X H, Yoshida H, Kyozuka J, Chen F, Sato Y. 2011. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. The Plant Cell, 23, 3276–3287.
Tanaka W, Toriba T, Ohmori Y, Yoshida A, Kawai A, Mayama-Tsuchida T, Ichikawa H, Mitsuda N, Ohme-Takagi M, Hirano H Y. 2012. The YABBY gene TONGARI-BOUSHI1 is involved in lateral organ development and maintenance of meristem organization in the rice spikelet. The Plant Cell, 24, 80–95.
Wang K J, Tang D, Hong L L, Xu W Y, Huang J, Li M, Gu M H, Xue Y B, Cheng Z K. 2010. DEP and AFO regulate reproductive habit in rice. PLoS Genetics, 6, e1000818.
Xiang C Y, Liang X X, Chu R Z, Duan M, Cheng J P, Ding Z Q, Wang J F. 2015. Fine mapping of a palea defective 1 (pd1), a locus associated with palea and stamen development in rice. Plant Cell Reports, 34, 2151–2159.
Xiao H, Tang J F, Li Y F, Wang W M, Li X B, Jin L, Xie R, Luo H F, Zhao X F, Meng Z, He G H, Zhu L H. 2009. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. The Plant Journal, 59, 789–801.
Yan D, Zhang X, Zhang L, Ye S, Zeng L, Liu J, Li Q, He Z. 2015. Curved chimeric palea 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development. The Plant Journal, 82, 12–24.
Yoshida H, Nagato Y. 2011. Flower development in rice. Journal of Experimental Botany, 62, 4719–4730.
Yuan Z, Gao S, Xue D W, Luo D, Li L T, Ding S Y, Yao X, Wilson Z A, Qian Q, Zhang D B. 2009. RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiology, 149, 235–244.
Zeng D D, Qin R, Alamin M, Liang R, Yang C C, Jin X L, Shi C H. 2016. DBOP specifies palea development by suppressing the expansion of the margin of palea in rice. Genes & Genomics, 38, 1095–1103.
Zhang J, Cai Y, Yan H G, Jin J, You X M, Wang L, Kong F, Zheng M, Wang G X, Jiang L, Zhang W W, Wan J M. 2018. A critical role of OsMADS1 in the development of the body of the palea in rice. Journal of Plant Biology, 61, 11–24.
Zheng H, Zhang J, Zhuang H, Zeng X Q, Tang J, Wang H L, Chen H, Li Y, Ling Y H, He G H, Li Y F. 2019.  Gene mapping and candidate gene analysis of multi-floret spikelet 3
(mfs3) in rice (Oryza sativa L.). Journal of Integrative Agriculture, 18, 2–10.
Zheng M, Wang Y, Wang Y, Wang C, Ren Y, Lv J, Peng C, Wu T, Liu K, Zhao S, Liu X, Guo X, Jiang L, Terzaghi W, Wan J. 2015. DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa). New Phytologist, 206, 1476–1490.
[1] Kanokwan KAEWMUNGKUN, Keasinee TONGMARK, Sriprapai CHAKHONKAEN, Numphet SANGARWUT, Thiwawan WASINANON, Natjaree PANYAWUT, Khanittha DITTHAB, Kannika SIKAEWTUNG, QI Yong-bin, Sukanya DAPHA, Atikorn PANYA, Natthaporn PHONSATTA, Amorntip MUANGPROM. Development of new aromatic rice lines with high eating and cooking qualities[J]. >Journal of Integrative Agriculture, 2023, 22(3): 679-690.
[2] CAO Peng-hui, WANG Di, GAO Su, LIU Xi, QIAO Zhong-ying, XIE Yu-lin, DONG Ming-hui, DU Tan-xiao, ZHANG Xian, ZHANG Rui, JI Jian-hui. OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice[J]. >Journal of Integrative Agriculture, 2023, 22(3): 669-678.
[3] WANG Yuan-zheng, Olusegun IDOWU, WANG Yun, HOMMA Koki, NAKAZAKI Tetsuya, ZHENG Wen-jing, XU Zheng-jin, SHIRAIWA Tatsuhiko. Interaction effect of erect panicle genotype and environment on rice yield and yield components[J]. >Journal of Integrative Agriculture, 2023, 22(3): 716-726.
[4] REN Chuan-ying, ZHANG Shan, HONG Bin, GUAN Li-jun, HUANG Wen-gong, FENG Jun-ran, SHA Di-xin, YUAN Di, LI Bo, JI Ni-na, LIU Wei, LU Shu-wen. Germinated brown rice relieves hyperlipidemia by alleviating gut microbiota dysbiosis[J]. >Journal of Integrative Agriculture, 2023, 22(3): 945-957.
[5] WANG Fei-bing, WAN Chen-zhong, NIU Hao-fei, QI Ming-yang, LI Gang, ZHANG Fan, HU Lai-bao, YE Yu-xiu, WANG Zun-xin, PEI Bao-lei, CHEN Xin-hong, YUAN Cai-yuan.

OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice [J]. >Journal of Integrative Agriculture, 2023, 22(2): 341-359.

[6] ZHANG Xi-juan, LAI Yong-cai, MENG Ying, TANG Ao, DONG Wen-jun, LIU You-hong, LIU Kai, WANG Li-zhi, YANG Xian-li, WANG Wen-long, DING Guo-hua, JIANG Hui, REN Yang, JIANG Shu-kun. Analyses and identifications of quantitative trait loci and candidate genes controlling mesocotyl elongation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(2): 325-340.
[7] TIAN Jin-yu, LI Shao-ping, CHENG Shuang, LIU Qiu-yuan, ZHOU Lei, TAO Yu, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheat-straw return[J]. >Journal of Integrative Agriculture, 2023, 22(2): 400-416.
[8] ZHENG Chang, WANG Yue-chao, XU Wen-ba, YANG De-sheng, YANG Guo-dong, YANG Chen, HUANG Jian-liang, PENG Shao-bing. Border effects of the main and ratoon crops in rice ratooning system[J]. >Journal of Integrative Agriculture, 2023, 22(1): 80-91.
[9] XU Shi-rui, JIANG Bo, HAN Hai-ming, JI Xia-jie, ZHANG Jin-peng, ZHOU Sheng-hui, YANG Xin-ming, LI Xiu-quan, LI Li-hui, LIU Wei-hua. Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in wheat background[J]. >Journal of Integrative Agriculture, 2023, 22(1): 52-62.
[10] CHEN Hong-yan, ZHU Zhu, WANG Xiao-wen, LI Yang-yang, HU Dan-ling, ZHANG Xue-fei, JIA Lu-qi, CUI Zhi-bo, SANG Xian-chun. Less hairy leaf 1, an RNaseH-like protein, regulates trichome formation in rice through auxin[J]. >Journal of Integrative Agriculture, 2023, 22(1): 31-40.
[11] JIANG Hui, GAO Ming-wei, CHEN Ying, ZHANG Chao, WANG Jia-bao, CHAI Qi-chao, WANG Yong-cui, ZHENG Jin-xiu, WANG Xiu-li, ZHAO Jun-sheng. Effect of the L-D1 alleles on leaf morphology, canopy structure and photosynthetic productivity in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(1): 108-119.
[12] YANG Wen-jia, LI Yu-lin, LIU Wei-jian, WANG Shi-wen, YIN Li-na, DENG Xi-ping. Agronomic management practices in dryland wheat result in variations in precipitation use efficiency due to their differential impacts on the steps in the precipitation use process[J]. >Journal of Integrative Agriculture, 2023, 22(1): 92-107.
[13] Wannaporn THEPBANDIT, Narendra Kumar PAPATHOTI, Jayasimha Rayulu DADDAM, Nguyen Huy HOANG, Toan LE THANH, Chanon SAENGCHAN, Kumrai BUENSANTEAI. In vitro and in silico studies of salicylic acid on systemic induced resistance against bacterial leaf blight disease and enhancement of crop yield[J]. >Journal of Integrative Agriculture, 2023, 22(1): 170-184.
[14] ZHOU Qun, YUAN Rui, ZHANG Wei-yang, GU Jun-fei, LIU Li-jun, ZHANG Hao, WANG Zhi-qin, YANG Jian-chang. Grain yield, nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates[J]. >Journal of Integrative Agriculture, 2023, 22(1): 63-79.
[15] WANG Hao-quan, DAI Wei-min, ZHANG Zi-xu, LI Meng-shuo, MENG Ling-chao, ZHANG Zheng, LU Huan, SONG Xiao-ling, QIANG Sheng. Occurrence pattern and morphological polymorphism of weedy rice in China[J]. >Journal of Integrative Agriculture, 2023, 22(1): 149-169.
No Suggested Reading articles found!