Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (6): 1293-1302    DOI: 10.1016/S2095-3119(13)60522-5
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Pathotypes and Genetic Diversity of Chinese Collections of Elsinoë fawcettii Causing Citrus Scab
 HOU Xin, HUANG Feng, ZHANG Tian-yuan, XU Jian-guo, Hyde D Kevin , LI Hong-ye
1、Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P.R.China
2、Zhejiang Citrus Research Institute, Taizhou 318020, P.R.China
3、Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Two scab diseases are currently recognized on citrus: citrus scab, caused by Elsinoë fawcettii, and sweet orange scab, caused by E. australis. Although these pathogens are economically important, there is no molecular data on these species in China. Here we use internal transcribed spacer sequence data to report on host-specificity and genetic relationships among 46 isolates collected from the main citrus varieties grown across China. All strains isolated were E. fawcettii. Based on pathogenicity testing on 9 different citrus species, isolates were divided into 11 pathotypes (SM, FBHR, SJCR, SPOJCR, SR, SOJG, SPOJC, SRGC, Lemon and two unnamed pathotypes). SM is a new pathotype, and two isolates did not fit into any of the known pathotypes of E. fawcettii. Inter-simple sequence repeat (ISSR-PCR) assays separated the E. fawcettii isolates into 10 subgroups; the groupings basically corresponded to the pathogenicity test.

Abstract  Two scab diseases are currently recognized on citrus: citrus scab, caused by Elsinoë fawcettii, and sweet orange scab, caused by E. australis. Although these pathogens are economically important, there is no molecular data on these species in China. Here we use internal transcribed spacer sequence data to report on host-specificity and genetic relationships among 46 isolates collected from the main citrus varieties grown across China. All strains isolated were E. fawcettii. Based on pathogenicity testing on 9 different citrus species, isolates were divided into 11 pathotypes (SM, FBHR, SJCR, SPOJCR, SR, SOJG, SPOJC, SRGC, Lemon and two unnamed pathotypes). SM is a new pathotype, and two isolates did not fit into any of the known pathotypes of E. fawcettii. Inter-simple sequence repeat (ISSR-PCR) assays separated the E. fawcettii isolates into 10 subgroups; the groupings basically corresponded to the pathogenicity test.
Keywords:  Elsinoë      fawcettii       genetic diversity       ISSR       pathotypes  
Received: 08 April 2013   Accepted:
Fund: 

This work was supported by the China Agriculture Research System (CARS-27) and the Technology Application Research Program for Public Interest of Zhejiang Province, China.

Corresponding Authors:  LI Hong-ye, E-mail: hyli@zju.edu.cn     E-mail:  hyli@zju.edu.cn
About author:  HOU Xin, E-mail: houxin.sdau@163.com

Cite this article: 

HOU Xin, HUANG Feng, ZHANG Tian-yuan, XU Jian-guo, Hyde D Kevin , LI Hong-ye. 2014. Pathotypes and Genetic Diversity of Chinese Collections of Elsinoë fawcettii Causing Citrus Scab. Journal of Integrative Agriculture, 13(6): 1293-1302.

Annamalai P, Ishii H, Lalithakumari D, Revathi R. 1995.Polymerase chain reaction and its applications in fungaldisease diagnosis. Zeitschrift für Pflanzenkrankheiten undPflanzenschutz, 102, 91-104

Bayraktar H, Dolar F, Maden S. 2008. Use of RAPD and ISSRmarkers in detection of genetic variation and populationstructure among Fusarium oxysporum f. sp. ciceris isolateson chickpea in Turkey. Journal of Phytopathology, 156,146-154

Bitancourt A A, Jenkins A E. 1936a. Elsinoë fawcettii, theperfect stage of the citrus scab fungus. Phytopathology,26, 393-395

Bitancourt A A, Jenkins A E. 1936b. Perfect stage of the sweetorange fruit scab fungus. Mycologia, 28, 489-492

Bornet B, Branchard M. 2001. Nonanchored inter simplesequence repeat (ISSR) markers: Reproducible and specifictools for genome fingerprinting. Plant Molecular BiologyReporter, 19, 209-215

van Burik J A H, Schreckhise R, White T, Bowden R,Myerson D. 1998. Comparison of six extraction techniquesfor isolation of DNA from filamentous fungi. MedicalMycology, 36, 299-303

Chung K R. 2011. Elsinoë fawcettii and Elsinoë australis: Thefungal pathogens causing citrus scab. Molecular PlantPathology, 12, 123-135

Hyun J W, Peres N A, Yi S Y, Timmer L W, Kim K S, KwonH M, Lim H C. 2007. Development of PCR assays for theidentification of species and pathotypes of Elsinoë causingscab on citrus. Plant Disease, 91, 865-870

Hyun J W, Timmer L, Lee S C, Yun S H, Ko S W, Kim K S.2001. Pathological characterization and molecular analysisof Elsinoë isolates causing scab diseases of citrus in Jejuisland in Korea. Plant Disease, 85, 1013-1017

Hyun J W, Yi S H, MacKenzie S J, Timmer L W, Kim K S,Kang S K, Kwon H M, Lim H C. 2009. Pathotypes andgenetic relationship of worldwide collections of Elsinoëspp. causing scab diseases of citrus. Phytopathology, 99,721-728

Jenkins A E. 1925. The citrus scab fungus. Phytopathology,15, 99-104

Jenkins A E. 1936. Australian citrus scab caused by Sphacelomafawcettii scabiosa. Phytopathology, 26, 195-197

Larkin M, Blackshields G, Brown N, Chenna R, McGettiganP, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R.2007. Clustal W and Clustal X version 2.0. Bioinformatics,23, 2947-2948

Menzies J, Bakkeren G, Matheson F, Procunier J, Woods S.2003. Use of inter-simple sequence repeats and amplifiedfragment length polymorphisms to analyze geneticrelationships among small grain-infecting species ofUstilago. Phytopathology, 93, 167-175

Nelson R J, Baraoidan M R, Cruz C M V, Yap I V, Leach J E, Mew T W, Leung H. 1994. Relationship betweenphylogeny and pathotype for the bacterial blight pathogenof rice. Applied and Environmental Microbiology, 60,3275-3283

Rohlf F. 2001. NTSYS-PC, numerical taxonomy andmultivariate análisis system. Version 2.1. Exeter Software,Setauket, New York.

Sivanesan A, Critchett C. 1974a. Elsinoë australis. In: CMIDescriptions of Pathogenic Fungi and Bacteria No. 438.CAB International, Wallingford, UK.

Sivanesan A, Critchett C. 1974b. Elsinoë fawcettii. In: CMIDescriptions of Pathogenic Fungi and Bacteria No. 438.CAB International, Wallingford, UK.

Sivanesan A, Critchett C. 1974c. Sphaceloma fawcettii var.scabiosa In: CMI Descriptions of Pathogenic Fungi andBacteria No. 438. CAB International, Wallingford, UK.

Swofford D L. 2002. Phylogenetic analysis using parsimony.Version 4b10. Sinauer Associates, Sunderland, MA.

Tan M, Timmer L, Broadbent P, Priest M, Cain P. 1996.Differentiation by molecular analysis of Elsinoë spp.causing scab diseases of citrus and its epidemiologicalimplications. Phytopathology, 86, 1039-1044

Timmer L, Priest M, Broadbent P, Tan M. 1996. Morphologicaland pathological characterization of species of Elsinoëcausing scab diseases of citrus. Phytopathology, 86,1032-1038

Timmer L W, Garnsey S M, Graham J H. 2000. Compendiumof Citrus Diseases. American Phytopathological Society,USA.Whiteside J. 1978. Pathogenicity of two biotypes of Elsinoëfawcettii to sweet orange and some other cultivars.Phytopathology, 68, 1128-1131

Zietkiewicz E, Rafalski A, Labuda D. 1994. Genomefingerprinting by simple sequence repeat (SSR)-anchoredpolymerase chain reaction amplification. Genomics, 20,176-183
[1] WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2456-2469.
[2] WANG Jie, LEI Qiu-xia, CAO Ding-guo, ZHOU Yan, HAN Hai-xia, LIU Wei, LI Da-peng, LI Fu-wei, LIU Jie. Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2200-2212.
[3] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[4] XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long. Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1539-1550.
[5] GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1830-1837.
[6] WANG Fu-qiang, FAN Xiu-cai, ZHANG Ying, SUN Lei, LIU Chong-huai, JIANG Jian-fu. Establishment and application of an SNP molecular identification system for grape cultivars[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1044-1057.
[7] LIU Na, CHENG Fang-yun, GUO Xin, ZHONG Yuan. Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1832-1848.
[8] GAO Yuan, WANG Da-jiang, WANG Kun, CONG Pei-hua, LI Lian-wen, PIAO Ji-cheng. Analysis of genetic diversity and structure across a wide range of germplasm reveals genetic relationships among seventeen species of Malus Mill. native to China [J]. >Journal of Integrative Agriculture, 2021, 20(12): 3186-3198.
[9] May Oo kHINE, brozenká MICHAELA, LIU Yan, Jiban kumar kUNDU, WANG Xi-feng. Molecular diversity of barley yellow dwarf virus-PAV from China and the Czech Republic[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2736-2745.
[10] GU Xiao-zhen, CAO Ya-cong, ZHANG Zheng-hai, ZHANG Bao-xi, ZHAO Hong, ZHANG Xiao-min, WANG Hai-ping, LI Xi-xiang, WANG Li-hao. Genetic diversity and population structure analysis of Capsicum germplasm accessions[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1312-1320.
[11] WU Huai-heng, WAN Peng, HUANG Min-song, LEI Chao-liang. Microsatellites reveal strong genetic structure in the common cutworm, Spodoptera litura[J]. >Journal of Integrative Agriculture, 2019, 18(3): 636-643.
[12] WANG Chen, CHEN Yao-sheng, HAN Jian-lin, MO De-lin, LI Xiu-jin, LIU Xiao-hong. Mitochondrial DNA diversity and origin of indigenous pigs in South China and their contribution to western modern pig breeds[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2338-2350.
[13] YANG Hai-long, DONG Le, WANG Hui, LIU Chang-lin, LIU Fang, XIE Chuan-xiao. A simple way to visualize detailed phylogenetic tree of huge genomewide SNP data constructed by SNPhylo[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1972-1978.
[14] Engin Yol, Seymus Furat, Hari D Upadhyaya, Bulent Uzun. Characterization of groundnut (Arachis hypogaea L.) collection using quantitative and qualitative traits in the Mediterranean Basin[J]. >Journal of Integrative Agriculture, 2018, 17(01): 63-75.
[15] CHAO Wen-zheng, TANG Chuan-hong, ZHANG Jing-song, YU Ling, Honda Yoichi. Development of a stable SCAR marker for rapid identification of Ganoderma lucidum Hunong 5 cultivar using DNA pooling method and inter-simple sequence repeat markers[J]. >Journal of Integrative Agriculture, 2018, 17(01): 130-138.
No Suggested Reading articles found!